In this paper, we consider the long-time dynamical behavior of the MGT-Fourier system
$\left\{ {\begin{array}{l} u_{ttt}+\alpha u_{tt}-\beta\Delta u_t-\gamma\Delta u+\eta\Delta\theta+f_1(u,u_t,\theta) = 0,\nonumber\\ \theta_t-\kappa\Delta\theta-\eta\Delta u_{tt}-\eta\alpha\Delta u_t+f_2(u,u_t,\theta) = 0.\nonumber \end{array}} \right. $
First we use the nonlinear semigroup theory to prove the well-posedness of the solutions. Then we establish the existence of smooth finite dimensional global attractors in the system by showing that the solution semigroup is gradient and quasi-stable. Furthermore, we investigate the existence of generalized exponential attractors.
Citation: Yang Wang, Jihui Wu. Long-time dynamics of nonlinear MGT-Fourier system[J]. AIMS Mathematics, 2024, 9(4): 9152-9163. doi: 10.3934/math.2024445
In this paper, we consider the long-time dynamical behavior of the MGT-Fourier system
$\left\{ {\begin{array}{l} u_{ttt}+\alpha u_{tt}-\beta\Delta u_t-\gamma\Delta u+\eta\Delta\theta+f_1(u,u_t,\theta) = 0,\nonumber\\ \theta_t-\kappa\Delta\theta-\eta\Delta u_{tt}-\eta\alpha\Delta u_t+f_2(u,u_t,\theta) = 0.\nonumber \end{array}} \right. $
First we use the nonlinear semigroup theory to prove the well-posedness of the solutions. Then we establish the existence of smooth finite dimensional global attractors in the system by showing that the solution semigroup is gradient and quasi-stable. Furthermore, we investigate the existence of generalized exponential attractors.
[1] | V. Barbu, Nonlinear differential equations of monotone types in Banach spaces, Springer, New York, 2010. https://doi.org/10.1007/978-1-4419-5542-5 |
[2] | A. H. Caixeta, I. Lasiecka, V. N. D. Cavalcanti, Global attractors for a third order in time nonlinear dynamics, J. Differ. Equ., 261 (2016), 113–147. https://doi.org/10.1016/j.jde.2016.03.006 doi: 10.1016/j.jde.2016.03.006 |
[3] | J. Cao, Global existence, Asymptotic behavior and uniform attractors for a third order in time dynamics, Chin. Quart. J. of Math., 31 (2016), 221–236. |
[4] | W. Chen, R. Ikenhata, The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case, J. Differ. Equ., 292 (2021), 176–219. https://doi.org/10.1016/j.jde.2021.05.011 doi: 10.1016/j.jde.2021.05.011 |
[5] | W. Chen, A. Palmieri, Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case, Discrete. Contin. Dyn. Syst., 40 (2020), 5513–5540. https://doi.org/10.3934/dcds.2020236 doi: 10.3934/dcds.2020236 |
[6] | W. Chen, A. Palmieri, A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case, Evol. Equ. Control The., 10 (2021), 673–687. https://doi.org/10.3934/eect.2020085 doi: 10.3934/eect.2020085 |
[7] | I. Chueshov, Dynamics of quasi-stabe dissipative system, Springer Cham, 2015. doi.org/10.1007/978-3-319-22903-4 |
[8] | I. Chepyzhov, M. Eller, I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Part. Diff. Equ., 27 (2002), 1901–1951. https://doi.org/10.1081/PDE-120016132 doi: 10.1081/PDE-120016132 |
[9] | I. Chepyzhov, I. Lasiecka, Von Karman evolution equations: Well-posedness and long time dynamics, New York: Springer, 2010. https://doi.org/10.1007/978-0-387-87712-9 |
[10] | M. Conti, F. Dell'Oro, L. Lorenzo, V. Pata, Spectral analysis and stability of the Moore-Gibson-Thompson-Fourier model, J. Dyn. Diff. Equat., 36 (2024), 775–795. https://doi.org/10.1007/s10884-022-10164-z doi: 10.1007/s10884-022-10164-z |
[11] | M. Conti, V. Pata, M. Pellicer, R. Quintanilla, On the analyticy of the MGT-viscoelastic plate with heat conduction, J. Differ. Equ., 269 (2020), 7862–7880. https://doi.org/10.1016/j.jde.2020.05.043 doi: 10.1016/j.jde.2020.05.043 |
[12] | F. Dell'Oro, V. Pata, On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., 76 (2017), 641–655. |
[13] | F. Dell'Oro, V. Pata, On the analyticity of the abstract MGT-Fourier system, Meccanica, 58 (2022), 1053–1060. https://doi.org/10.1007/s11012-022-01511-x doi: 10.1007/s11012-022-01511-x |
[14] | B. Kaltenbachre, I. Lasiecka, M. K. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Math. Meth. Appl. Sci., 22 (2012), 1250035. https://doi.org/10.1142/S0218202512500352 doi: 10.1142/S0218202512500352 |
[15] | V. Kuznetsov, Equations of nonlinear acoustics, Sov. Phys. Acoust., 16 (1971), 467–470. |
[16] | F. K. Moore, W. E. Gibson, Propagation of weak disturbances in a gas subject to relaxation effects, J. Aerosp. Sci., 27 (1960), 117–127. https://doi.org/10.2514/8.8418 doi: 10.2514/8.8418 |
[17] | C. Monica, L. Liverani, V. Pata, The MGT-Fourier model in the supercritical case, J. Differ. Equ., 301 (2021), 543–567. https://doi.org/10.1016/j.jde.2021.08.030 doi: 10.1016/j.jde.2021.08.030 |
[18] | C. Lizama, S. Zamorano, Controllability results for Moore-Gibson-Thompson equation arising nonlinear acoustics, J. Differ. Equ., 266 (2019), 7813–7843. https://doi.org/10.1016/j.jde.2018.12.017 doi: 10.1016/j.jde.2018.12.017 |
[19] | R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020–4031. https://doi.org/10.1177/1081286519862007 doi: 10.1177/1081286519862007 |
[20] | Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1 (1851), 305–317. |
[21] | P. A. Thompson, Compressible-fluid dynamics, McGraw-Hill, Now York, 1972. |
[22] | Y. Wang, J. Wu, Uniform Attractors for Nonautonomous MGT-Fourier system, Math. Methods Appl. Sci., 2024. In Press. https://doi.org/10.1002/mma.10022 |
[23] | P. J. Westervelt, Parametric acoustic array, J. Acoust. Soc. Am., 35 (1963), 535–537. https://doi.org/10.1121/1.1918525 doi: 10.1121/1.1918525 |