The purpose of this manuscript was to introduce a new iterative approach based on Green's function for approximating numerical solutions of the Troesch's problem. A Banach space of continuous functions was considered for establishing the main outcome. First, we set an integral operator using a Green's function and embedded this new operator into a three-step iterative scheme. We proved the main convergence result with the help of some mild assumptions on the parameters involved in our scheme and in the problem. Moreover, we proved that the new iterative approach was weak $ w^{2} $-stable. The high accuracy and stability of the scheme was confirmed by several numerical simulations. As an application of the main result, we solved a class of fractional boundary value problems (BVPs). The main results improved and unified several known results of the literature.
Citation: Junaid Ahmad, Muhammad Arshad, Zhenhua Ma. Numerical solutions of Troesch's problem based on a faster iterative scheme with an application[J]. AIMS Mathematics, 2024, 9(4): 9164-9183. doi: 10.3934/math.2024446
The purpose of this manuscript was to introduce a new iterative approach based on Green's function for approximating numerical solutions of the Troesch's problem. A Banach space of continuous functions was considered for establishing the main outcome. First, we set an integral operator using a Green's function and embedded this new operator into a three-step iterative scheme. We proved the main convergence result with the help of some mild assumptions on the parameters involved in our scheme and in the problem. Moreover, we proved that the new iterative approach was weak $ w^{2} $-stable. The high accuracy and stability of the scheme was confirmed by several numerical simulations. As an application of the main result, we solved a class of fractional boundary value problems (BVPs). The main results improved and unified several known results of the literature.
[1] | H. Yan, J. X. Zhang, X. F. Zhang, Injected infrared and visible image fusion via $L_{1}$ decomposition model and guided filtering, IEEE Trans. Comput. Imaging, 8 (2022), 162–173. https://doi.org/10.1109/TCI.2022.3151472 doi: 10.1109/TCI.2022.3151472 |
[2] | J. X. Zhang, K. D. Xu, Q. G. Wang, Prescribed performance tracking control of time-delay nonlinear systems with output constraints, IEEE/CAA J. Autom. Sinica, 67 (2022), 6904–6911. |
[3] | J. X. Zhang, T. Chai, Proportional-integral funnel control of unknown lower-triangular nonlinear systems, IEEE Trans. Autom. Control, 2023, 1–7. https://doi.org/10.1109/TAC.2023.3330900 |
[4] | W. A. Kirk, B. Sims, Handbook of metric fixed point theory, Dordrecht: Springer, 2011. https://doi.org/10.1007/978-94-017-1748-9 |
[5] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181 |
[6] | E. Picard, Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, J. Math. Pures Appl., 6 (1890), 145–210. |
[7] | M. A. Krasnosel'skii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127. |
[8] | W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. |
[9] | S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 2013 (2013), 1–10. https://doi.org/10.1186/1687-1812-2013-69 doi: 10.1186/1687-1812-2013-69 |
[10] | H. A. Abass, A. A. Mebawondu, O. T. Mewomo, Some results for a new three steps iteration scheme in Banach spaces, Bull. Transilv. Univ. Brasov, 11 (2018), 1–18. |
[11] | E. S. Weibel, On the confinement of a plasma by magnetostaticn fields, Phys. Fluids, 2 (1959), 52–56. https://doi.org/10.1063/1.1724391 doi: 10.1063/1.1724391 |
[12] | V. S. Markin, A. A. Chernenko, Y. A. Chizmadehev, Y. G. Chirkov, Aspects of the theory of gas porous electrodes, In: Fuel cells: their electrochemical kinetics, 1966, 21–33. |
[13] | D. Gidaspow, B. S. Baker, A model for discharge of storage batteries. J. Electrochem. Soc., 120 (1973), 1005–1010. https://doi.org/10.1149/1.2403617 doi: 10.1149/1.2403617 |
[14] | S. M. Roberts, J. S. Shipman, On the closed form solution of Troesch's problem, J. Computat. Phys., 21 (1976), 291–304. https://doi.org/10.1016/0021-9991(76)90026-7 doi: 10.1016/0021-9991(76)90026-7 |
[15] | B. A. Troesch, A simple approach to a sensitive two-point boundary value problem, J. Comput. Phys., 21 (1976), 279–290. https://doi.org/10.1016/0021-9991(76)90025-5 doi: 10.1016/0021-9991(76)90025-5 |
[16] | R. C. Y. Chin, On the matched asymptotic solution of the Troesch problem, J. Comput. Appl. Math., 7 (1981), 181–185. https://doi.org/10.1016/0771-050X(81)90016-4 doi: 10.1016/0771-050X(81)90016-4 |
[17] | E. Deeba, S. A. Khuri, S. S. Xie, An algorithm for solving boundary value problems, J. Comput. Phys., 159 (2000), 125–138. https://doi.org/10.1006/jcph.2000.6452 doi: 10.1006/jcph.2000.6452 |
[18] | S. A. Khuri, A numerical algorithm for solving Troesch's problem, Int. J. Comput. Math., 80 (2003), 493–498. https://doi.org/10.1080/0020716022000009228 doi: 10.1080/0020716022000009228 |
[19] | S. Momani, S. Abuasad, Z. Odibat, Variational iteration method for solving nonlinear boundary value problems, Appl. Math. Comput., 183 (2006), 1351–1358. https://doi.org/10.1016/j.amc.2006.05.138 doi: 10.1016/j.amc.2006.05.138 |
[20] | H. Temimi, A discontinuous Galerkin finite element method for solving the Troesch's problem, Appl. Math. Comput., 219 (2012), 521–529. https://doi.org/10.1016/j.amc.2012.06.037 doi: 10.1016/j.amc.2012.06.037 |
[21] | M. Zarebnia, M. Sajjadian, The sinc-Galerkin method for solving Troesch's problem, Math. Comput. Model., 56 (2012), 218–228. https://doi.org/10.1016/j.mcm.2011.11.071 doi: 10.1016/j.mcm.2011.11.071 |
[22] | M. El-Gamel, M. Sameeh, A Chebychev collocationmethod for solving Troesch's problem, Int. J. Math. Comput. Appl. Res., 3 (2013), 23–32. |
[23] | H. Q. Kafri, S. A. Khuri, A. Sayfy, A new approach based on embedding Green's functions into fixed-point iterations for highly accurate solution to Troesch's problem, Int. J. Comput. Methods Eng. Sci. Mech., 17 (2016), 93–105. https://doi.org/10.1080/15502287.2016.1157646 doi: 10.1080/15502287.2016.1157646 |
[24] | J. Ahmad, M. Arshad, H. Hussain, H. Al Sulami, A Green's function based iterative approach for solutions of BVPs in symmetric spaces, Symmetry, 15 (2023), 1–16. https://doi.org/10.3390/sym15101838 doi: 10.3390/sym15101838 |
[25] | S. A. Khuri, A. Sayfy, Generalizing the variational iteration method for BVPs: proper setting of the correction functional, Appl. Math. Lett., 68 (2017), 68–75. https://doi.org/10.1016/j.aml.2016.11.018 doi: 10.1016/j.aml.2016.11.018 |
[26] | J. Ahmad, M. Arshad, K. Ullah, Z. H. Ma, Numerical solution of Bratu's boundary value problem based on Green's function and a novel iterative scheme, Bound. Value Probl., 2023 (2023), 102. https://doi.org/10.1186/s13661-023-01791-6 doi: 10.1186/s13661-023-01791-6 |
[27] | S. Tomar, S. Dhama, H. Ramos, M. Singh, An efficient technique based on Green's function for solving two-point boundary value problems and its convergence analysis, Math. Comput. Simulation, 210 (2023), 408–423. https://doi.org/10.1016/j.matcom.2023.03.015 doi: 10.1016/j.matcom.2023.03.015 |
[28] | J. Ahmad, M. Arshad, H. A. Hammad, D. A. Kattan, A three-step iterative scheme based on Green's function for the solution of boundary value problems, Int. J. Anal. Appl., 21 (2023), 116. https://doi.org/10.28924/2291-8639-21-2023-116 doi: 10.28924/2291-8639-21-2023-116 |
[29] | S. A. Khuri, I. Louhichi, A novel Ishikawa-Green's fixed point scheme for the solution of BVPs, Appl. Math. Lett., 82 (2018), 50–57. https://doi.org/10.1016/j.aml.2018.02.016 doi: 10.1016/j.aml.2018.02.016 |
[30] | J. Ahmad, M. Arshad, R. George, A fixed point iterative scheme based on Green's function for numerical solutions of singular BVPs, AIMS Math., 8 (2023), 29517–29534. https://doi.org/10.3934/math.20231511 doi: 10.3934/math.20231511 |
[31] | A. M. Harder, T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica, 33 (1988), 693–706. |
[32] | T. Cardinali, P. Rubbioni, A generalization of the Caristi fixed point theorem in metric spaces, Fixed Point Theory, 11 (2010), 3–10. |
[33] | I. Timis, On the weak stability of Picard iteration for some contractive type mappings, An. Univ. Craiova Math. Comput. Sci. Ser., 37 (2010), 106–114. |
[34] | J. Ali, M. Jubair, F. Ali, Stability and convergence of F iterative scheme with an application to the fractional differential equation, Eng. Comput., 38 (2022), 693–702. https://doi.org/10.1007/s00366-020-01172-y doi: 10.1007/s00366-020-01172-y |
[35] | F. Gursoy, A. R. Khan, M. Erturk, V. Karakaya, Weak $w^{2}$-stability and data dependence of Mann iteration method in Hilbert spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113 (2019), 11–20. https://doi.org/10.1007/s13398-017-0447-y doi: 10.1007/s13398-017-0447-y |
[36] | M. Urabe, Convergence of numerical iteration in solution of equations, J. Sci. Hiroshima Univ. Ser. A, 19 (1956), 479–489. https://doi.org/10.32917/hmj/1556071264 doi: 10.32917/hmj/1556071264 |
[37] | D. Baleanu, S. Rezapour, H. Mohammadi, Some existence results on nonlinear fractional differential equations, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 371 (2013), 20120144. https://doi.org/10.1098/rsta.2012.0144 doi: 10.1098/rsta.2012.0144 |
[38] | V. Berinde, M. Pacurar, Approximating fixed points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl., 22 (2020), 1–10. https://doi.org/10.1007/s11784-020-0769-9 doi: 10.1007/s11784-020-0769-9 |