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Abstract: Stochastic differential equation models are important and provide more valuable outputs to
examine the dynamics of SARS-CoV-2 virus transmission than traditional models. SARS-CoV-2 virus
transmission is a contagious respiratory disease that produces asymptomatically and symptomatically
infected individuals who are susceptible to multiple infections. This work was purposed to introduce
an epidemiological model to represent the temporal dynamics of SARS-CoV-2 virus transmission
through the use of stochastic differential equations. First, we formulated the model and derived the
well-posedness to show that the proposed epidemiological problem is biologically and mathematically
feasible. We then calculated the stochastic reproductive parameters for the proposed stochastic
epidemiological model and analyzed the model extinction and persistence. Using the stochastic
reproductive parameters, we derived the condition for disease extinction and persistence. Applying
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these conditions, we have performed large-scale numerical simulations to visualize the asymptotic
analysis of the model and show the effectiveness of the results derived.

Keywords: stochastic differential equations; existence analysis; Itô formula; Lyapunov function;
extinction; persistence; Milstein’s higher order scheme; numerical simulations
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1. Introduction

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late
2019 has caused unprecedented problems in health around the globe. The infection of the novel
coronavirus has led to a devastating loss of lives and the production of a substantial burden on
healthcare systems around the worldwide. Due to its urgency, the scientific community wants to
comprehend the complexity of the disease and has hence investigated the spreading of SARS-CoV-
2 not only by symptomatic individuals, but also by those who exhibited no apparent signs of illness
but still transmitted the disease to others, i.e., asymptomatic individuals [1]. Symptomatic individuals
experience cough, fever, and other respiratory symptoms which are recognized as the primary sources
of disease transmission. The role of asymptomatic individuals has been gaining increasing amounts
of attention because these individuals with no symptoms can transmit the disease to others making
it difficult to control the spread of the novel coronavirus. Scholars have previously noted that 47%
and 38% of newly infected cases are reported to be due to the contact with asymptomatic and
symptomatic individuals, respectively [2]. Therefore, the existence of a small number of asymptomatic
populations can produce a major disaster. The identification and understanding of the dynamics of
both asymptomatic and symptomatic individuals can help to control the novel infection with the aid of
effective control mechanisms.

Modeling the epidemiological process is a useful tool and has been vastly utilized to test various
theories related to the dynamics and control of communicable diseases [3–6]. Different researchers
have used these models to investigate the temporal dynamics of infectious diseases [7–13]. Dynamical
systems representing the SARS-CoV-2 virus transmission are also abundant in literature, and numerous
epidemiological models have been frequently exercised to investigate the predictability of the disease
spread; see for instance [14–17]. Indeed, the models reported to represent the temporal dynamics
of the novel coronavirus yielded interesting results; however, the authors mostly used a deterministic
approach to model the interacting components of the novel model of coronavirus spread. Disease
transmission is different everywhere due to the environment of the area and the immune system of the
individual as well as the death rate and implementation of the vaccination program varying from place
to place. Thus, due to the complex nature of SARS-CoV-2, it is observed that the novel disease has a
stochastic nature. Recently, a model utilizing a stochastic approach has been studied to investigate the
dynamics of coronavirus 2, as detailed in [18], where the authors did not consider various important
factors that greatly influence the disease dynamics, e.g., the classification of infected individuals as
a symptomatic and asymptomatic individuals has not been considered. However, models with an
appropriate structure provide accurate dynamics and forecast the long-term spread for the disease
which is very helpful for public health officials. Thus, we have formulated an epidemiological model
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by taking the extended version of the model reported in [18] to represent the accurate dynamics of the
novel coronavirus and realize the following contributions:

• Infected individuals are included as asymptomatic and symptomatic individuals because they are
very important in the pandemic trend of the SARS-CoV-2 virus transmission. In fact, the existence
of asymptomatic individuals with a small amount of the virus can create a major outbreak because
without experiencing any symptoms, they produce environmental reservoirs and transmit the
disease to others.
• We have investigated the multi-infection pattern of the novel of coronavirus by applying various

phases of asymptomatic and symptomatic, and we show that successful interaction between the
susceptible population and infected individuals either leads to symptomatic or asymptomatic
individuals; therefore, have applied probability-based transmission while applying the outflow
of the susceptible population to either infected group of individuals.
• The randomness is taken in each group of the model compartments because every parameter

involved in the epidemic process of the novel coronavirus disease has a stochastic nature.
• We have developed an algorithm for the model simulations by using Milstein’s higher order

procedure to check the validity of the analytical work and represent the long-term with the aid of
numerical simulations.

Thus, the goal of this study was to explore the dynamics of novel coronavirus transmission by including
the above features and enhancing the model by taking an extended version of the model studied in [18].
To this end, we chose to classify the various infected sources of disease transmission as symptomatic,
asymptomatic, and environmental reservoirs, and to take the randomness in every group of individuals
by using different Brownian motions according to the disease characteristics. Keeping in view these
hypotheses, we chose to first formulate the model and discuss its feasibility in the form of existence
analysis and positivity. For this, we will use a combination of the Itô formula and the Lyapunov
function. We then calculate the various stochastic reproductive parameters to discuss the conditions for
the persistence and extinction of the novel coronavirus. In addition, we discuss the detailed extinction
and persistence analysis of the model and derived sufficient conditions for it in terms of the stochastic
reproductive parameters. Finally, to interpret the obtained results based on graphical visualization, we
chose to develop an algorithm by using the Milstein higher-order method and present the large-scale
numerical simulations of the model.

To provide a comprehensive and systematic analysis of the paper, we present the organization of
the paper as follows. Following the introduction and recent literature, we formulate the model with a
complete description in Section 2. To show the feasibility of the epidemic problem, we provide some
basic concepts and notations and discuss the model analysis in Section 3. Subsequently, to examine the
model extinction and persistence, and to derive sufficient conditions for it, we investigate the extinction
and persistence analysis in Section 4. In addition, to perform the large-scale numerical simulations of
the model, we have developed the algorithm by using of Milstein’s Higher Order method, as presented
in Section 5. Particularly, the discretization of the model is reported in Section 5.1, while the numerical
experiments are presented in Section 5.2. Lastly, we conclude the summary of our work with the main
findings in Section 6.

AIMS Mathematics Volume 9, Issue 5, 12433–12457.



12436

2. The model structure

In this part, we formulated the model for the dynamics of the novel coronavirus transmission
keeping in view the characteristics of latent/asymptomatic and symptomatic individuals, as well as
the environmental reservoirs. We assume that (Θ,QT , (Qt)t∈[0,T ], P) is a space of filtered probability
that includes a 5D-Brownian motion W := (W(t))t≥0, where W(t) := (W1(t),W2(t),W3(t),W4(t),W5(t)).
The novel disease transmits via environmental reservoirs and human interaction, differing everywhere.
We, therefore, assume that groups of the model population will have a stochastic nature that is
driven by different randomness sources i.e., Wi(t), i = 1, . . . , 5. The proposed epidemiological model
incorporates the variations in all groups of individuals associated with various sources of information
denoted by Q = (Qt)t≥0, where Qt := σ(W(t)) represents the σ−algebra derived from W(t); thus, the
fluctuations are considered to be taken in all groups of individuals in the model. Further, the groups of
humans are categorized into susceptible, latent or asymptomatic, symptomatic, and recovered groups,
which are respectively denoted by S (t), L(t), B(t), and R(t), while the concentration of environmental
reservoirs is symbolized by C(t). In addition, we provided the flow diagram that represents the transfer
mechanism for the model population in Figure 1.

Figure 1. The plot represents the flow diagram of the proposed model.
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Thus, the below dynamical system represents the novel coronavirus dynamics:

dS (t) = {Π − γL(t)S (t) − βS (t)B(t) − ξS (t)C(t) − (α0 + v)S (t)} dt

+ ϑ1S (t)dW1(t),
dL(t) =

{
q
(
γL(t)S (t) + βS (t)B(t) + ξS (t)C(t)

)
− (α0 + γ1)L(t)

}
dt

+ ϑ2L(t)dW2(t),
dB(t) =

{
(1 − q)

(
γL(t)S (t) + βS (t)B(t) + ξS (t)C(t)

)
+ pγ1L(t)

− (α1 + γ2 + α0)B(t)
}
dt + ϑ3B(t)dW3(t),

dR(t) = {γ1(1 − p)L(t) + γ2B(t) + vS (t) − α0R(t)} dt + ϑ4R(t)dW4(t),
dC(t) = {η1L(t) + η2B(t) − αC(t)} dt + ϑ5W(t)dW5(t).

(2.1)

In the model (2.1), the rate of births is denoted by Π, while the parameters γ, β, and ξ are used
to represent the disease transmission from various sources. Vaccination for the novel coronavirus
plays a significant role and it denoted by v, while α0 denotes the natural death rate. Moreover,
the death rate attributable to the novel disease is described by α1, and p is the probability of direct
recovery of latent/asymptomatic individuals, as some individuals directly recover without producing
any symptoms. We also use q as the probability at which the susceptible individuals enter the
asymptomatic/latent population, and γ1 and γ2 are the portions of individuals who recover from the
contagious infection of the novel coronavirus disease. In addition, Wi(t) and ϑi, i = 1, . . . , 5 are the
standard Brownian motions and white noise intensities, respectively, satisfying that Wi(0) = 0 and
ϑ2

i > 0 for all i = 1, 2, 3, 4, 5.

3. The analysis of the model

In this part, we show the model feasibility to prove the well-posedness of the proposed epidemic
model. Particularly, we discuss the existence analysis of the model and its positivity. However, before
presenting the results, first, we briefly recall some basic concepts that are helpful for deriving our
conclusion.

Lemma 3.1. [19] Let u = (u1, u2, . . . , uk) and v = (v1, v2, . . . , vk) represent two square-integrable
adopted processes with k-dimensions. We assume the process Y = (y1, y2, . . . , yk) for n ∈ {1, 2, 3, . . . , k};
then, Yn is expressed as the following differential equation:

dYn = un(t)dt + vn(t)dW(t), Yn(0) ∈ R. (3.1)

If a function G from Rk to R is twice continuously differentiable, then

dG =

k∑
n=1

∂G
∂xn

dYn(t) +

k∑
n,m=1

1
2

∂2G
∂xn∂xm

〈dYn, dYm〉 , (3.2)

where 〈, 〉 represents the quadratic variation; therefore, 〈dW(t), dW(t)〉 = dt and 〈dt, dW(t)〉 =

〈dW(t), dt〉 = 〈dt, dt〉 = 0.
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In addition, to examine the extinction and persistence with the aid of the proposed model, we first
describe the definitions that will be used in the model extinction and persistence analysis. Let

〈
P(t)

〉
=

1
t

∫ t

0
P(a)da. (3.3)

Then, the disease persists if lim
(

inf
〈
L(t)

〉)
, lim

(
inf

〈
B(t)

〉)
and lim

(
inf

〈
C(t)

〉)
are positive whenever

t increases without bound or equivalently, we can say that the epidemiological model (2.1) persists if

lim
t→∞

inf
∫ t

0
L(a)da, lim

t→∞
inf

∫ t

0
B(a)da, lim

t→∞
inf

∫ t

0
C(a)da, (3.4)

are positive.
Moreover, we assume that RS

a , RS
b , RS

c , and RS
d are the components of the stochastic reproductive

parameter, and they are respectively defined by

RS
a =

q {γ + β + ξ}Π

{α0 + v}
{
α0 + γ1 +

ϑ2
2

2

} , RS
b =

(1 − q) {γ + β + ξ}Π

{α0 + v}
{
α0 + α1 + γ2 +

ϑ2
3

2

} ,
RS

c =
qγΠ

{α0 + v}
{
α0 + γ1 +

ϑ2
2

2

} , RS
d =

(1 − q)βΠ

{α0 + v}
{
α0 + α1 + γ2 +

ϑ2
3

2

} . (3.5)

Then, the stochastic reproductive parameter for the epidemiological model (2.1) becomes RS
0 = RS

a +

RS
b + RS

c + RS
d .

In order to show the model existence analysis, we use a combination of the Itô formula and
Lyapunov theory. Define

Φ =
{
(S , L, B,R,C) ∈ R5

+ S ,R > 0, A, B,C ≥ 0, S + L + B + R + C ≤ 1
}
. (3.6)

Thus, regarding the model existence the result will be shown in the following theorem.

Theorem 3.2. For the initial conditions (S (0), L(0), B(0),R(0),C(0)) contained in R5
+, there exists a

solution (S (t), L(t), B(t),R(t),C(t)) of the epidemiological model (2.1) which is unique and remains in
R5

+ such that
p
{
(S , L, B,R,C) ∈ Φ, ∀ t ≥ 0

}
= 1.

Proof. Noted that for the model that is under consideration, the local Lipschitz continuity condition
holds by following the methodology as adopted by Lei and Yang in [20]. Let X = (S , L, B,R,C) be the
model solution for all t in [0, te) (where te is the explosion time), while X0 symbolizes the initial values
(S (0), L(0), B(0),R(0),C(0)) for the model contained in R5

+; then, the property of Lipschitz continuity
implies that the solution of the model (2.1) is unique and local. To demonstrate that the solution is
global, it is enough to show that te = ∞. To proceed further, we assume a constant %0 ≥ 0 that is
sufficiently large apply 1

%0
< X0 < %0 and define the stopping time as follows:

t% = inf
{

t ∈ [0, te) : min X ≤
1
%

or max X
}
. (3.7)
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Note that inf ϕ = ∞, where ϕ represents the null set; also, since tρ varies with changing %, that is if %
increases without bound, t% also increases. For t → ∞, we set lim = t∞ and t∞ = ∞. Thus, we need to
prove that te = ∞ only. Let 0 < ζ < 1, T > 0, and

P{t∞ ≤ T } > ζ. (3.8)

For %1 ≥ %0

P{t% ≤ T } ≥ ζ, for every % ≥ %1. (3.9)

LetH contained in C2 such thatH : R5
+ → R+ be defined by

H = L − log(L) − 1 + B − log(B) − 1 + S − log(S ) − 1 + R − 1 − log(R) + C − log(C) − 1. (3.10)

Note thatH ≥ 0; thus, for %0 ≤ % and T ≥ 0, the implementation of the Itô formula yields

dH = UHdt + ϑ1(S − 1)dW1 + (L − 1)ϑ2dW2 + (B − 1)ϑ3dW3

+ ϑ4(R − 1)dW4 + (C − 1)ϑ5dW5, (3.11)

where

UH =

{
1 −

1
S

}
{Π − γLS − βS B − ξS C − (α0 + v)S } +

1
2
ϑ2

1

+

{
1 −

1
L

} {
q
(
γLS + βS B + ξS C

)
− (α0 + γ1)L

}
+

1
2
ϑ2

2

+

{
1 −

1
B

} {
(1 − q)

(
γLS + βS B + ξS C

)
+ pγ1L − (α0 + α1 + γ2)B

}
+

1
2
ϑ2

3

+

{
1 −

1
R

}
{(1 − p)γ1L + γ2B + vS − α0R} +

1
2
ϑ2

4

+

{
1 −

1
C

}
{η1L + η2B − αC} +

1
2
ϑ2

5. (3.12)

Applying some algebraic manipulation and simplification, we arrive at

UH ≤ Π + 4α0 + v + γ1 + α1 + γ2

+ (γ + γ1 + η1) L + (β + γ2 + η2) B + ξC + α +
1
2
(
ϑ2

1 + ϑ2
2 + ϑ2

3 + ϑ2
4 + ϑ2

5
)
. (3.13)

Let K1 = max {γ + γ1 + η1, β + γ2 + η2, ξ}; then, by following S + L + B + R + C ≤ 1 from Eq (3.6), the
last inequality appears as follows:

UH ≤ Π + K1 + 4α0 + v + γ1 + α1 + γ2 +
1
2
(
ϑ2

1 + ϑ2
2 + ϑ2

3 + ϑ2
4 + ϑ2

5
)

:= Φ. (3.14)

Plugging Eq (3.14) into Eq (3.11), we obtain

dH ≤ Φdt + (S − 1)ϑ1dW1 + (L − 1)ϑ2dW2 + (B − 1)ϑ3dW3 + (R − 1)ϑ4dW4 + (C − 1)ϑ5dW5.

AIMS Mathematics Volume 9, Issue 5, 12433–12457.



12440

Applying the integration on both sides gives∫ t%∧T

0
dH ≤

∫ t%∧T

0
Φdt +

∫ t%∧T

0
(S − 1)ϑ1dW1 +

∫ t%∧T

0
(L − 1)ϑ2dW2

+

∫ t%∧T

0
(B − 1)ϑ3dW3 +

∫ t%∧T

0
(R − 1)ϑ4dW4 +

∫ t%∧T

0
(C − 1)ϑ5dW5.

(3.15)

The implementation of expectation yields that

E
[
H(S (t% ∧ T ), L(t% ∧ T ), B(t% ∧ T ),R(t% ∧ T ),C(t% ∧ T ))

]
≤ H(x(0)) + E

[ ∫ t%∧T

0
Φdt

]
,

which implies that

E
[
H(S (t% ∧ T ), L(t% ∧ T ), B(t% ∧ T ),R(t% ∧ T ))

]
≤ H(x(0)) + TΦ. (3.16)

Let Φ% = T ≥ t% for all % ≥ %1; then, P(Φ%) ≥ ζ. For every ε ∈ Φ% there exists at least one S (ε, t%),
L(ε, t%), B(ε, t%), R(ε, t%) or C(ε, t%) that is either equal to % or 1/%, thus,

H
(
S (ε, t%), L(ε, t%), B(ε, t%),R(ε, t%),C(ε, t%)

)
≥

(1
%
− 1 + log %

)
∧

(
% − log % − 1

)
. (3.17)

Following Eqs (3.8) and (3.16), we may write

H(X0) + TΦ ≥ E
[
1Φ%(ε)G

(
S (t% ∧ T ), L(t% ∧ T ), B(t% ∧ T ),R(t% ∧ T )

)]
,

= E
[
1Φ%(ε)G

(
S (t%,T ), L(t%,T ), B(t%,T ),R(t%,T )

)]
≥ E

[
1Φ%(ε)

(
log % − 1 +

1
%

)
∧ (− log % − 1 + %

)]
=

(
log % − 1 +

1
%

)
∧ (− log % − 1 + %

)
E
[
1Φ%(ε)

]
.

This gives that

H(X(0)) + TΦ ≥ ζ
(

log % +
1
%
− 1

)
∧ (% − log % − 1).

In the above equation 1Φ%(ε) represents the indicator function for Φ%(ε). For an increase in n without
bound,∞ > H

(
X0

)
+ ΦT = ∞ yields a contradiction; so, t∞ = ∞. �

Remark 1. The existence analysis for the considered model reveals that there exists a unique global
solution X ∈ R5

+ for any initial groups of population X(0) ∈ R5
+.

Theorem 3.3. The proposed epidemiological model (2.1) possesses positive solutions for all initial
groups of populations in R5

+.

Proof. To begin the proof, we follow the work investigated in [21], and assume that [0,+∞) is the
interval of solution. Since every differential equation in the model (2.1) corresponds to a geometric
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Brownian motion, we assume the 5 processes to be (ηS (t))t∈R+
, (ηL(t))t∈R+

, (ηB(t))t∈R+
, (ηR(t))t∈R+

and
(ηC(t))t∈R+

, respectively denoted

dηS (t) = − {α0 + v + γL(t) + βB(t) + ξC(t)} ηS (t)dt + ϑ1ηS (t)dW1(t), ηS (0) = 1,
dηL(t) = {qγL(t) − (α0 + γ1)} ηL(t)dt + ϑ2ηL(t)dW2(t), ηL(0) = 1,
dηB(t) = {(1 − q)βS (t) − (α0 + α1 + γ2)} ηB(t)dt + ϑ3ηB(t)dW3(t), ηB(0) = 1,
dηR(t) = −α0ηR(t)dt + ϑ4ηR(t)dW4(t), ηR(0) = 1,
dηC(t) = −α0ηC(t)dt + ϑ4ηC(t)dW5(t), ηC(0) = 1.

By applying the Itô formula to the function ln η., the solution of the above system can be easily derived,
as follows:

ηS (t) = exp
[∫ t

0
(γL(x) + βB(x))dx −

(
α0 + v +

ϑ2
1

2

)
t + ϑ1W1(t)

]
,

ηL(t) = exp
[
qβ

∫ t

0
S (x)dx −

(
α0 + γ1 +

ϑ2
2

2

)
t + ϑ2W2(t)

]
,

ηB(t) = exp
[
(1 − q)β

∫ t

0
S (x)dx −

(
α0 + α1 + γ2 +

ϑ2
3

2

)
t + ϑ3W3(t)

]
,

ηR(t) = exp
[
−

{
α0 +

ϑ2
4

2

}
t + ϑ4W4(t)

]
,

ηC(t) = exp
[
−

{
α0 +

ϑ2
4

2

}
t + ϑ5W5(t)

]
.

The solutions of the model process are derived based on the assumption that each solution can be
expressed as a product of the stochastic process and associated geometric Brownian motion, i.e., S (t) =

ηS (t)YS (t), and YS (t), respectively [21]. So, the stochastic integration based on the implementation of
the integral to S (t)η−1

S (t) gives the assertion for YS (t). Hence, the model solutions can be represented
as follows:

S (t) = ηS (t)
{

Π

∫ t

0
η−1

S (x)dx + S (0)
}
,

L(t) = ηL(t)
{

q
∫ t

0
βB(x) + ξX(x)S (x)η−1

L (x)dx + L(0)
}
,

B(t) = ηB(t)
{

B(0) +

∫ t

0
((1 − q)(γS (x) + ξS (x) + pγ1)B(u))η−1

B (x)dx
}
,

R(t) = ηR(t)
{

R(0) +

∫ t

0
(γ1(1 − p)L(x) + γ2C(x) + vS (x))η−1

R (x)dx
}
,

C(t) = ηC(t)
{

C(0) +

∫ t

0
(η1L(x) + η2C(x))η−1

C (x)dx
}
.

Clearly, all the solutions are positive because η. and η−1
. are in exponential form while the initial data

and all other epidemic parameters of the epidemiological model have non-negative values. �
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4. Extinction and persistence of the model

In this section, we discuss the disease extinction and persistence to derive the conditions for it, which
will be in the form of an expression containing white noise intensities and model epidemic parameters.
Thus, the extinction of the epidemiological model (2.1) is illustrated by giving the subsequent result.

Theorem 4.1. If

a. RS
a < 1 and RS

b < 1,
b. (1 − q)(γ + β + ξ)(α0 + α1 + γ2) ≥ p(v + α0),

then the infection of the novel coronavirus will decay exponentially, that is

lim
t→∞

sup
log L(t)

t
≤

{
α0 + γ1 +

1
2
ϑ2

2

} (
RS

a − 1
)
< 0,

and

lim
t→∞

sup
log B(t)

t
≤

{
α0 + α1 + γ2 +

1
2
ϑ2

3

} (
RS

b − 1
)
< 0.

In addition

lim
t→∞

S (t) =
Π

v + α0
, lim

t→∞
L(t) = lim

t→∞
B(t) = lim

t→∞
C(t) = 0, lim

t→∞
R(t) =

vΠ

α0(α0 + v)
.

Proof. To begin, we integrate both sides of the system (2.1), which gives the integral system as follows

∫ t

0
dS (y) = Πt −

∫ t

0

{
γL(y) + βB(y) + ξC(y) + (α0 + v)

}
S (y)dy + ϑ1

∫ t

0
S (y)dW1(y),∫ t

0
dL(x) =

∫ t

0

{
q(γL(y) + βB(y) + ξC(y))S (y) − (α0 + γ1)L(y)

}
dy + ϑ2

∫ t

0
L(y)dW2(y),∫ t

0
dB(x) =

∫ t

0

{
(1 − q){γL(y) + βB(y) + ξC(y)}S (y) + pγ1L(y) − (α0 + α1 + γ2)C(y)

}
dy

+ ϑ3

∫ t

0
C(y)dW3(y),∫ t

0
dR(y) =

∫ t

0

{
(1 − p)γ1L(y) + γ2C(y) + vS (y) − α0R(y)

}
dy + ϑ4

∫ t

0
R(y)dW4(y),∫ t

0
dC(y) =

∫ t

0

{
η1L(y) + η2C(y) − αC(y)

}
dy + ϑ5

∫ t

0
C(y)dW5(y).
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Considering the above integral system with some algebraic manipulation, we have

S (t) − S (0)
t

= Π − γ
〈
L(t)S (t)

〉
− β

〈
B(t)S (t)

〉
− ξ

〈
C(t)s(t)

〉
− (α0 + v)

〈
S (t)

〉
+
ϑ1

t

∫ t

0
S (y)dW1(x),

L(t) − L(0)
t

= q
{
γ
〈
L(t)S (t)

〉
+ β

〈
B(t)S (t)

〉
+ ξ

〈
C(t)s(t)

〉}
− (α0 + γ1)

〈
L(t)

〉
+
ϑ2

t

∫ t

0
L(y)dW2(y),

B(t) − B(0)
t

= (1 − q)
{
γ
〈
L(t)S (t)

〉
+ β

〈
B(t)S (t)

〉
+ ξ

〈
C(t)s(t)

〉}
+ pγ1

〈
L(t)

〉
− (α0 + α1 + γ2)

〈
B(t)

〉
+
ϑ3

t

∫ t

0
C(y)dW3(y),

R(t) − R(0)
t

= v
〈
S (t)

〉
+ γ1(1 − p)

〈
L(t)

〉
+ γ2

〈
C(t)

〉
− α0

〈
R(t)

〉
+
ϑ4

t

∫ t

0
R(y)dW4(y),

C(t) −C(0)
t

= η1
〈
L(t)

〉
+ η2

〈
C(t)

〉
− α

〈
C(t)

〉
+
ϑ5

t

∫ t

0
C(y)dW5(y).

The addition of the 1st three equations gives

S (t) − S (0)
t

+
L(t) − L(0)

t
+

B(t) − B(0)
t

=

Π − (α0 + v)
〈
S (t)

〉
− (α0 + γ1)

〈
L(t)

〉
+ pγ1

〈
L(t)

〉
− (α0 + α1 + γ2)

〈
C(t)

〉
+
ϑ1

t

∫ t

0
S dW1(y) +

ϑ2

t

∫ t

0
LdW2(y) +

ϑ3

t

∫ t

0
CdW3(y), (4.1)

which implies that

〈
S (t)

〉
=

Π

(α0 + v)
−
{α0 + γ1(1 − p)}

(α0 + v)
〈
L(t)

〉
−

(α0 + α1 + γ2)
(α0 + v)

〈
B(t)

〉
+ Υ(t), (4.2)

where

Υ(t) =
1

(α0 + v)

{
ϑ1

t

∫ t

0
S (y)dW1(y) +

ϑ2

t

∫ t

0
L(y)dW2(y) +

ϑ3

t

∫ t

0
B(y)dW3(y)

−

(
S (t) − S (0)

t
+

L(t) − L(0)
t

+
B(t) − B(0)

t

) }
. (4.3)

Obviously Υ(t) = 0 as t increases without bounds to∞

lim
t→∞

Υ(t) = 0. (4.4)
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By the application of the Itô lemma to the model (2.1), the second equation yields

d log L(t) = q
{
γS (t) +

βS (t)B(t)
L(t)

+
ξS (t)C(t)

L(t)

}
− (α0 + γ1) −

ϑ2
2

2
+ ϑ2dW2(t). (4.5)

Integrating the above equation and then dividing both sides by t, we get the following assertion:

1
t

log L(t)|t0 = q
{
γ
〈
S (t)

〉
+ β

〈S (t)B(t)
L(t)

〉
+ ξ

〈S (t)C(t)
L(t)

〉}
− (α0 + γ1) −

ϑ2
2

2
+
ϑ2W2(t)

t
. (4.6)

Since,
〈

S (t)B(t)
L(t)

〉
≤

〈
S (t)B(t)

〉
≤

〈
S (t)

〉
and

〈
S (t)C(t)

L(t)

〉
≤

〈
S (t)C(t)

〉
≤

〈
S (t)

〉
, the above equation can be

re-expressed follows

1
t

log L(t)|t0 ≤ q
{
(γ + β + ξ)

〈
S (t)

〉}
− (α0 + γ1) −

ϑ2
2

2
+
ϑ2W2(t)

t
. (4.7)

Plugging Eq (4.2) into last equation, we arrive at

1
t

log L(t)|t0 ≤
{
α0 + γ +

ϑ2
2

2

} 
q (γ + β + ξ) Π

(α0 + v)
(
α0 + γ1 +

ϑ2
2

2

) − 1


−

q (γ + β + ξ) {α0 + (1 − p)γ1}

(α0 + v)
〈
L(t)

〉
−

q (γ + β + ξ) (α0 + α1 + γ2)
(α0 + v)

〈
B(t)

〉
+ q (γ + β + ξ) Υ(t) +

ϑ2W2(t)
t

. (4.8)

Using the stochastic reproductive parameters and following the Strong Law of Large Numbers [22], the
final inequality may take the form given by

lim
t→∞

sup
log L(t)

t
≤

{
α0 + γ1 +

ϑ2
2

2

} (
RS

a − 1
)
< 0 a.s. (4.9)

Thus, lim L(t) = 0 as t increases without bound and RS
1 < 1.

To proceed further by once again using the Itô lemma, the third equation of the epidemiological
model (2.1) appears as follows:

d log B(t) = (1 − q)
{
γL(t)S (t) + βB(t)S (t) + ξC(t)S (t)

B(t)

}
+

pγ1L(t)
B(t)

− (α0 + α1 + γ2) −
ϑ2

3

2
+ ϑ3dW3(t), (4.10)

or equivalently, we can write

d log B(t) ≤ {γS (t)L(t) + βB(t)S (t) + ξC(t)S (t)} (1 − q)

+ pγ1L(t) − (α0 + α1 + γ2) −
ϑ2

3

2
+ ϑ3dW3(t).
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In a similar fashion as above, once again using stochastic integration, we arrive at

1
t

log B(t)|t0 ≤ (1 − q)
{
γ
〈
L(t)S (t)

〉
+ β

〈
S (t)B(t)

〉
+ ξ

〈
S (t)C(t)

〉}
+ pγ1

〈
L(t)

〉
− (α0 + α1 + γ2) −

ϑ2
3

2
+
ϑ3W3(t)

t
. (4.11)

Using the same steps as performed for the previous case, the last inequality can be re-casted as follows:

1
t

log B(t)|t0 ≤ (1 − q)
{
γ
〈
s(t)

〉
+ β

〈
s(t)

〉
+ ξ

〈
s(t)

〉}
+ pγ1

〈
L(t)

〉
− (α0 + α1 + γ2) −

ϑ2
3

2
+
ϑ3W3(t)

t
. (4.12)

Plugging in the value of
〈
S (t)

〉
, Eq (4.12) can be transformed to obtain

1
t

log B(t)|t0 ≤
{
α0 + α1 + γ2 +

ϑ2
3

2

} 
(1 − q)(γ + β + ξ)Π

(α0 + v)
{
α0 + α1 + γ2 +

ϑ2
3

2

} − 1


−

{
(1 − q)(γ + β + ξ) {α0 + α1 + γ2}

α0 + v
− pγ1

} 〈
L(t)

〉
−

(1 − q)(γ + β + ξ)(α0 + α1 + γ2)
(α0 + v)

〈
B(t)

〉
+ (1 − q)(γ + β + ξ)Υ(t) +

ϑ3W3(t)
t

. (4.13)

If (1 − q) (γ + β + ξ) (α0 + α1 + γ2) ≥ pγ1 (α0 + v), then, through the use of the stochastic reproductive
parameters and the implementation of the strong law of large numbers with little rearrangement and
simplification, the last inequality is given by

lim
t→∞

sup
log B(t)

t
≤

{
α0 + α1 + γ2 +

ϑ2
3

2

} (
RS

b − 1
)
< 0. (4.14)

Hence, lim B(t) = 0 as t approaches∞wheneverRS
b < 1. In addition, we take the limiting system of the

first, fourth, and fifth equations of the proposed model, whose solution yields that lim S (t) = Π/(α0+v),
lim R(t) = vΠ

α0(v+α0) and lim C(t) = 0 if t increases without bound. Thus, the extinction is subject to the
values of the stochastic reproductive parameters RS

a and RS
b , and if they are less than unity, the disease

will go extinct. �

Theorem 4.2. For the initial groups of the population (S (0), L(0), B(0),R(0),C(0)) in Φ, the solutions
of the epidemiological model (2.1) satisfy

L2 ≤ lim
t→∞

inf
〈
L(t)

〉
≤ sup

〈
L(t)

〉
≤ L1,

B2 ≤ lim
t→∞

inf
〈
B(t)

〉
≤ sup

〈
B(t)

〉
≤ B1,
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and
C2 ≤ lim

t→∞
inf

〈
C(t)

〉
≤ sup

〈
C(t)

〉
≤ C1,

where

L1 =

(α0 + v)
{
α0 + γ +

ϑ2
2

2

} (
RS

a − 1
)

q (γ + β + ξ) {α0 + (1 − p)γ1}
, L2 =

(v + α0)
{
α0 + γ1 +

ϑ2
2

2

} (
RS

c − 1
)

qγ {α0 + γ1(1 − p)}
,

B1 =

(α0 + v)
{
α0 + α1 + γ2 +

ϑ2
3

2

} (
RS

b − 1
)

(1 − q) (γ + β + ξ) (α0 + α1 + γ2)
, B2 =

{
α0 + α1 + γ2 +

ϑ2
3

2

} (
RS

d − 1
)
,

C1 =
η1

α
L1 +

η2

α
B1, C2 =

η1

α
L2 +

η2

α
B2.

Proof. The direct use of Eq (4.8) ultimately gives that

1
t

log L(t)|t0 ≤
{
α0 + γ +

ϑ2
2

2

} {
RS

a − 1
}

−
q (γ + β + ξ) {α0 + (1 − p)γ1}

(α0 + v)
〈
L(t)

〉
+ q (γ + β + ξ) Υ(t) +

ϑ2W2(t)
t

, (4.15)

which implies that

〈
L(t)

〉
≤

(α0 + v)
{
α0 + γ +

ϑ2
2

2

} (
RS

a − 1
)

q (γ + β + ξ) {α0 + (1 − p)γ1}

+
(α0 + v)

q (γ + β + ξ) {α0 + (1 − p)γ1}

{
q (γ + β + ξ) Υ(t) +

ϑ2W2(t)
t

−
1
t

log L(t)|t0

}
.

Using the sup property and applying lim as t approaches∞, we derive the following:

lim
t→∞

sup
〈
L(t)

〉
≤

(α0 + v)
{
α0 + γ +

ϑ2
2

2

} (
RS

a − 1
)

q (γ + β + ξ) {α0 + (1 − p)γ1}
= L1. (4.16)

Similar to Eq (4.6), we can write

1
t

log L(t)|t0 ≥
{
α0 + γ1 +

ϑ2
2

2

} (
RS

c − 1
)
−

qγ {α0 + (1 − p)γ1}

(v + α0)
〈
L(t)

〉
−

qγ (α0 + α1 + γ2)
(v + α0)

〈
B(t)

〉
+ qγΥ(t) +

ϑ2W2(t)
t

.

Applying some algebraic manipulation with lim inf yields

lim
t→∞

inf
〈
L(t)

〉
≥

(v + α0)
{
α0 + γ1 +

ϑ2
2

2

} (
RS

c − 1
)

qγ {α0 + γ1(1 − p)}
= L2.

(4.17)

Similarly, the direct use of Eq (4.13) gives that
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1
t

log B(t)|t0 ≤
{
α0 + α1 + γ2 +

ϑ2
3

2

} (
RS

b − 1
)

−
(1 − q)(γ + β + ξ)(α0 + α1 + γ2)

(α0 + v)
〈
B(t)

〉
+ (1 − q)(γ + β + ξ)Υ(t) +

ϑ3W3(t)
t

.

Re-arrangement with some algebraic manipulation yields

〈
B(t)

〉
≤

(α0 + v)
{
α0 + α1 + γ2 +

ϑ2
3

2

} (
RS

b − 1
)

(1 − q) (γ + β + ξ) (α0 + α1 + γ2)

+
(α0 + v)

(1 − q) (γ + β + ξ) (α0 + α1 + γ2)

{
(1 − q)(γ + β + ξ)Υ(t) +

ϑ3W3(t)
t

−
1
t

log B(t)|t0

}
.

Through the implementation of lim with sup for an increasing t without bound, the last inequality may
take the following form:

lim
t→∞

sup
〈
B(t)

〉
≤

(α0 + v)
{
α0 + α1 + γ2 +

ϑ2
3

2

} (
RS

b − 1
)

(1 − q) (γ + β + ξ) (α0 + α1 + γ2)
= B1. (4.18)

Likewise, from Eq (4.10), we obtain that

1
t

log B(t)|t0 ≥
{
α0 + α1 + γ2 +

ϑ2
3

2

} (
RS

d − 1
)

−
(1 − q)β (α0 + α1 + γ2)

v + α0

〈
B(t)

〉
+ (1 − q)βΥ(t) +

ϑ3W3(t)
t

.

As t approaches∞, taking lim and inf, we can obtain the following assertion from the last inequality

lim
t→∞

inf
〈
B(t)

〉
≥

{
α0 + α1 + γ2 +

ϑ2
3

2

} (
RS

d − 1
)

= B2. (4.19)

In addition, from the last equation of the integral system of the model (2.1), we can write〈
C(t)

〉
=
η1

α

〈
L(t)

〉
+
η2

α

〈
B(t)

〉
−

1
α

{
C(t) −C(0)

t
−
ϑ5

t

∫ t

0
C(y)dy

}
.

By taking lim as t increases without bound and applying sup and inf respectively to the above equation,
we obtain the following assertions

lim
t→∞

sup
〈
C(t)

〉
≤
η1

α
L1 +

η2

α
B1 = C1, (4.20)

and
lim
t→∞

inf
〈
C(t)

〉
≥
η1

α
L2 +

η2

α
B2 = C2. (4.21)

Thus, Eqs (4.16)–(4.21) imply that L2 ≤ lim inf
〈
L(t)

〉
≤ lim sup

〈
L(t)

〉
≤ L1, B2 ≤ lim inf

〈
B(t)

〉
≤

lim sup
〈
B(t)

〉
≤ B1 and C2 ≤ lim inf

〈
C(t)

〉
≤ lim sup

〈
C(t)

〉
≤ C1, if t tends to∞ and RS

a > 1, RS
b > 1,

RS
c > 1 and RS

d > 1, which proves the conclusion. �
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5. Discretization of the model and numerical experiments

To perform the numerical assessment of the stochastic epidemiological model (2.1), we chose to
use the numerical Milstein higher-order method; for details, see [23]. Here, we will first demonstrate
the model discretization that is used for the numerical investigation.

5.1. Discretization of the model

For, this, we assume that if K ≥ 0 and the interval of time is [0,T ] with the time step ∆t = T/K,
then li = i∆t is the point of the discretized interval. We also use (S i, Li, Bi,Ri,Ci) while writing
(S (li), L(li), B(li),R(li),C(li)) and W j(li) = W ji, j = 1, 2, 3, 4, 5 for simplicity. Thus, the truncation
of the Itô-Taylor expansion gives the procedure of Milstein’s scheme for the reported model (2.1):

S i = S i−1 +
{
Π − γS j−1Li−1 − βS j−1Bi−1 − ξS j−1Ci−1 − (v + α0)

}
∆t

+ ϑ1S i−1(W1i −W1i−1) +
1
2
ϑ2

1S i−1

{
(W1i −W1i−1)

2 − ∆t
}
,

Li = Li−1 +
{
q
(
γS j−1Li−1 + βS j−1Bi−1 + ξS j−1Ci−1

)
− (α0 + γ1)Li−1

}
∆t

+ ϑ2Li−1(W2i −W2i−1) +
1
2
ϑ2

2Li−1

{
(W2i −W2i−1)

2 − ∆t
}
,

Bi = Bi−1 +
{
(1 − q)

(
γS j−1Li−1 + βS j−1Bi−1 + ξS j−1Ci−1

)
− (α0 + α1 + γ2)Bi−1

}
∆t

+ ϑ3B j−1(W3i −W3i−1) +
1
2
ϑ2

3Bi−1

{
(W3i −W3i−1)

2 − ∆t
}
,

Ri = Ri−1 + {vS i−1 − α0Ri−1 + qγ1Li−1 + γ2Bi−1}∆t + ϑ4Ri−1(W3i −W3i−1)

+
1
2
ϑ2

4Ri−1

{
(W4i −W4i−1)

2 − ∆t
}
,

Ci = Ci−1 + {η1Li−1 − αCi−1 + η2Bi−1}∆t + ϑ5C j−1(W5i −W5i−1)

+
1
2
ϑ2

5Ci−1

{
(W5i −W5i−1)

2 − ∆t
}
.

To calculate the discretized Brownian paths that will be applied for W j(li)−W j(li−1) for the model (2.1)
discretization, we assume the step size ∆t to be an integral multiple of R ≥ 1 of the increment δt. So
the increments W j(li) −W j(li−1) becomes

W j(l j) −Wi(l j−1) =

iR∑
k=iR−R+1

dWk.

Thus, the implementation of Milstein’s higher order method for the considered model can be concluded
with the following steps.

(1) Interval descretization of [0,T ] into subintervals δt = T
K > 0: 0 = l0 < l1 < · · · < lK = T in K

with equal width with ln = nδt.
(2) Defining the proper initial data for the compartmental population groups of the model

(S 0, L0, B0,R0,C0).
(3) Defining the recursive formulas (S j, L j, B j,R j,C j) for 1 ≤ i ≤ K as described through the

procedure of Milstein’s scheme.
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(4) Discretizing the Brownian paths to be used in the calculation of W j(li) −W j(li−1) while using the
constant R ≥ 1 and increment ∆t.

(5) Finding of W j(li) −W j(li−1) = W j(iRδt) −W j((i − 1)Rδt) =
∑iR

k=iR−R+1 dWk.

5.2. Numerical experiments

We shall present the numerical experiment of the model with the aid of Milstein’s Higher Order
method as concluded in the above algorithm. According to Milstein’s higher order method, we can
assume two different sets of parameter values based on the sufficient analysis and calculations of the
conditions that satisfy the derived analytical results in Theorems 4.1 and 4.2. We also assume some
feasible biological initial sizes of the groups of the compartmental populations while implementing the
algorithm. More precisely, the set of values of the epidemiological parameters for extinction analysis
is assumed to be A1 = {Π, γ, β, ξ, α0, v, γ1, α1, γ2, p, q, η1, η2, α, ϑ1, ϑ2, ϑ3, ϑ4, ϑ5}, where the values are
assigned as Π = 0.9, γ = 0.68, β = 0.03, ξ = 0.1, v = 0.40, α = 0.34, ϑ1 = 0.32, ϑ2 = 0.31, ϑ3 = 0.451,
ϑ4 = 0.731, ϑ5 = 0.64, α = 0.6, q = 0.51, γ1 = 0.35, p = 0.022, γ2 = 0.06, α1 = 0.65, η1 = 0.43
and η2 = 0.87, while the densities for the initial data were adjusted to be S (0) = 0.50, L(0) = 0.40,
B(0) = 0.30, R(0) = 0.20, C(0) = 0.10. Using these parametric values and initial data, we chose to
implement Milstein’s higher order scheme for the proposed epidemiological model (2.1) in Matlab and
produce the output as depicted in Figures 2–6, which respectively demonstrate the temporal dynamics
of susceptible, latent or asymptomatic and symptomatic, recovered individuals, as well as the amount
of reservoir in the long term. This investigates the model extinction, which reveals that in the case of
extinction analysis, the calculation of the stochastic reproductive parameters implies that RS

a = 0.68,
RS

b = 0.96, RS
c = 0.57, and RS

d = 0.041, while the infected population, as well as the amount of
reservoirs, goes to zero (vanishes) in the long term, as shown in Figures 3, 4 and 6. However, there
will be always a non-infected population in the case of model extinction as shown in Figures 2 and 10.

On the other hand, the set A2 is assumed to be the set of parameters whose values for the model
persistence have been adjusted to be γ = 0.68, β = 0.3, ξ = 0.1, v = 0.40, Π = 0.9, α = 0.14,
ϑ1 = 0.31, ϑ2 = 0.41, ϑ3 = 0.251, ϑ4 = 0.731, ϑ5 = 0.64, α = 0.6, q = 0.51, γ1 = 0.35, p = 0.022,
γ2 = 0.06, α1 = 0.65, η1 = 0.43 and η2 = 0.87, while the initial data are same as that taken in the
case of model extinction. We accordingly calculated the values of the reproductive parameters to be
RS

a = 1.59, RS
b = 3.80, RS

c = 1.00 and RS
d = 1.05. With these parametric values and initial data,

the implementation of Milstein’s higher order algorithm generates the outputs shown in Figures 7–11,
which depict the temporal dynamics of the model population whenever RS

a > 1, RS
b > 1, RS

c > 1 and
RS

d > 1. We observed that in the case that the values of the reproductive numbers are greater than
unity, there will always be infected individuals and an amount of reservoir in the community as shown
in Figures 8, 9, and 11 respectively. Accordingly, the disease will persist and reach an endemic level.
In addition, we also observed a strong impact of noise in coronavirus 2 transmission, where increasing
noise intensity leads to the extinction; however, there is an inverse relation between the persistence and
noise intensity.
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Figure 2. The plot demonstrates the dynamics of the susceptible individuals for varying
parametric values given in the set A1. This evaluates the model extinction and the existence
of susceptible individuals.
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Figure 3. The dynamics of the asymptomatic/latent population of the model (2.1) for
varying parametric values implemented in the set A1, which reveals the disappearance of
asymptomatic individuals with the passage of time whenever RS

a < 1 and RS
b < 1.
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Figure 4. The temporal dynamics of symptomatic individuals of the proposed model (2.1),
where the parametric values were taken from the set A1. This reveals the extinction of the
symptomatic population i.e. if RS

a < 1 and RS
b < 1, the symptomatic population goes to zero

time passes.
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Figure 5. This shows the dynamics of the recovered individuals of the epidemiological
model (2.1) for the parametric values given in the set A1 for the investigation of model
extinction. If RS

a < 1 and RS
b < 1, there will always be a recovered population.
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Figure 6. The dynamics of the environmental reservoir for varying epidemic parameter
values described in A1, showing that for RS

a < 1 and RS
b < 1, the amount of environmental

reservoir diminishes over time.
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Figure 7. The temporal dynamics of the susceptible population of the model (2.1) for varying
epidemic parameter values presented in A2, showing the persistence of the novel coronavirus
disease.
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Figure 8. The dynamics of the asymptomatic population, where the parameter values
were taken form the set A2, demonstrating the persistence of the disease. This shows that,
whenever RS

a > 1, RS
b > 1, RS

c > 1 and RS
d > 1, there will always be an infected population

in the community.
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Figure 9. The plot shows the persistence of the symptomatically infected population, where
the parameter values were chosen from A2, demonstrating that for RS

a > 1, RS
b > 1, RS

c > 1
and RS

d > 1, there will always be symptomatically infected individuals in the community in
the long term.
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Figure 10. The dynamics of the recovered population for varying parametric values
chosen from A2, demonstrating the persistence of the compartmental population of the
epidemiological model (2.1).
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Figure 11. The visualization of the environmental reservoirs for varying values of the
model parameters taken from A2, demonstrating that there will always be the existence of
environmental reservoirs in the long term whenever RS

a > 1, RS
b > 1, RS

c > 1, and RS
d > 1.
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6. Conclusions

In this work, we investigated the dynamics of SARS-CoV-2 virus transmission under the effects of
asymptomatic and symptomatic infection phases, and various sources of randomness by assuming
variation in all groups of the model compartmental populations. Keeping in view the asymptotic
behavior of the disease, we categorized the infected group of individuals into two subcategories namely,
asymptomatic and symptomatic populations, as both are responsible for the transmission of the disease.
More precisely, we classified the total populations, into four epidemiological groups of susceptible,
asymptomatically infected, symptomatically infected, and recovered individuals, and we assumed
that both the asymptomatic and symptomatic individuals are causes of diseases transmission and
the production of environmental reservoirs. We also used the probability-based disease transmission
coefficient because susceptible individuals either become asymptomatic or symptomatic after getting
infected. The model has been developed and studied in terms of its biological and mathematical
feasibility to prove that the considered problem is well-possed. We then calculated the threshold
quantities and derived the conditions for the model extinction and persistence. Finally, on the basis
of theoretical results, we developed the algorithm with the aid of Milstein’s higher order procedure
to verify the model and show the validity of the results that have been obtained in the theoretical
investigation of the model. We observed that the asymptotic behavior of the infected individuals and
the white noise intensity are very influential in the analysis of the dynamics of SARS-CoV-2 virus
transmission. The extinction of the disease is directly related to the intensity of noise while there is an
inverse relationship between persistence and the intensity of white noise.

In the future, we will incorporate suitable time dependent control measures into the proposed model
by using optimal control theory to design a mechanism that leads to elimination of the infection from
the community. We will also study the fractional version of the model with the aid of fractional
calculus. Further, we will use the Euler-Maruyama scheme and exponential Euler-Maruyama method
for simulation purposes.
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