Processing math: 73%
Research article

Dynamical analysis and optimal control of an multi-age-structured vector-borne disease model with multiple transmission pathways

  • Received: 04 November 2024 Revised: 13 December 2024 Accepted: 20 December 2024 Published: 31 December 2024
  • MSC : 34E10, 65C30, 92B05

  • Based on the diversity of transmission routes and host heterogeneity of some infectious diseases, a dynamical model with multi-age-structured, asymptomatic infections, as well as horizontal and vectorial transmission, is proposed. First, the existence and uniqueness of the global positive solution of this model is discussed and the exact expression of the basic reproduction number R0 is obtained using the linear approximation method. Further, we deduce that the disease-free steady state E0 is globally asymptotically stable for R0<1, the endemic steady state E exists and the disease is persistent for R0>1. In addition, the locally asymptotically stability of E is also obtained under some certain conditions. Next, our model is extended to a control problem and the existence and uniqueness of the optimal control by using the Gateaux derivative. Finally, numerical simulations are used to explain the main theoretical results and discuss the impact of age-structured parameters and control strategies on the prevention and control of vector-borne infectious diseases.

    Citation: Huihui Liu, Yaping Wang, Linfei Nie. Dynamical analysis and optimal control of an multi-age-structured vector-borne disease model with multiple transmission pathways[J]. AIMS Mathematics, 2024, 9(12): 36405-36443. doi: 10.3934/math.20241727

    Related Papers:

    [1] Yue Wu, Shenglong Chen, Ge Zhang, Zhiming Li . Dynamic analysis of a stochastic vector-borne model with direct transmission and media coverage. AIMS Mathematics, 2024, 9(4): 9128-9151. doi: 10.3934/math.2024444
    [2] Shaymaa H. Salih, Nadia M. G. Al-Saidi . 3D-Chaotic discrete system of vector borne diseases using environment factor with deep analysis. AIMS Mathematics, 2022, 7(3): 3972-3987. doi: 10.3934/math.2022219
    [3] Asma Hanif, Azhar Iqbal Kashif Butt . Atangana-Baleanu fractional dynamics of dengue fever with optimal control strategies. AIMS Mathematics, 2023, 8(7): 15499-15535. doi: 10.3934/math.2023791
    [4] Puntipa Pongsumpun, Jiraporn Lamwong, I-Ming Tang, Puntani Pongsumpun . A modified optimal control for the mathematical model of dengue virus with vaccination. AIMS Mathematics, 2023, 8(11): 27460-27487. doi: 10.3934/math.20231405
    [5] Xiaoying Pan, Longkun Tang . A new model for COVID-19 in the post-pandemic era. AIMS Mathematics, 2024, 9(8): 21255-21272. doi: 10.3934/math.20241032
    [6] Tahir Khan, Fathalla A. Rihan, Muhammad Bilal Riaz, Mohamed Altanji, Abdullah A. Zaagan, Hijaz Ahmad . Stochastic epidemic model for the dynamics of novel coronavirus transmission. AIMS Mathematics, 2024, 9(5): 12433-12457. doi: 10.3934/math.2024608
    [7] Folashade Agusto, Daniel Bond, Adira Cohen, Wandi Ding, Rachel Leander, Allis Royer . Optimal impulse control of West Nile virus. AIMS Mathematics, 2022, 7(10): 19597-19628. doi: 10.3934/math.20221075
    [8] Yasir Ramzan, Aziz Ullah Awan, Muhammad Ozair, Takasar Hussain, Rahimah Mahat . Innovative strategies for Lassa fever epidemic control: a groundbreaking study. AIMS Mathematics, 2023, 8(12): 30790-30812. doi: 10.3934/math.20231574
    [9] Liping Wang, Peng Wu, Mingshan Li, Lei Shi . Global dynamics analysis of a Zika transmission model with environment transmission route and spatial heterogeneity. AIMS Mathematics, 2022, 7(3): 4803-4832. doi: 10.3934/math.2022268
    [10] Ahmed Alshehri, Saif Ullah . Optimal control analysis of Monkeypox disease with the impact of environmental transmission. AIMS Mathematics, 2023, 8(7): 16926-16960. doi: 10.3934/math.2023865
  • Based on the diversity of transmission routes and host heterogeneity of some infectious diseases, a dynamical model with multi-age-structured, asymptomatic infections, as well as horizontal and vectorial transmission, is proposed. First, the existence and uniqueness of the global positive solution of this model is discussed and the exact expression of the basic reproduction number R0 is obtained using the linear approximation method. Further, we deduce that the disease-free steady state E0 is globally asymptotically stable for R0<1, the endemic steady state E exists and the disease is persistent for R0>1. In addition, the locally asymptotically stability of E is also obtained under some certain conditions. Next, our model is extended to a control problem and the existence and uniqueness of the optimal control by using the Gateaux derivative. Finally, numerical simulations are used to explain the main theoretical results and discuss the impact of age-structured parameters and control strategies on the prevention and control of vector-borne infectious diseases.



    According to a report by the World Health Organization (WHO), vector-borne diseases account for approximately 17% of all illnesses caused by infectious diseases. Common vector-borne diseases are Malaria, Dengue fever, Zika, Cholera, Yellow fever, West Nile fever, and so on. Vector-borne diseases result in more than 1 billion illnesses and over 1 million fatalities annually [1]. Considering that vector-borne diseases have caused great damage to human health and the social economy, it is urgent to study the laws of their transmission and how to prevent and control them.

    In the past few decades, many scholars have conducted in-depth and detailed studies on the spread and control of various vector-borne diseases by establishing mathematical models and a series of remarkable research results have been achieved [2,3,4,5,6]. Major studies include the expression of the basic reproduction number, the existence and stability of various equilibria, the persistence and extinction of diseases, and optimal control problems, etc. In particular, Brown et al.[7] presented a mathematical model of Cholera transmission, established the local and global stability of the equilibria characterizing the threshold dynamics of Cholera, and discussed the influence of pathogens in the dynamics of Cholera spread. In[8], Kuddus et al. proposed a model for the dynamics of Malaria transmission between humans and mosquitoes, analyzed the existence and global stability of equilibria and found that the rate of contact between humans and mosquitoes had a significant effect on Malaria spread through parameter estimation. Wang et al. [9] studied the threshold dynamics of a Dengue epidemic model, and the results showed that controlling the number and activity of vectors can significantly affect the speed and extent of disease spread. Further, it is noted that vector-borne diseases can be transmitted not only through vectors but also between individuals and individuals. For example, Chen et al. [10] found that Zika can be transmitted not only between hosts and vectors to each other but also within host populations. More specifically, an infected person can spread it to his (her) partner through sexual intercourse.

    It is well known that the physiological age of the host population is a key factor in the transmission and control of infectious diseases, as the risk of infection varies with age, and interactions between different age groups are heterogeneous. For example, SARS-CoV-2, the virus behind COVID-19, is particularly dangerous for individuals over 60, especially those over 80. Centers for Disease Control reports show that 31–59% of 75–84-year-olds diagnosed require hospitalization, compared to 14–21% of those aged 20–44, highlighting the influence of age in disease severity and transmission dynamics. Noting this feature, researchers have proposed various age-structured models to study the transmission dynamics of infectious diseases [11,12,13]. In [14], Cai et al. established an age-structured Cholera model and discussed the threshold dynamic behavior of the model and the effect of actual age structure on the spread trend of the disease. Huang et al. [15] presented a stability study of an age-structured epidemiological model and showed that actual age affects an individual's risk of infection and more accurately describes the dynamics of disease transmission in different age groups. Yu et al. [16] proposed an age-structured COVID-19 model, discussed the significant differences in the influence of different age groups on the spread of disease due to differences in their activity ranges, and revealed the importance of age structure in the disease transmission process.

    It is worth noting that in the process of transmission of vector-borne diseases, the spread capacity of the infected vector is closely related to its age of infection. Particularly for vectors such as mosquitoes with short life cycles, which have different transmission potentials at different stages of post-infection. Therefore, in order to analyze the dynamics of disease spread more accurately, it is essential to consider that mosquitoes have an age of infection. For example, Liang et al. [17] presented a model of vector-borne disease with multiple class age structures, gave an exact expression for the basic reproduction number, and discussed the effect of the age of infection of the vectors on the basic reproduction number and the spread and control of the disease. In [18], Richard et al. proposed a model of human-vector Malaria transmission related to infection age, discussed the effect of vector infection age on Malaria transmission, and found through numerical simulations that the effects of different intervention policies differed in mosquito populations with different ages of infection.

    The issue of optimal control is of great significance in the development of preventive measures for the spread of disease. Therefore, the study of the optimal control problem for age-structured epidemiological modeling has attracted the attention of many researchers [19,20,21,22]. For example, Lin et al. [23] proposed an age-structured Cholera model with vaccination as a control strategy; The results of the study suggest that vaccination strategy at the beginning of a Cholera outbreak can significantly reduce the number of infections and is the most cost-effective strategy. Wang et al. [24] proposed and studied the global dynamics of an age-structured Malaria model with vaccination; The existence of optimal control is analyzed and effective measures to control Malaria transmission are obtained. Khan et al. [25] developed an age-structured SEIR model, using vaccination and treatment as control measures; The existence of optimal control variables was demonstrated using a suitable objective function.

    Based on the above discussion, a novel coupled ordinary differential-partial differential equations model is proposed to discuss the impact of physiological age, infection age, multiple transmission routes, and asymptomatic infected persons on the spread of vector-borne diseases. The structure of our paper is arranged as follows. In Section 2, the model is given, and the existence and uniqueness of a global positive solution are verified. In Sections 3 and 4, the basic reproduction number R0 is defined, and the global asymptotic stability of the disease-free steady state and the local asymptotic stability of the endemic steady state are discussed. Section 5 demonstrates the consistent persistence of the model. In Section 6, vaccination and insecticide spraying are applied to the model to demonstrate the existence of optimal control. The main results are explained through numerical simulations in Section 7, and a short conclusion is given in the last section.

    The host population of an area is classified into four mutually exclusive categories: susceptible, asymptomatically infected, symptomatically infected, and recovered individuals. And, their density functions with age a at time t are denoted as Sh(t,a), Ah(t,a), Ih(t,a), and Rh(t,a), respectively. Therefore, the total host population is given by Nh(t,a)=Sh(t,a)+Ah(t,a)+Ih(t,a)+Rh(t,a). The vector population is divided into two subclasses: susceptible and infected vectors, where the quantity of susceptible vectors at time t is denoted by Sv(t) and the density function of infectious vectors with infection age b at time t is denoted by Iv(t,b). Then, the total quantity of vector population is given by Nv(t)=Sv(t)+0Iv(t,b)db. According to the transmission law of pathogens between host populations and vectors, susceptible individuals can be infected by the bite of infected vectors at a rate of λ1(t,a), and susceptible host can also be infected by contacting the infected hosts at a rate λ2(t,a), where the force of infection is defined as follows:

    λ1(t,a)=z1(a)0β1(b)Iv(t,b)db, λ2(t,a)=z2(a)0β2(a)(αAh(t,a)+Ih(t,a))da,

    here, z1(a) and z2(a) represent the age-dependent contact rates of vector-to-host and host-to-host, respectively; β1(b) and β2(a) denote the infection rates of vector-to-host and host-to-host, respectively. Further, considering the host behavioral habits, it is assumed that z1(a)=ρz2(a), where ρ is a positive constant.

    Based on the above statements, a novel epidemic model with multiple transmission routes and multiple age-factor couplings is constructed

    (t+a)Sh(t,a)=(λ1(t,a)+λ2(t,a)+μh(a))Sh(t,a),(t+a)Ah(t,a)=q(λ1(t,a)+λ2(t,a))Sh(t,a)(γ1(a)+k(a)+μh(a))Ah(t,a),(t+a)Ih(t,a)=(1q)(λ1(t,a)+λ2(t,a))Sh(t,a)+k(a)Ah(t,a)(γ2(a)+μh(a))Ih(t,a),(t+a)Rh(t,a)=γ1(a)Ah(t,a)+γ2(a)Ih(t,a)μh(a)Rh(t,a),dSv(t)dt=ΛvSv(t)0β3(a)(αAh(t,a)+Ih(t,a))daμvSv(t),(t+b)Iv(t,b)=μvIv(t,b), (2.1)

    with the boundary and initial conditions

    Sh(t,0)=0bh(a)Nh(t,a)da, Ah(t,0)=Ih(t,0)=Rh(t,0)=0, t0;Iv(t,0)=Sv(t)0β3(a)(αAh(t,a)+Ih(t,a))da, t0; Sh(0,a)=Sh0(a),Ah(0,a)=Ah0(a), Ih(0,a)=Ih0(a), Rh(0,a)=Rh0(a), Sv(0)=Sv0, Iv(0,b)=Iv0(b). (2.2)

    The biological explanations for the other parameters of model (2.1) are shown in Table 1.

    Table 1.  Biological explanations of model parameters.
    Parameter Description Units
    α Ratio of infection rate between asymptomatic and symptomatic infection (0<α<1) None
    bh(a) Age-specific fertility rate of hosts 1/day
    μh(a) Age-specific natural mortality of hosts 1/day
    q Probability of susceptible individuals being infected to become asymptomatic infections None
    k(a) Age-specific conversion rate of asymptomatic to symptomatic infections 1/day
    γ1(a) Age-specific recovery rate of asymptomatic infections 1/day
    γ2(a) Age-specific recovery rate of symptomatic infections 1/day
    β3(a) Rate of transmission of pathogen from infected hosts to susceptible vectors 1/day
    Λv Recruitment rate of vector population 1/day
    μv Natural mortality of vectors 1/day

     | Show Table
    DownLoad: CSV

    Remark 1. Due to the prevalence of vector-borne diseases, numerous scholars have established and discussed vector-borne diseases [18,26]. In our model, considering the behavioral differences of hosts of different ages, it is proposed that host populations have physiological ages. Given the relatively short life cycle of vector populations, it is not necessary to consider their physiological age. However, there is a strong correlation between infectivity and age at infection, so it is important to consider the age of infection of the vector.

    In addition, the following assumptions are reasonable based on the biological background of (2.1).

    (H1) Λv and μv are positive constants, q(0,1), and functions Sh0(a), Ah0(a), Ih0(a), Rh0(a), and Iv0(b) are non-negative, continuously integrable functions.

    (H2) Functions bh(a), β1(a), β2(a), β3(a)L1+(R+) and they are extended to zero outside the maximum age a, where, L1+(R+) is the space of Lebesgue integrable nonnegative functions on the interval [0,+).

    (H3) Functions k(a), γ1(a), γ2(a), μ(a)L1+(R+) and 0φ(a)da=+, where, φ(a)=k(a), γ1(a) and γ2(a).

    (H4) There is a positive constant μh0 such that μh(a)μh0 for a[0,a].

    Notice that the total quantity of vector population satisfies

    dNv(t)dt=ΛvμvNv(t).

    Therefore, Nv(t)=Nv(0)eμvt+Λvμv(1eμvt), that is, limtNv(t)=Λvμv. According to the limiting theory of dynamical systems [27], the dynamics of model (2.1) is equivalent to the following model:

    (t+a)Sh(t,a)=(λ1(t,a)+λ2(t,a)+μh(a))Sh(t,a),(t+a)Ah(t,a)=q(λ1(t,a)+λ2(t,a))Sh(t,a)(γ1(a)+k(a)+μh(a))Ah(t,a),(t+a)Ih(t,a)=(1q)(λ1(t,a)+λ2(t,a))Sh(t,a)+k(a)Ah(t,a)(γ2(a)+μh(a))Ih(t,a),(t+a)Rh(t,a)=γ1(a)Ah(t,a)+γ2(a)Ih(t,a)μh(a)Rh(t,a),(t+b)Iv(t,b)=μvIv(t,b),Iv(t,0)=(Λvμv0Iv(t,b)db)0β3(a)(αAh(t,a)+Ih(t,a))da. (2.3)

    Next, we consider the existence and uniqueness of the global nonnegative solutions of model (2.3). To do so, define a Banach space Xn=L1(R+)××L1(R+) with the norm φ=ni=1φi for φ=(φ1,,φn)Xn, where φi=0|φi(a)|da. Obviously, Xn+=L1+(R+)××L1+(R+) is the positive cone of Xn. Further, we denote Y1=X2+ and the linear operator Av,1:D(Av,1)Y1Y1 be defined by

    Av,1[0L1(R+)φ]=[φ(0)dφdbμvφ],

    where the domain D(Av,1) of operator Av,1 is D(Av,1)={0L1(R+)}×W1,1(R+), W1,1(R+) represents the Sobolev space of all absolutely continuous functions on R+.

    According to the assumptions (H1), for λC (C is the domain of complex numbers) with Re(λ)μv, then λr(Av,1) (r(A) is the resolvent of an operator A). Therefore, the explicit expression for the resolvent of the operator Av,1 is derived

    (λIAv,1)1[ψ1ψ2]=[0L1(R+)φ]φ(a)=ψ1(0)ea0(μv+λ)ds+a0ψ2(s)eas(μv+λ)dτds,

    for (ψ1,ψ2)TX2+, where I represents the unit matrix. Further, one defines linear operators Ah,i:D(Ah,i)Y1Y1, i=1, 2, 3, 4, by

    Ah,1[0L1(R+)ϕ1]=[ϕ1(0)dϕ1daμhϕ1], Ah,2[0L1(R+)ϕ2]=[ϕ2(0)dϕ2da(μh+k+γ1)ϕ2],Ah,3[0L1(R+)ϕ3]=[ϕ3(0)dϕ3da(μh+γ2)ϕ3], Ah,4[0L1(R+)ϕ4]=[ϕ4(0)dϕ4daμhϕ4],

    where D(Ah,1)=D(Ah,2)=D(Ah,3)=D(Ah,4)=0L1(R+)×W1,1(R+).

    We can choose λC such that Re(λ)μ0. Therefore, for λ(r(Ah,1)r(Ah,2)r(Ah,3)r(Ah,4)), and for any (ψ1,ψ2)TX2+, the following explicit expression for the resolvent is available:

    (λIAh,1)1[ψ1ψ2]=[0L1(R+)ϕ1],(λIAh,2)1[ψ1ψ2]=[0L1(R+)ϕ2],(λIAh,3)1[ψ1ψ2]=[0L1(R+)ϕ3],(λIAh,4)1[ψ1ψ2]=[0L1(R+)ϕ4],

    if and only if

    ϕ1(a)=ϕ1(0)ea0(μh(s)+λ)ds+a0ψ2(s)eas(μh(τ)+λ)dτds,ϕ2(a)=ϕ2(0)ea0(μh(s)+k(s)+γ1(s)+λ)ds+a0ψ2(τ)eaτ(μh(s)+k(s)+γ1(s)+λ)dsdτ,ϕ3(a)=ϕ3(0)ea0(μh(s)+γ2(s)+λ)ds+a0ψ2(τ)eaτ(μh(s)+γ2(s)+λ)dsdτ,ϕ4(a)=ϕ4(0)ea0μh(s)ds+a0ψ2(τ)eaτμh(s)dsdτ.

    Define A:D(A)XX be a linear operator as

    A=diag(Ah,1,Ah,2,Ah,3,Ah,4,Av,1),

    where, D(A)=D(Ah,1)×D(Ah,2)×D(Ah,3)×D(Ah,4)×D(Av,1). From the above discussion and Theorem 3.2 in [18], the linear operator A is a Hille–Yosida operator and the infinitesimal generator of C0-semigroup. Further, let

    u(t)=(0L1(R+),Sh(t,),0L1(R+),Ah(t,)0L1(R+),Ih(t,),0L1(R+),Rh(t,),0L1(R+),Iv(t,))T

    and X0=({0R}×L1(R+))5, a nonlinear operator F:X0X0 as

    F(u(t))=[0bh(a)Nh(t,a)da(˜λ1(t,a)+˜λ2(t,a))Sh(t,a)0q(˜λ1(t,a)+˜λ2(t,a))Sh(t,a)0(1q)(˜λ1(t,a)+˜λ2(t,a))Sh(t,a)+k(a)Ah(t,a)0γ1(a)Ah(t,a)+γ2(a)Ih(t,a)(Λvμv0Iv(t,b)db)0β3(a)(αAh(t,a)+Ih(t,a))da0],

    where, ˜λ1(t,a)=ρz2(a)0β1(b)Iv(t,b)db, ˜λ2(t,a)=z2(a)0β2(a)(αAh(t,a)+Ih(t,a))da. Then, model (2.3) can be reformulated as the abstract Cauchy problem

    du(t)dt=Au(t)+F(u(t)),t>0,u(0)=(0,Sh0,0,Ah0,0,Ih0,0,Rh0,0,Iv0)TX0. (2.4)

    From Theorem 3.5 in [15], or Theorem 3.2 in [18], the following result on the existence and uniqueness of a solution for the Cauchy problem (2.4) is valid.

    Theorem 1. The problem (2.4) admits a unique global classical solution on X0; That is, model (2.3) has a unique global positive solution for the positive initial value.

    Adding up the first four equations in model (2.3) gives the overall equation

    (t+a)Nh(t,a)=μh(a)Nh(t,a), (2.5)

    with Nh(t,0)=0bh(a)Nh(t,a)da, Nh(0,a)=Nh0(a)=Sh0(a)+Ah0(a)+Ih0(a)+Rh0(a). System (2.5) is resolved following the characteristic curve ta=c (c is a constant)

    Nh(t,a)={Nh(ta,0)ea0μh(τ)dτ, ta,Nh(0,at)et0μh(at+τ)dτ,  t<a.

    To ensure the existence of a steady state, it is assumed that the population's net reproduction rate is identical to 1, i.e., 0bh(a)ea0μh(τ)dτda=1. Hence, the steady state of system (2.5) is Nh(a)=Nh(0)ea0μh(τ)dτ, where Nh(a)=S0(a)+A0(a)+I0(a)+R0(a). By a simple calculation, we obtain

    Nh(0)=0Nh(a)da0ea0μh(τ)dτda,Nv=limtNv(t)=Λvμv.

    To simplify the initial boundary value problem, model (2.3) is normalized by

    sh(t,a)=Sh(t,a)Nh(a),eh(t,a)=Ah(t,a)Nh(a),ih(t,a)=Ih(t,a)Nh(a),rh(t,a)=Rh(t,a)Nh(a),iv(t,b)=Iv(t,b)Nv.

    Then, model (2.3) and the force of infections become

    (t+a)sh(t,a)=(λ1(t,a)+λ2(t,a))sh(t,a),(t+a)eh(t,a)=q(λ1(t,a)+λ2(t,a))sh(t,a)(γ1(a)+k(a))eh(t,a),(t+a)ih(t,a)=(1q)(λ1(t,a)+λ2(t,a))sh(t,a)+k(a)eh(t,a)γ2(a)ih(t,a),(t+a)rh(t,a)=γ1(a)eh(t,a)+γ2(a)ih(t,a),(t+b)iv(t,b)=μviv(t,b), (2.6)

    and

    λ1(t,a)=z1(a)0β1(b)iv(t,b)Nvdb,λ2(t,a)=z2(a)0β2(a)Nh(a)(αeh(t,a)+ih(t,a))da,

    with the initial and boundary conditions sh(t,0)=1, eh(t,0)=ih(t,0)=rh(t,0)=0 and

    iv(t,0)=(10iv(t,b)db)0β3(a)Nh(a)(αeh(t,a)+ih(t,a))da,sh(0,a)=sh0(a), eh(0,a)=eh0(a), ih(0,a)=ih0(a), rh(0,a)=rh0(a), iv(0,b)=iv0(b),

    where sh(t,a)+eh(t,a)+ih(t,a)+rh(t,a)=1.

    There exists a disease-free steady state E0=(1,0,0,0,0) for model (2.6). Denote λ1(t,a)+λ2(t,a)=z2(a)W(t), where

    W(t)=ρ0β1(b)iv(t,b)Nvdb+0β2(a)Nh(a)(αeh(t,a)+ih(t,a))da.

    To study the local stability of the disease-free steady state, it suffices to calculate the linearized system of model (2.6) at E0. We introduce the variable transformations sh(t,a)=ˉsh(t,a)+1,eh(t,a)=ˉeh(t,a),ih(t,a)=ˉih(t,a),rh(t,a)=ˉrh(t,a),iv(t,b)=ˉiv(t,b), and get a linearized system as

    (t+a)ˉsh(t,a)=z2(a)ˉW(t),(t+a)ˉeh(t,a)=qz2(a)ˉW(t)(γ1(a)+k(a))ˉeh(t,a),(t+a)ˉih(t,a)=(1q)z2(a)ˉW(t)+k(a)ˉeh(t,a)γ2(a)ˉih(t,a),(t+a)ˉrh(t,a)=γ1(a)ˉeh(t,a)+γ2(a)ˉih(t,a),(t+b)ˉiv(t,b)=μvˉiv(t,b), (3.1)

    with the initial and boundary conditions

    ˉsh(t,0)=ˉeh(t,0)=ˉih(t,0)=ˉrh(t,0)=0, ˉiv(t,0)=0β3(a)Nh(a)(αˉeh(t,a)+ˉih(t,a))da,ˉsh(0,a)=ˉsh0(a), ˉeh(0,a)=ˉeh0(a), ˉih(0,a)=ˉih0(a), ˉrh(0,a)=ˉrh0(a), ˉiv(0,b)=ˉiv0(b),

    where

    ˉW(t)=ρ0β1(b)ˉiv(t,b)Nvdb+0β2(a)Nh(a)(αˉeh(t,a)+ˉih(t,a))da.

    Assume that system (3.1) has the solution of exponential form ˉsh(t,a)=ˉsh(a)eλt, ˉeh(t,a)=ˉeh(a)eλt, ˉih(t,a)=ˉih(a)eλt, ˉrh(t,a)=ˉrh(a)eλt and ˉiv(t,b)=ˉiv(b)eλt, from which the following equation is obtained:

    dˉsh(a)da=λˉsh(a)z2(a)W0,dˉeh(a)da=(λ+γ1(a)+k(a))ˉeh(a)+qz2(a)W0,dˉih(a)da=(λ+γ2(a))ˉih(a)+k(a)ˉeh(a)+(1q)z2(a)W0,dˉrh(a)da=λˉrh(a)+γ1(a)ˉeh(a)+γ2(a)ˉih(a),dˉiv(b)db=(λ+μv)ˉiv(b),  ˉiv(0)=0β3(a)Nh(a)(αˉeh(a)+ˉih(a))da, (3.2)

    where

    W0=ρ0β1(b)ˉiv(b)Nvdb+0β2(a)Nh(a)(αˉeh(a)+ˉih(a))da. (3.3)

    Solving the second, third and fifth equations of system (3.2) yields

    ˉeh(a)=a0qz2(τ)W0eaτ(λ+γ1(s)+k(s))dsdτ,ˉih(a)=a0[k(τ)ˉeh(τ)+(1q)z2(τ)W0]eaτ(λ+γ2(s))dsdτ,ˉiv(b)=eb0(λ+μv)ds0β3(a)Nh(a)(αˉeh(a)+ˉih(a))da. (3.4)

    Substituting ˉeh(a) in (3.4) into ˉih(a) and ˉiv(b) yields

    ˉih(a)=W0a0[k(τ)τ0z2(s)eτs(λ+γ1(η)+k(η))dηds+(1q)z2(τ)]eaτ(λ+γ2(s))dsdτ,ˉiv(b)=eb0(λ+μv)ds0β3(a)Nh(a)[αa0qz2(τ)W0eaτ(λ+γ1(s)+k(s))dsdτ+W0a0[k(τ)τ0qz2(s)eτs(λ+γ1(η)+k(η))dηds+(1q)z2(τ)]eaτ(λ+γ2(s))dsdτ]da. (3.5)

    Substituting ˉeh(a) and (3.5) into (3.3), one gets

    W0=ρ0β1(b)eb0(λ+μv)dsW0Nv0β3(a)Nh(a)[αa0qz2(τ)eaτ(λ+γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eτs(λ+γ1(η)+k(η))dηds]eaτ(λ+γ2(s))dsdτ]dadb+0β2(a)W0Nh(a)[αa0qz2(τ)eaτ(λ+γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eτs(λ+γ1(η)+k(η))dηds]eaτ(λ+γ2(s))dsdτ]da.

    Dividing both the left and right sides of the above equation by W0 (W00), it follows that

    1=ρ0β1(b)eb0(λ+μv)dsNv0β3(a)Nh(a)[αa0qz2(τ)eaτ(λ+γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eτs(λ+γ1(η)+k(η))dηds]eaτ(λ+γ2(s))dsdτ]dadb+0β2(a)Nh(a)[αa0qz2(τ)eaτ(λ+γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eτs(λ+γ1(η)+k(η))dηds]eaτ(λ+γ2(s))dsdτ]da=:F(λ). (3.6)

    The basic reproduction number of model (2.6) is defined as R0=:F(0), or expressly as

    R0=ρ0β1(b)eb0μvdsNv0β3(a)Nh(a)[αa0qz2(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]dadb+0β2(a)Nh(a)[αa0qz2(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]da.

    For the stability of the disease-free steady state E0, we obtain the following result.

    Theorem 2. The disease-free steady state E0 of model (2.6) is locally asymptotically stable if R0<1 and unstable if R0>1.

    Proof. According to (3.6), it is easy to see that dF(λ)/dλ<0, and limλ+F(λ)=0, limλF(λ)=+. Consequently, the characteristic equation (3.6) has a unique real root. If R0<1, i.e., F(0)<1, then F(λ)=1 has a unique negative real root λ. Now, we claim that all other roots have negative real parts. In fact, if there is a root λ=x+iy with x0 such that F(λ)=1. Then

    1=|F(x+iy)|=|ρ0β1(b)eibyeb0(x+μv)dsNv0β3(a)Nh(a)[αa0qz2(τ)eiy(aτ)×eaτ(x+γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eiy(τs)×eτs(x+γ1(η)+k(η))dηds]eiy(aτ)eaτ(x+γ2(s))dsdτ]dadb+0β2(a)Nh(a)[αa0qz2(τ)eiy(aτ)eaτ(x+γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eiy(τs)eτs(x+γ1(η)+k(η))dηds]×eiy(aτ)eaτ(x+γ2(s))dsdτ]da|ρ0β1(b)|eiby|eb0(x+μv)dsNv0β3(a)Nh(a)[αa0qz2(τ)|eiy(aτ)|×eaτ(x+γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)|eiy(τs)|×eτs(x+γ1(η)+k(η))dηds]|eiy(aτ)|eaτ(x+γ2(s))dsdτ]dadb+0β2(a)Nh(a)[αa0qz2(τ)|eiy(aτ)|eaτ(x+γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)|eiy(τs)|eτs(x+γ1(η)+k(η))dηds]×|eiy(aτ)|eaτ(x+γ2(s))dsdτ]da=F(x).

    Since F(λ) is a monotonically decreasing function with respect to λ, it follows that Re(λ)=xλ. This implies that all complex roots of Eq (3.6) have negative real parts. Hence, the disease-free steady state E0 of model (2.6) is locally asymptotically stable if R0<1. Conversely, if R0>1, indicating F(0)>1, Eq (3.6) possesses a unique positive real root. In such a scenario, E0 is unstable. This concludes the proof.

    Theorem 3. The disease-free steady state E0 of model (2.6) is globally asymptotically stable if R0<1.

    Proof. Define g(t,a)=(λ1(t,a)+λ2(t,a))sh(t,a); It follows from the inequality sh(t,a)1 that

    g(t,a)λ1(t,a)+λ2(t,a)=z2(a)W(t).

    By integrating model (2.6) over the characteristic line defined as ta=constant, we obtain

    sh(t,a)={ea0z2(s)W(ta+s)ds, ta,sh0(at)et0z2(at+s)W(s)ds, t<a,eh(t,a)={a0qg(t,τ)eaτ(γ1(s)+k(s))dsdτ, ta,eh0(at)et0(γ1(at+s)+k(at+s))ds+t0qz2(at+τ)×W(τ)sh(τ,at+τ)etτ(γ1(at+s)+k(at+s))dsdτ, t<a, (3.7)
    ih(t,a)={a0[(1q)g(t,τ)+k(τ)eh(t,τ)]eaτγ2(s)dsdτ, ta,ih0(at)et0γ2(at+s)ds+t0[(1q)z2(at+τ)W(τ)×sh(τ,at+τ)+k(at+τ)eh(τ,at+τ)]etτγ2(at+s)dsdτ, t<a, (3.8)
    rh(t,a)={a0[γ1(τ)eh(t,τ)+γ2(τ)ih(t,τ)]dτ, ta,rh0(at)+t0[γ1(at+τ)eh(τ,at+τ)+γ2(at+τ)ih(τ,at+τ)]dτ, t<a,iv(t,b)={eb0μvds(10iv(t,b)db)0β3(a)Nh(a)(αeh(t,a)+ih(t,a))da, tb,iv0(bt)et0μvds, t<b. (3.9)

    When a<t and b<t are as specified in Eq (3.8), we obtain

    ih(t,a)=a0[(1q)g(t,τ)+k(τ)τ0qg(t,s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ,iv(t,b)=eb0μvds(10iv(t,b)db)0β3(a)Nh(a)[αa0qg(t,τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)g(t,τ)+k(τ)τ0qg(t,s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]da. (3.10)

    Using Eqs (3.8) and (3.10), one obtains

    g(t,a)z2(a)W(t)=z2(a)(ρ0β1(b)iv(t,b)Nvdb+0β2(a)Nh(a)(αeh(t,a)+ih(t,a))da)z2(a)ρt0β1(b)eb0μvdsNv0β3(a)Nh(a)[αa0qg(t,τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)g(t,τ)+k(τ)τ0qg(t,s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]dadb+z2(a)t0β2(a)Nh(a)[αa0qg(t,τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)g(t,τ)+k(τ)τ0qg(t,s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]da+ρtβ1(b)iv(t,b)Nvdb+tβ2(a)Nh(a)(αeh(t,a)+ih(t,a))da. (3.11)

    Define G(a)=lim suptg(t,a) and, by applying Fatou's lemma [28] to the left and right ends of inequality (3.11) when t, observe that

    G(a)z2(a)ρ0β1(b)eb0μvdsNv0β3(a)Nh(a)[αa0qG(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)G(τ)+k(τ)τ0qG(s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]dadb+z2(a)0β2(a)Nh(a)[αa0qG(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)G(τ)+k(τ)τ0qG(s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]da.

    Assigning the constant V as

    V=ρ0β1(b)eb0μvdsNv0β3(a)Nh(a)[αa0qG(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)G(τ)+k(τ)τ0qG(s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]dadb+0β2(a)Nh(a)[αa0qG(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)G(τ)+k(τ)τ0qG(s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]da.

    Then G(a)z2(a)V, therefore

    Vρ0β1(b)eb0μvdsNvV0β3(a)Nh(a)[αa0qz2(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]dadb+0β2(a)Nh(a)V[αa0qz2(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]da=VR0.

    By the inequality, if R0<1, we conclude that V=0, implying G(a)=0, or equivalently, lim suptg(t,a)=0. Considering the expression in (3.8), one receives

    limteh(t,a)=0,limtih(t,a)=0,limtrh(t,a)=0,limtiv(t,b)=0.

    Note that sh(t,a)=1eh(t,a)ih(t,a)rh(t,a); Taking the limit, we obtain limtsh(t,a)=1, as t. Moreover, according to Theorem 1, if R0<1, the disease-free steady state E0 of model (2.6) is globally asymptotically stable. This concludes the proof.

    Insights regarding the existence and stability of the endemic steady state E(sh(a),eh(a),ih(a), rh(a),iv(b)) within model (2.6) can be derived as follows:

    Theorem 4. If R0>1, there exists a unique endemic steady state E for model (2.6).

    Proof. The endemic steady state E(sh(a),eh(a),ih(a),rh(a),iv(b)) of model (2.6) satisfies the following equations

    dsh(a)da=z2(a)Wsh(a),deh(a)da=qz2(a)Wsh(a)(γ1(a)+k(a))eh(a),dih(a)da=(1q)z2(a)Wsh(a)+k(a)eh(a)γ2(a)ih(a),drh(a)da=γ1(a)eh(a)+γ2(a)ih(a),div(b)db=μviv(b),  iv(0)=(10iv(b)db)0β3(a)Nh(a)(αeh(a)+ih(a))da, (4.1)

    where

    W=ρ0β1(b)iv(b)Nvdb+0β2(a)Nh(a)(αeh(a)+ih(a))da. (4.2)

    Solve the first to fifth equations of (4.1)

    sh(a)=ea0z2(s)Wds,eh(a)=a0qz2(τ)Wsh(τ)eaτ(γ1(s)+k(s))dsdτ,ih(a)=a0[(1q)z2(τ)Wsh(τ)+k(τ)eh(τ)]eaτγ2(s)dsdτ,iv(b)=eb0μvds(10iv(b)db)0β3(a)Nh(a)(αeh(a)+ih(a))da. (4.3)

    Substitution sh(a) into eh(a) and ih(a) yield

    eh(a)=a0qz2(τ)Weτ0z2(s)Wdseaτ(γ1(s)+k(s))dsdτ,ih(a)=a0[(1q)z2(τ)Weτ0z2(s)Wds+k(τ)τ0qz2(s)W×es0z2(η)Wdηeτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ. (4.4)

    Substituting (4.4) for iv(b) in (4.3) gives that

    iv(b)=eb0μvds(10iv(b)db)0β3(a)Nh(a)[αa0qz2(τ)Weτ0z2(s)Wds×eaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)Weτ0z2(s)Wds+k(τ)τ0qz2(s)W×es0z2(η)Wdηeτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]da. (4.5)

    Substituting (4.4) and (4.5) into (4.2), and simplifying the equation yields

    1=ρ0β1(b)Nveb0μvds(10iv(b)db)0β3(a)Nh(a)[αa0qz2(τ)eτ0z2(s)Wds×eaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)eτ0z2(s)Wds+k(τ)τ0qz2(s)es0z2(η)Wdη×eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]dadb+0β2(a)Nh(a))×[αa0qz2(τ)eτ0z2(s)Wdseaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)eτ0z2(s)Wds+k(τ)τ0qz2(s)es0z2(η)Wdηeτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]da=:H(W). (4.6)

    Letting W=0 gives

    H(0)=ρ0β1(b)eb0μvdsNv0β3(a)Nh(a)[αa0qz2(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]dadb+0β2(a)Nh(a)[αa0qz2(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]da=R0.

    Note that model (2.6) exhibits a unique endemic steady state E, which corresponds to the existence of a unique positive root W satisfying H(W)=1. Considering the equation sh(a)+eh(a)+ih(a)+rh(a)=1, where sh(a)>0 and 0<α<1, it implies that αeh(a)+ih(a)<1. Consequently, for any W>0, there exists a

    H(W)=1W[ρ0β1(b)iv(b)Nvdb+0β2(a)Nh(a)(αeh(a)+ih(a))da]<1W[ρ0β1(b)db+0β2(a)da].

    Considering the aforementioned inequality, there is H(W)<1 when W=ρ0β1(a)da+0β2(b)db. Moreover, H(W) behaves as a continuous and decreasing function of W, with H(0)>1 for R0>1. Hence, equation (4.6) exists a unique real root on (0,ρ0β1(a)da+0β2(b)db). This implies the existence of a unique E in model (2.6) when R0>1. The proof is concluded.

    The local asymptotic stability of the endemic steady state E is analysed below. If we consider ˜sh(t,a), ˜eh(t,a), ˜ih(t,a), ˜rh(t,a) and ˜iv(t,b) as disturbances at the state E, the linear system of model (2.6) at E takes the form

    (t+a)˜sh(t,a)=z2(a)˜W(t)sh(a)z2(a)W˜sh(t,a),(t+a)˜eh(t,a)=qz2(a)˜W(t)sh(a)+qz2(a)W˜sh(t,a)(γ1(a)+k(a))˜eh(t,a),(t+a)˜ih(t,a)=(1q)z2(a)˜W(t)sh(a)+(1q)z2(a)W˜sh(t,a)+k(a)˜eh(t,a)γ2(a)˜ih(t,a),(t+a)˜rh(t,a)=γ1(a)˜eh(t,a)+γ2(a)˜ih(t,a),(t+b)˜iv(t,b)=μv˜iv(t,b), (4.7)

    and

    ˜iv(t,0)=0˜iv(t,b)db0β3(a)Nh(a)(αeh(a)+ih(a))da+(10iv(b)db)0β3(a)Nh(a)(α˜eh(a)+˜ih(a))da,

    where

    ˜W(t)=ρ0β1(b)˜iv(t,b)Nvdb+0β2(a)Nh(a)(α˜eh(t,a)+˜ih(t,a))da.

    Moreover, assume that system (4.7) has an exponential solution of the form ˜sh(t,a)=˜sh(a)eωt, ˜eh(t,a)=˜eh(a)eωt, ˜ih(t,a)=˜ih(a)eωt, ˜rh(t,a)=˜rh(a)eωt and ˜iv(t,b)=˜iv(b)eωt. Thereby, the functions ˜sh(a), ˜eh(a), ˜ih(a), ˜rh(a) and ˜iv(b) satisfy the following equations

    d˜sh(a)da=(ω+z2(a)W)˜sh(a)z2(a)˜Wsh(a),d˜eh(a)da=(ω+γ1(a)+k(a))˜eh(a)+qz2(a)W˜sh(a)+qz2(a)˜Wsh(a),d˜ih(a)da=(ω+γ2(a))˜ih(a)+(1q)z2(a)W˜sh(a)+(1q)z2(a)˜Wsh(a)+k(a)˜eh(a),d˜rh(a)da=ω˜rh(a)+γ1(a)˜eh(a)+γ2(a)˜ih(a),d˜iv(b)db=(ω+μv)˜iv(b),˜iv(0)=0˜iv(b)db0β3(a)Nh(a)(αeh(a)+ih(a))da+(10iv(b)db)0β3(a)Nh(a)(α˜eh(a)+˜ih(a))da, (4.8)

    where

    ˜W=ρ0β1(b)˜iv(b)Nvdb+0β2(a)Nh(a)(α˜eh(a)+˜ih(a))da.

    It is important to acknowledge that the functions ˜sh(a), ˜eh(a), ˜ih(a), ˜rh(a), and ˜iv(b) may have positive or negative values. Assuming ˆsh=˜sh/˜W, ˆeh=˜eh/˜W, ˆih=˜ih/˜W, ˆrh=˜rh/˜W and ˆiv=˜iv/˜W, then system (4.8) becomes

    {dˆsh(a)da=(ω+z2(a)W)ˆsh(a)z2(a)sh(a),dˆeh(a)da=(ω+γ1(a)+k(a))ˆeh(a)+qz2(a)Wˆsh(a)+qz2(a)sh(a),dˆih(a)da=(ω+γ2(a))ˆih(a)+(1q)z2(a)Wˆsh(a)+k(a)ˆeh(a)+(1q)z2(a)sh(a),dˆrh(a)da=ωˆrh(a)+γ1(a)ˆeh(a)+γ2(a)ˆih(a),dˆiv(b)db=(ω+μv)ˆiv(b),ˆiv(0)=0ˆiv(b)db0β3(a)Nh(a)(αeh(a)+ih(a))da+(10iv(b)db)0β3(a)Nh(a)(αˆeh(a)+ˆih(a))da. (4.9)

    Based on the expression for ˜W, it follows that

    1=ρ0β1(b)ˆiv(b)Nvdb+0β2(a)Nh(a)(αˆeh(a)+ˆih(a))da=:T(ω). (4.10)

    Solving the first to fifth equations of (4.9) yields

    ˆsh(a)=a0z2(τ)sh(τ)eaτ(ω+z2(s)W)dsdτ,ˆeh(a)=a0qz2(τ)(Wˆsh(τ)+s(τ))eaτ(ω+γ1(s)+k(s))dsdτ,ˆih(a)=a0[(1q)z2(τ)(Wˆsh(τ)+sh(τ))+k(τ)ˆeh(τ)]eaτ(ω+γ2(s))dsdτ,ˆiv(b)=eb0(ω+μv)ds[(10iv(b)db)0β3(a)Nh(a)(αˆeh(a)+ˆih(a))da0ˆiv(b)db0β3(a)Nh(a)(αeh(a)+ih(a))da]. (4.11)

    Substituting ˆeh(a) into ˆih(a) and ˆiv(b) yields

    ˆih(a)=a0[(1q)z2(τ)(Wˆsh(τ)+sh(τ))+k(τ)τ0qz2(s)(Wˆsh(s)+sh(s))eτs(ω+γ1(η)+k(η))dηds]eaτ(ω+γ2(s))dsdτ,ˆiv(b)=eb0(ω+μv)ds(10iv(b)db)0β3(a)Nh(a)0[αa0qz2(τ)(Wˆsh(τ)+sh(τ))eaτ(ω+γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)(Wˆsh(τ)+sh(τ))+k(τ)×τ0qz2(s)(Wˆsh(s)+sh(s))eτs(ω+γ1(η)+k(η))dηds]eaτ(ω+γ2(s))dsdτ]da0ˆiv(b)db0β3(a)Nh(a)(αeh(a)+ih(a))da. (4.12)

    Substituting (4.11), (4.12) into (4.10) yields

    T(ω)=ρ0β1(b)Nveb0(ω+μv)ds[(10iv(b)db)0β3(a)Nh(a)[αa0qz2(τ)×eω(aτ)φ(a,τ)dτ+a0(1q)z2(τ)eω(aτ)ψ(a,τ)dτ+a0k(τ)eaτγ2(s)ds×τ0qWz2(s)eω(as)φ(τ,s)dsdτ]da+0ˆiv(b)db0β3(a)Nh(a)×(αeh(a)+ih(a))da]db+0β2(a)Nh(a)[αa0qz2(τ)eω(aτ)φ(a,τ)dτ+a0(1q)z2(τ)eω(aτ)ψ(a,τ)dτ+a0k(τ)eaτγ2(s)ds×τ0qWz2(s)eω(as)φ(τ,s)dsdτ]da, (4.13)

    where

    φ(a,τ)=eaτ(γ1(η)+k(η))dηeτ0z2(η)WdηWaτz2(ξ)eaξ(γ1(η)+k(η))dηeξ0z2(η)Wdηdξ,ψ(a,τ)=eaτγ2(η)dηeτ0z2(η)WdηWaτz2(ξ)eaξγ2(η)dηeξ0z2(η)Wdηdξ.

    Proposition 1. Assume that φ(a,τ)>0 and ψ(a,τ)>0; For  0ηsτξa, then, T(ω) is a decreasing function of ω satisfies limω+T(ω)=0 and limωT(ω)=+ and T(0)<1.

    Proof. By utilizing the expression in (4.13), ensuring that φ(a,η)>0 and ψ(a,η)>0 enables us to derive fundamental properties of T(ω), obtain T(ω)0, T(ω)<0, limω+T(ω)=0, limωT(ω)=+. From Eq (4.13), letting ω=0 has

    T(0)=ρ0β1(b)Nveb0μvds(10iv(b)db)0β3(a)Nh(a)[αa0qz2(τ)×eτ0z2(s)Wdseaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)eτ0z2(s)Wds+k(τ)τ0qz2(s)es0z2(η)Wdηeτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]dadb+0β2(a)Nh(a))[αa0qz2(τ)eτ0z2(s)Wdseaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)eτ0z2(s)Wds+k(τ)τ0qz2(s)es0z2(η)Wdη×eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]daρ0β1(b)Nveb0μvds×(10iv(b)db)0β3(a)Nh(a)[αa0qz2(τ)Waτz2(ξ)×eξ0z2(η)Wdηeaξ(γ1(η)+k(η))dηdξdτ+a0(1q)z2(τ)Waτz2(ξ)×eξ0z2(η)Wdηeaξγ2(η)dηdξdτ+a0k(τ)eaτγ2(s)dsτ0qz2(s)W×τsz2(θ)eθ0z2(θ)Wdθeτθ(γ1(θ)+k(θ))dθdθdsdτ]dadb+0β2(a)Nh(a)×[αa0qz2(τ)Waτz2(ξ)eξ0z2(η)Wdηeaξ(γ1(η)+k(η))dηdξdτ+a0(1q)z2(τ)Waτz2(ξ)eξ0z2(η)Wdηeaξγ2(η)dηdξdτ+a0k(τ)×eaτγ2(s)dsτ0qz2(s)Wτsz2(θ)eθ0z2(θ)Wdθeτθ(γ1(θ)+k(θ))dθdθdsdτ]daH(W)M<1,

    where

    M=ρ0β1(b)Nveb0μvds(10iv(b)db)0β3(a)Nh(a)[αa0qz2(τ)Waτz2(ξ)×eξ0z2(η)Wdηeaξ(γ1(η)+k(η))dηdξdτ+a0(1q)z2(τ)Waτz2(ξ)×eξ0z2(η)Wdηeaξγ2(η)dηdξdτ+a0k(τ)eaτγ2(s)dsτ0qz2(s)W×τsz2(θ)eθ0z2(θ)Wdθeτθ(γ1(θ)+k(θ))dθdθdsdτ]dadb+0β2(a)Nh(a)×[αa0qz2(τ)Waτz2(ξ)eξ0z2(η)Wdηeaξ(γ1(η)+k(η))dηdξdτ+a0(1q)z2(τ)Waτz2(ξ)eξ0z2(η)Wdηeaξγ2(η)dηdξdτ+a0k(τ)×eaτγ2(s)dsτ0qz2(s)Wτsz2(θ)eθ0z2(θ)Wdθeτθ(γ1(θ)+k(θ))dθdθdsdτ]da>0.

    The proof is completed.

    The subsequent result pertains to the local asymptotic stability of the endemic steady state.

    Theorem 5. Under φ(a,η)>0 and ψ(a,η)>0 for  0ηsτξa, then the endemic steady state of model (2.6) is locally asymptotically stable if R0>1.

    Proof. Similar to the proof of Theorem 2, the above discussion and the Proposition 1, if R0>1, φ(a,τ)>0 and ψ(a,τ)>0 hold for all 0ηsτξa, then there exists a unique negative real root T(ω)=1, and all complex roots possess negative real parts. Consequently, the endemic steady state of model (2.6) achieves local asymptotic stability if R0>1. This finishes the proof.

    In this subsection, we consider the uniform persistence of model (2.6) using the continuation theory of an infinite dimensional dynamical system.

    Lemma 1. Given that u(t,;u0)=(sh(t,),eh(t,),ih(t,),rh(t,),iv(t,)) represents the solution of model (2.6) with the initial condition u0=(sh0(a),eh0(a),ih0(a),rh0(a),iv0(b))X, then

    (i) there is a positive constant ε1>0 such that lim inftsh(t,)L1ε1 for sh0(a)>0;

    (ii) if there exists t0 such that eh(t,)>0, or ih(t,)>0, or iv(t,)>0, then φ(t,)>0 for t>t, where, φ(t,)=eh(t,), ih(t,) and iv(t,).

    Proof. Proof (i), by sh(t,a)+eh(t,a)+ih(t,a)+rh(t,a)=1 and 0<α<1, it follows that αeh(t,a)+ih(t,a)<1. Subsequently, based on model (2.6), it can be inferred that

    (t+a)sh(t,a)λ(a)sh(t,a),  sh(t,0)=1,

    where λ(a)=z2(a)[ρ0β1(b)db+0β2(a)da]. Therefore, it is possible to obtain

    (t+a)˘sh(t,a)=λ(a)˘sh(t,a),  ˘sh(t,0)=1.

    Let's denote ˘sh(a)=ea0λ(s)ds and applying the comparison principle, one can conclude that lim inftsh(t,a)˘sh(a). Consequently, there is a ε1>0 such that lim inftsh(t,)L1ε1.

    Now, we turn to the (ii). If there exits a t>0 such that eh(t,)>0, then one has eh(t,a)>0 for tt due to the expression of equation (3.7). Further, form the expressions of Eqs (3.8) and (3.9), one has rh(t,a)>0 and iv(t,b)>0 for tt due to the facts ih(t,a)>0 and sh(t,a)>0. Similarly, for rh(t,)>0 or iv(t,)>0, we also can get φ(t,)>0 for tt, here, φ(t,)=eh(t,), ih(t,) and iv(t,). This completes the proof of conclusion (ii).

    Theorem 6. If R0>1, for initial value u0=(sh0(),eh0(),ih0(),rh0(),iv0())X with eh0()+ih0()+iv0()>0, then there exists a constant ε2>0 such that the solution u(t,;u0)=(sh(t,),eh(t,),ih(t, ), rh(t,),iv(t,)) satisfies

    lim inftφh(t,)L1ϵ2,φh(t,)=sh(t,), eh(t,), ih(t,), rh(t,), iv(t,).

    Proof. Define

    a_=inf{a:a(γ1(s)+k(s))ds=0 and aγ2(s)ds=0},  b_=inf{b:bμvds=0},Y={u(t)X:a_0eh(t,a)da>0, a_0ih(t,a)da>0 and b_0iv(t,b)db>0},Y=XY={u(t)X:a_0eh(t,a)da=0 or a_0ih(t,a)da=0 or b_0iv(t,b)db=0}.

    From Lemma 1, we understand that Y serves as a positive invariant set for model (2.6) concerning the solution semi-flow u(t), denote N={u0Y:u(t,u0)Y,t0}, where ω(u0) denotes the omega limit set of u(t,u0). Now, one claims that {E0}=u0Nω(u0).

    It is evident that u(t,E0)=E0 holds for any t0, implying {E0}u0Nω(u0). On the contrary, for any u0N, we have a_0eh(t,a)da=0 or a_0ih(t,a)da=0 or b_0iv(t,b)db=0. Let's start by considering the scenario where a_0eh(t,a)da=0, implying eh(t,a)0. According to model (2.6), this leads to

    0=qsh(t,a)z2(a)[ρ0β1(b)Nviv(t,b)db+0β2(a)Nh(a)(αeh(t,a)+ih(t,a))da].

    Thus, the above equation holds if and only if ih(t,a)=iv(t,b)=0. So there is (t+a)sh(t,a)=0 with sh(t,0)=1. The limtsh(t,a)=1 by sh(t,a)+eh(t,a)+ih(t,a)+rh(t,a)=1, and so ω(u0)={E0}. Similar to the case of a_0eh(t,a)da=0, one also has ω(u0)={E0} when a_0ih(t,a)da=0 or b_0iv(t,b)db=0, thereby u0Nω(u0){E0}. In conclusion, it follows that {E0}=u0Nω(u0). Therefore, all solutions of model (2.6) converge to {E0} on Y as t.

    Further, it is shown that the uniformly weakly repulsive of {E0}, i.e., there exists a constant δ>0 such that lim suptu(t,u0)E0Xδ for any initial values u0X. Using the counter-argument. Suppose that otherwise, that is, there exists an initial value u1X such that lim suptu(t,u1)E0X<δ. Thus, there exists ˉT>0 such that, for any t>ˉT,

    1δ<sh(t,)<1+δ,0<eh(t,)<δ,0<ih(t,)<δ,0<rh(t,)<δ,0<iv(t,)<δ.

    It is clear that from model (2.6)

    (t+a)eh(t,a)q(λ1(t,a)+λ2(t,a))(1δ)(γ1(a)+k(a))eh(t,a),(t+a)ih(t,a)(1q)(λ1(t,a)+λ2(t,a))(1δ)+k(a)eh(t,a)γ2(a)ih(t,a),(t+a)rh(t,a)γ1(a)eh(t,a)+γ2(a)ih(t,a),(t+b)iv(t,b)μviv(t,b).

    Get the auxiliary system as

    (t+a)eh_(t,a)=q(λ1_(t,a)+λ2_(t,a))(1δ)(γ1(a)+k(a))eh_(t,a),(t+a)ih_(t,a)=(1q)(λ1_(t,a)+λ2_(t,a))(1δ)+k(a)eh_(t,a)γ2(a)ih_(t,a),(t+a)rh_(t,a)=γ1(a)eh_(t,a)+γ2(a)ih_(t,a),(t+b)iv_(t,b)=μviv_(t,b), (5.1)

    with the initial and boundary conditions

    eh_(t,0)=ih_(t,0)=rh_(t,0)=0,iv_(t,0)=(10δdb)0β3(a)Nh(a)(αeh_(t,a)+ih_(t,a))da,eh_(0,a)=eh0(a), ih_(0,a)=ih0(a), rh_(0,a)=rh0(a), iv_(0,b)=iv0(b),

    where

    λ1_(t,a)+λ2_(t,a)=ρz2(a)0β1(b)iv_(b)Nvdb+z2(a)0β2(a)Nh(a)(αeh_(a)+ih_(a))da.

    The following exponential form of solution is obtained for system (5.1) as follows: eh_(t,a)=eh_(a)ept, ih_(t,a)=ih_(a)ept, rh_(t,a)=rh_(a)ept and iv_(t,b)=iv_(b)ept, one has λ1_(t,a)+λ2_(t,a)=z2(a)eptΛ, where

    Λ=ρ0β1(b)iv_(b)Nvdb+0β2(a)Nh(a)(αeh_(a)+ih_(a))da.

    Consequently,

    deh_(a)da=(p+γ1(a)+k(a))eh_(a)+qz2(a)Λ(1δ),dih_(a)da=(p+γ2(a))i_(a)+(1q)z2(a)Λ(1δ)+k(a)eh_(a),drh_(a)da=pr_(a)+γ1(a)eh_(a)+γ2(a)ih_(a),div_(b)db=(p+μv)iv_(b),iv_(0)=(10δdb)0β3(a)Nh(a)(αeh_(a)+ih_(a))da. (5.2)

    Solving the equations of system (5.2) yields

    eh_(a)=a0q(1δ)z2(τ)Λeaτ(p+γ1(s)+k(s))dsdτ,ih_(a)=a0[(1q)(1δ)z2(τ)Λ+k(τ)eh_(τ)]eaτ(p+γ2(s))dsdτ,rh_(a)=a0[γ1(τ)eh_(τ)+γ2(τ)ih_(τ)]ep(aτ)dτ,iv_(b)=(10δdb)0β3(a)Nh(a)(αeh_(a)+ih_(a))daeb0(p+μv)ds. (5.3)

    Substituting eh_(a) in (5.3) into ih_(a) and iv_(b) yields

    ih_(a)=a0[(1q)(1δ)z2(τ)Λ+k(τ)τ0q(1δ)z2(s)×Λeτs(p+γ1(η)+k(η))dηds]eaτ(p+γ2(s))dsdτ,iv_(b)=(10δdb)0β3(a)Nh(a)[αa0q(1δ)z2(τ)×Λeaτ(p+γ1(s)+k(s))dsdτ+a0[(1q)(1δ)z2(τ)Λ+k(τ)τ0qz2(s)Λ(1δ)eτs(p+γ1(η)+k(η))dηds]×eaτ(p+γ2(s))dsdτ]daeb0(p+μv)ds. (5.4)

    Substituting (5.3) and (5.4) into the expression for Λ yields

    1=ρ0β1(b)Nv{(10δdb)0β3(a)Nh(a)[αa0q(1δ)z2(τ)×eaτ(p+γ1(s)+k(s))dsdτ+a0[(1q)(1δ)z2(τ)+k(τ)τ0qz2(s)×(1δ)eτs(p+γ1(η)+k(η))dηds]eaτ(p+γ2(s))dsdτ]daeb0(p+μv)ds}db+0β2(a)Nh(a)[αa0q(1δ)z2(τ)eaτ(p+γ1(s)+k(s))dsdτ+a0[(1q)(1δ)z2(τ)+k(τ)τ0qz2(s)(1δ)eτs(p+γ1(η)+k(η))dηds]×eaτ(p+γ2(s))dsdτ]da=:D(p). (5.5)

    It is obvious from the expression for D(p) that D(p) is a monotonically decreasing function with respect to p, limpD(p)=0, and

    D(0)=ρ0β1(b)Nveb0μvds(10δdb)0β3(a)Nh(a)[αa0q(1δ)z2(τ)×eaτ(γ1(s)+k(s))dsdτ+a0[(1q)(1δ)z2(τ)+k(τ)τ0qz2(s)×(1δ)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]dadb+0β2(a)Nh(a)[αa0q(1δ)z2(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)(1δ)z2(τ)+k(τ)τ0qz2(s)(1δ)eτs(γ1(η)+k(η))dηds]×eaτγ2(s)dsdτ]da.

    Taking a sufficiently small δ so that

    limδ0D(0)=ρ0β1(b)eb0μvdsNv0β3(a)Nh(a)[αa0qz2(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]dadb+0β2(a)Nh(a)[αa0qz2(τ)eaτ(γ1(s)+k(s))dsdτ+a0[(1q)z2(τ)+k(τ)τ0qz2(s)eτs(γ1(η)+k(η))dηds]eaτγ2(s)dsdτ]da=R0.

    It appears that when R0>1, there exists a unique positive root of Eq (5.5), meaning the solution (eh_(t,), ih_(t,), rh_(t,), iv_(t,)) of system (5.1) becomes unbounded as t>ˉT. Consequently, the solution (sh(t,),eh(t,), ih(t,), rh(t,), iv(t,)) of model (2.6) also becomes unbounded for t>ˉT, which contradicts the boundedness of u(t,;u0). Hence, conclude that {E0} is uniformly weakly repulsive.

    To summarize, {E0} is an isolated invariant set on X, and Ws(E0)Y=, where Ws(E0) is a stable subset of E0. Moreover, there is no closed loop from E0 to E0 on Y. By applying persistence theory [29], results in the uniform persistence of model (2.6). This completes the proof.

    For all vector-borne infectious diseases, vaccination strategies for susceptible populations (denoted as u1(t,a)) and elimination strategies for infectious vectors (denoted as u2(t)) can be proposed. Therefore, by introducing the control variables u1 and u2 model (2.3) obtains

    (t+a)Sh(t,a)=(λ1(t,a)+λ2(t,a)+μh(a))Sh(t,a)u1(t,a)Sh(t,a),(t+a)Ah(t,a)=q(λ1(t,a)+λ2(t,a))Sh(t,a)(k(a)+γ1(a)+μh(a))Ah(t,a),(t+a)Ih(t,a)=(1q)(λ1(t,a)+λ2(t,a))Sh(t,a)+k(a)Ah(t,a)(γ2(a)+μh(a))Ih(t,a),(t+a)Rh(t,a)=γ1(a)Ah(t,a)+γ2(a)Ih(t,a)μh(a)Rh(t,a)+u1(t,a)Sh(t,a),(t+b)Iv(t,b)=μvIv(t,b)u2(t)Iv(t,b), (6.1)

    where

    λ1(t,a)=ρz2(a)b+0β1(b)Iv(t,b)db,  λ2(t,a)=z2(a)a+0β2(a)(αAh(t,a)+Ih(t,a))da,

    with the initial and boundary conditions

    Sh(t,0)=a+0bh(a)Nh(t,a)da,eh(t,0)=Ih(t,0)=Rh(t,0)=0,Iv(t,0)=(Λvμva+0Iv(t,b)db)a+0β3(a)(αAh(t,a)+Ih(t,a))da,Sh(0,a)=Sh0(a), Ah(0,a)=Ah0(a), Ih(0,a)=Ih0(a), Rh(0,a)=Rh0(a), Iv(0,b)=Iv0(b).

    Considering practical scenarios, replace the upper limit of the age-related integral with a finite value a+>0. the control set as follows

    U={ui(t,a)L(Ω)|(t,)Ω=(0,T)×(0,a+), 0ui(t,a)li, li<, i=1, 2},

    therefore, the objective function of our optimal control problem is

    J(u1,u2)=T0a+0[τ1Ah(t,a)+τ2Ih(t,a)+B12u21(t,a)τ3Iv(t,a)+B22u22(t,a)]dadt, (6.2)

    where τi and Bi are defined as positive coefficients, serving to adjust the significance attributed to the state and control variables, respectively (i=1, 2, 3; j=1, 2). The existence of optimal control is proofed as follows.

    Theorem 7. There exist optimal control variables u1(t,a), u2(t,b)U such that

    J(u1,u2)=minu1,u2UJ(u1,u2),

    satisfies the initial and boundary conditions of system (6.1).

    The demonstration of Theorem 7 closely resembles that of Theorem 3.1 in [25], hence, it will be omitted here.

    Select an additional control uϵ1(t,a)=u1(t,a)+ϵl1(t,a) and uϵ2(t)=u2(t)+ϵl2(t), where l1(t,a) and l2(t) are variation functions and ϵ(0,1), then

    Sϵh=Sh(uϵi),Aϵh=Ah(uϵi),Iϵh=Ih(uϵi),Rϵh=Rh(uϵi),Iϵv=Iv(uϵi).

    Therefore, the equation of state variables corresponding to the new control variables uϵi (i = 1, 2) are

    (t+a)Sϵh(t,a)=(λϵ1(t,a)+λϵ2(t,a)+μh(a))Sϵh(t,a)uϵ1(t,a)Sϵh(t,a),(t+a)Aϵh(t,a)=q(λϵ1(t,a)+λϵ2(t,a))Sϵh(t,a)(k(a)+γ1(a)+μh(a))Aϵh(t,a),(t+a)Iϵh(t,a)=(1q)(λϵ1(t,a)+λϵ2(t,a))Sϵh(t,a)+k(a)Aϵh(t,a)(γ2(a)+μh(a))Iϵh(t,a),(t+a)Rϵh(t,a)=γ1(a)Aϵh(t,a)+γ2(a)Iϵh(t,a)μh(a)Rϵh(t,a)+uϵ1(t,a)Sϵh(t,a),(t+b)Iϵv(t,b)=μvIϵv(t,b)uϵ2(t)Iϵv(t,b),

    where

    λϵ1(t,a)=ρz2(a)a+0β1(b)Iϵv(t,b)db,λϵ2(t,a)=z2(a)a+0β2(a)(αAϵh(t,a)+Iϵh(t,a))da,

    with the boundary conditions

    Sϵh(t,0)=a+0bh(a)Nϵh(t,a)da,  Aϵh(t,0)=Iϵh(t,0)=Rϵh(t,0)=0,Iϵv(t,0)=(Λvμva+0Iϵv(t,b)db)a+0β3(a)(αAϵh(t,a)+Iϵh(t,a))da,

    and the initial conditions

    Sϵh(0,a)=Sh0(a), Aϵh(0,a)=Ah0(a), Iϵh(0,a)=Ih0(a), Rϵh(0,a)=Rh0(a), Iϵv(0,b)=Iv0(b),

    where Nϵh(t,a)=Sϵh(t,a)+Aϵh(t,a)+Iϵh(t,a)+Rϵh(t,a), we find the following difference quotient

    Sϵh(t,a)Sh(t,a)ϵˇSh(t,a),Aϵh(t,a)Ah(t,a)ϵˇAh(t,a),Iϵh(t,a)Ih(t,a)ϵˇIh(t,a),Rϵh(t,a)Rh(t,a)ϵˇRh(t,a),Iϵv(t,b)Iv(t,b)ϵˇIv(t,b),asϵ0.

    Where ˇSh(t,a), ˇAh(t,a), ˇIh(t,a), ˇRh(t,a) and ˇIv(t,b) comply with the following system

    ˇSht+ˇSha=(λ1(t,a)+λ2(t,a)+μh(a)+u1(t,a))ˇSh(t,a)Sh(t,a)z2(a)[a+0β2(a)×[αˇAh(t,a)+ˇIh(t,a)]da+ρa+0β1(b)ˇIv(t,b)db]l1(t,a)Sh(t,a),ˇAht+ˇAha=q(λ1(t,a)+λ2(t,a))ˇSh(t,a)+qSh(t,a)z2(a)[a+0β2(a)[αˇAh(t,a)+ˇIh(t,a)]da+ρa+0β1(b)ˇIv(t,b)db](k(a)+γ1(a)+μh(a))ˇAh(t,a),ˇIht+ˇIha=(1q)(λ1(t,a)+λ2(t,a))ˇSh(t,a)+(1q)Sh(t,a)z2(a)[a+0β2(a)[αAh(t,a)+ˇIh(t,a)]da+ρa+0β1(b)ˇIv(t,b)db]+kˇAh(t,a)(γ2(a)+μh(a))ˇIh(t,a),ˇRht+ˇRha=γ1(a)ˇAh(t,a)+γ2(a)ˇIh(t,a)μh(a)ˇRh(t,a)+u1(t,a)ˇSh(t,a)+l1(t,a)Sh(t,a),ˇIvt+ˇIvb=μvˇIv(t,b)u2(t)ˇIv(t,b)l2(t)Iv(t,b), (6.3)

    with the boundary conditions

    ˇSh(t,0)=a+0bh(a)ˇNh(t,a)da,  ˇAh(t,0)=ˇIh(t,0)=ˇRh(t,0)=0,ˇIv(t,0)=(Λvμva+0Iv(t,b)db)a+0β3(a)(αˇAh(t,a)+ˇIh(t,a))da+(Λvμva+0ˇIv(t,b)db)a+0β3(a)(αAh(t,a)+Ih(t,a))da,

    and the initial conditions

    ˇSh(0,a)=0,  ˇAh(0,a)=0,  ˇIh(0,a)=0,  ˇRh(0,a)=0,  ˇIv(0,b)=0,

    where ˇNh(t,a)=ˇSh(t,a)+ˇAh(t,a)+ˇIh(t,a)+ˇRh(t,a). In order to find the adjoint equations, we consider the first equation of the system (6.3) as

    0=ˇSht+ˇSha+(λ1(t,a)+λ2(t,a)+μh(a)+u1(t,a))ˇSh(t,a)+Sh(t,a)z2(a)×[a+0β2(a)[αˇAh(t,a)+ˇIh(t,a)]da+ρa+0β1(b)ˇIv(t,b)db]+l1(t,a)Sh(t,a),Λ1(t,a)1=ˇSh(t,a),Λ1(t,a)tΛ1(t,a)a+(λ1(t,a)+λ2(t,a)+μh(a)+u1(t,a))Λ1(t,a)1+T0a+0l1(t,a)Sh(t,a)Λ1(t,a)dadt+T0[a+0Sh(t,a)z2(a)Λ1(t,a)da]×[a+0β2(a)[αˇAh(t,a)+ˇIh(t,a)]+ρa+0β1(b)ˇIv(t,b)db]dtT0a+0bh(a)ˇNh(t,a)Λ1(t,0)dadt, (6.4)

    with the conditions \check{S}_h(0, a) = 0 , \check{S}_h(t, a^+) = 0 , \Lambda^*_1(T, 0) = 0 and \langle\langle f, g\rangle\rangle_1 = \int_0^T\int_0^{a^+}fg \mathrm{d}a\mathrm{d}t . Similarly, the rest of the equations for system (6.3) can become

    \begin{align} 0 = &\Big\langle\Big\langle\frac{\partial \check{A}_h}{\partial t}+\frac{\partial \check{A}_h}{\partial a}-q(\lambda_1(t, a)+\lambda_2(t, a))\check{S}_h(t, a)-q S_h(t, a)z_2(a)\bigg[\int_0^{a^+}\beta_2(a)\Big[\alpha \check {A}_h(t, a)\\ &+\check{I}_h(t, a)\Big]+\rho\int_0^{a^+}\beta_1(b)\check{I}_v(t, b)\mathrm{d}b\bigg] +(k(a)+\gamma_1(a)+\mu_h(a))\check{A}_h(t, a), \Lambda^*_2(t, a)\Big\rangle\Big\rangle_1\\ = &\Big\langle\Big\langle\check{A}_h(t, a), -\frac{\partial\Lambda^*_2(t, a)}{\partial t}-\frac{\partial \Lambda^*_2(t, a)}{\partial a}+(k(a)+\gamma_1(a)+\mu_h(a))\Lambda^*_2(t, a)\Big\rangle\Big\rangle_1 -\int_0^T\int_0^{a^+}q(\lambda_1(t, a)\\ &+\lambda_2(t, a))\check{S}_h(t, a)\Lambda^*_2(t, a)\mathrm{d}a\mathrm{d}t -q\int_0^T\Big[\int_0^{a^+}S_h(t, a)z_2(a)\Lambda^*_2(t, a)\mathrm{d}a \Big] \bigg[\int_0^{a^+}\beta_2(a)\\ &\times \Big[\alpha \check {A}_h(t, a)+\check{I}_h(t, a)\Big]+\rho\int_0^{a^+}\beta_1(b)\check{I}_v(t, b)\mathrm{d}b\bigg]\mathrm{d}t , \end{align} (6.5)

    under the initial conditions \check{A}_h(0, a) = 0 , \check{A}_h(t, a^+) = 0 , \Lambda^*_2(T, 0) = 0 .

    \begin{align} 0 = &\Big\langle\Big\langle\frac{\partial \check{I}_h}{\partial t}+\frac{\partial \check{I}_h}{\partial a}-(1-q)(\lambda_1(t, a)+\lambda_2(t, a))\check{S}_h(t, a) -(1-q)S_h(t, a)z_2(a)\bigg[\int_0^{a^+}\beta_2(a)\Big[\alpha \\ &\times \check {A}_h(t, a)+\check{I}_h(t, a)\Big]+\rho\int_0^{a^+}\beta_1(b)\check{I}_v(t, b)\mathrm{d}b\bigg]-k\check{A}_h(t, a)+(\gamma_2(a)+\mu_h(a))\check{I}_h(t, a), \Lambda^*_3(t, a)\Big\rangle\Big\rangle_1\\ = &\Big\langle\Big\langle\check{I}_h(t, a), -\frac{\partial\Lambda^*_3(t, a)}{\partial t}-\frac{\partial \Lambda^*_3(t, a)}{\partial a}+(\gamma_2(a)+\mu_h(a))\Lambda^*_3(t, a)\Big\rangle\Big\rangle_1 -\int_0^T\int_0^{a^+}(1-q)\\ &\times(\lambda_1(t, a)+\lambda_2(t, a))\check{S}_h(t, a)\Lambda^*_3(t, a)\mathrm{d}a\mathrm{d}t -(1-q)\int_0^T\bigg[\int_0^{a^+}S_h(t, a) z_2(a)\Lambda^*_3(t, a)\mathrm{d} a\bigg]\\ &\bigg[\int_0^{a^+}\beta_2(a)\Big[\alpha\check {A}_h(t, a)+\check{I}_h(t, a)\Big]\mathrm{d}a +\rho\int_0^{a^+}\beta_1(b)\check{I}_v(t, b)\mathrm{d}b\bigg]\mathrm{d}t\\ &-\int_0^T\int_0^{a^+}k(a)\check{A}_h(t, a)\Lambda^*_3(t, a)\mathrm{d}a\mathrm{d}t, \end{align} (6.6)

    under the initial conditions \check{I}_h(0, a) = 0 , \check{I}_h(t, A^+) = 0 , \Lambda^*_3(T, 0) = 0 .

    \begin{align} 0 = &\Big\langle\Big\langle\frac{\partial \check{R}_h}{\partial t}+\frac{\partial \check{R}_h}{\partial a}-\gamma_1(a)\check{A}_h(t, a)-\gamma_2(a)\check{I}_h(t, a)+\mu_h(a)\check{R}_h(t, a)\\ &-u_1(t, a)\check{S}_h(t, a)-l_1(t, a)S_h(t, a), \Lambda^*_4(t, a)\Big\rangle\Big\rangle_1\\ = &\Big\langle\Big\langle\check{R}(t, a), -\frac{\partial\Lambda^*_4(t, a)}{\partial t}-\frac{\partial \Lambda^*_4(t, a)}{\partial a}+\mu_h(a)\Lambda^*_4(t, a)\Big\rangle\Big\rangle_1\\ &-\int_0^T\int_0^{a^+}(\gamma_1(a)\check{A}_h(t, a)+\gamma_2(a)\check{I}_h(t, a))\Lambda^*_4(t, a)\mathrm{d}a\mathrm{d}t\\ &-\int_0^T\int_0^{A^+}(u_1(t, a)\check{S}_h(t, a)+l_1(t, a)S_h(t, a))\Lambda^*_4(t, a)\mathrm{d}a\mathrm{d}t, \end{align} (6.7)

    under the initial conditions \check{R}_h(0, a) = 0 , \check{R}_h(t, a^+) = 0 , \Lambda^*_4(T, 0) = 0 .

    \begin{align} 0 = &\Big\langle\Big\langle\frac{\partial \check{I}_v}{\partial t}+\frac{\partial \check{I}_v}{\partial b}+(\mu_v+u_2(t))\check{I}_v(t, b)+l_2(t)I_v(t, b), \Lambda^*_5(t, b)\Big\rangle\Big\rangle_2\\ = &\Big\langle\Big\langle\check{I}_v(t, b), -\frac{\partial\Lambda^*_5(t, b)}{\partial t}-\frac{\partial \Lambda^*_5(t, b)}{\partial b}+(\mu_v+u_2(t))\\ &\times\Lambda^*_5(t, b)\Big\rangle\Big\rangle_2 +\int_0^T\int_0^{a^+}l_2(t)I_v(t, b)\Lambda^*_5(t, b)\mathrm{d}b\mathrm{d}t\\ &-\int_0^T\int_0^{a^+}\check{I}_v(t, 0))\Lambda^*_5(t, 0)\mathrm{d}b\mathrm{d}t, \end{align} (6.8)

    under the initial conditions \check{I}_v(0, b) = 0 , \check{I}_v(t, b^+) = 0 , \Lambda^*_5(T, 0) = 0 and \langle\langle f, g\rangle\rangle_2 = \int_0^T\int_0^{b^+}fg\mathrm{d}b\mathrm{d}t .

    Next the Lagrangian \mathcal{L} function is defined as

    \begin{align*} &\mathcal{L}(\check{S}_h, \check{A}_h, \check{I}_h, \check{R}_h, \check{I}_v)\\ = &\int_0^T\int_0^{a^+}\bigg[\tau_1\check{A}_h+\tau_2\check{I}_h+\frac{B_1}{2}u_1^2\bigg]\mathrm{d}a\mathrm{d}t +\int_0^T\int_0^{a^+}\bigg[\tau_3\check{I_v}+\frac{B_2}{2}u_2^2 \bigg]\mathrm{d}b\mathrm{d}t-\int_0^T\int_0^{a^+}\Lambda^*_1(t, a)\\ &\times\bigg\{\frac{\partial \check{S}_h}{\partial t}+\frac{\partial \check{S}_h}{\partial a}+(\lambda_1(t, a)+\lambda_2(t, a)+\mu_h(a)+u_1(t, a))\check{S}_h(t, a)+S_h(t, a)z_2(a) \bigg[\int_0^{a^+}\beta_2(a)\\ \notag{}&\times\Big[\alpha \check {A}_h(t, a)+\check{I}_h(t, a)\Big]\mathrm{d}a +\rho\int_0^{a^+}\beta_1(b)\check{I}_v(t, b)\mathrm{d}b\bigg] +l_1(t, a)S(t, a)\bigg\}\mathrm{d}a\mathrm{d}t \\ & -\int_0^T\int_0^{a^+}\Lambda^*_2(t, a)\bigg\{\frac{\partial \check{A}_h}{\partial t}+\frac{\partial \check{A}_h}{\partial a}-q(\lambda_1(t, a)+\lambda_2(t, a))\check{S}_h(t, a)-q S_h(t, a)\\ &\times z_2(a)\bigg[\int_0^{a^+}\beta_2(a)\Big[\alpha \check {A}_h(t, a)+\check{I}_h(t, a)\Big]\mathrm{d}a +\rho\int_0^{a^+}\beta_1(b)\check{I}_v(t, b)\mathrm{d}b\bigg]\\ &+(k(a)+\gamma_1(a)+\mu_h(a))\check{A}_h(t, a)\bigg\}\mathrm{d}a\mathrm{d}t -\int_0^T\int_0^{a^+}\Lambda^*_3(t, a)\bigg\{\frac{\partial \check{I}_h}{\partial t}+\frac{\partial \check{I}_h}{\partial a}\\ &-(1-q)(\lambda_1(t, a)+\lambda_2(t, a))\check{S}_h(t, a) -(1-q)S_h(t, a)z_2(a)\bigg[\int_0^{A^+}\beta_2(a)\\ \notag&\times \Big[\alpha \check {A}_h(t, a)+\check{I}_h(t, a)\Big]\mathrm{d}a +\rho\int_0^{a^+}\beta_1(b)\check{I}_v(t, b)\mathrm{d}b\bigg]-k(a)\check{A}_h(t, a)\\ &+(\gamma_2(a)+\mu_h(a))\check{I}_h(t, a)\bigg\}\mathrm{d}a\mathrm{d}t -\int_0^T\int_0^{a^+}\Lambda^*_4(t, a)\bigg[\frac{\partial \check{R}_h}{\partial t}+\frac{\partial \tilde{R}_h}{\partial a}-\gamma_1(a)\check{A}_h(t, a)\\ &-\gamma_2(a)\check{I}_h(t, a)+\mu_h(a)\check{R}_h(t, a)-u_1(t, a)\check{S}_h(t, a)-l_1(t, a)S_h(t, a)\bigg]\mathrm{d}a\mathrm{d}t \\ &-\int_0^T\int_0^{a^+}\Lambda^*_5(t, b)\bigg[\frac{\partial \check{I}_v}{\partial t}+\frac{\partial \check{I}_v}{\partial b} +(\mu_v+u_2(t))\check{I}_v(t, b) +l_2(t)I_v(t, b)\bigg]\mathrm{d}b\mathrm{d}t. \end{align*}

    By solving \frac{\partial\mathcal{L}}{\partial\check{S}_h} = 0 , \frac{\partial\mathcal{L}}{\partial\check{A}_h} = 0 , \frac{\partial\mathcal{L}}{\partial\check{I}_h} = 0 , \frac{\partial\mathcal{L}}{\partial\check{R}_h} = 0 , \frac{\partial\mathcal{L}}{\partial\tilde{I}_v} = 0 , combined with Eqs (6.4)–(6.8), then we obtain the adjoint equations

    \begin{align} \frac{\partial \Lambda^*_1(t, a)}{\partial t}+\frac{\partial \Lambda^*_1(t, a)}{\partial a} = {}&[\lambda_1(t, a)+\lambda_2(t, a)+\mu_h(a)+u_1(t, a)]\Lambda^*_1(t, a)-b_h(a)\Lambda_1(t, 0)\\ {}&-q(\lambda_1(t, a)+\lambda_2(t, a)) \Lambda^*_2(t, a)-(1-q)(\lambda_1(t, a)+\lambda_2(t, a))\\ {}&\times\Lambda^*_3(t, a)-u_1(t, a)\Lambda^*_4(t, a), \\ \frac{\partial\Lambda^*_2(t, a)}{\partial t}+\frac{\partial\Lambda^*_2(t, a)}{\partial a} = {}&-\tau_1+[k(a)+\gamma_1(a)+\mu_h(a)]\Lambda^*_2(t, a)-b_h(a)\Lambda^*_1(t, 0)\\ {}&+\alpha\int_0^{a^+}\beta_2(a)S_h(t, a)z_2(a)\Lambda^*_1(t, a)\mathrm{d}a-q\int_0^{a^+}\beta_2(a)S_h(t, a)z_2(a)\Lambda^*_2(t, a)\mathrm{d}a\\ {}&-(1-q)\int_0^{a^+}\beta_2(a)S_h(t, a)z_2(a)\Lambda^*_3(t, a)\mathrm{d}a-k(a)\Lambda^*_3(t, a)\\ {}&-\gamma_1(a)\Lambda^*_4(t, a) -\Big(\frac{\Lambda_v}{\mu_v}-\int_{0}^{a^+}\check{I}_v(t, b)\mathrm{d}b\Big)\int_{0}^{a^+}\beta_3(a)\alpha\Lambda^*_5(t, 0), \\ \frac{\partial\Lambda^*_3(t, a)}{\partial t}+\frac{\partial\Lambda^*_3(t, a)}{\partial a} = {}&-\tau_2+[\gamma_2(a)+\mu_h(a)]\Lambda^*_3(t, a)-b_h(a)\Lambda^*_1(t, 0)\\ {}&+\int_0^{a^+}\beta_2(a)S_h(t, a)z_2(a)\Lambda^*_1(t, a)\mathrm{d}a-q\int_0^{a^+}\beta_2(a)S_h(t, a)z_2(a)\Lambda^*_2(t, a)\mathrm{d}a \\ {}&-(1-q)\int_0^{a^+}\beta_2(a)S_h(t, a)z_2(a)\Lambda^*_3(t, a)\mathrm{d}a-\gamma_2(a)\Lambda^*_4(t, a)\\ {}&-\Big(\frac{\Lambda_v}{\mu_v}-\int_{0}^{a^+}\check{I}_v(t, b)\mathrm{d}b\Big)\int_{0}^{a^+}\beta_3(a)\Lambda^*_5(t, 0), \\ \frac{\partial\Lambda^*_4(t, a)}{\partial t}+\frac{\partial\Lambda^*_4(t, a)}{\partial a} = {}&\mu_h(a)\Lambda^*_4(t, a)-b_h(a)\Lambda^*_1(t, 0), \\ \frac{\partial \Lambda^*_5(t, b)}{\partial t}+\frac{\partial\Lambda^*_5(t, b)}{\partial b} = {}&-\tau_3+[\mu_v+u_2(t)]\Lambda^*_5(t, b)\\ {}&+\Big(\frac{\Lambda_v}{\mu_v}-{a^+}\Big)\int_{0}^{a^+}\beta_3(a)(\alpha{A}_h(t, a)+{I}_h(t, a))\mathrm{d}a\Lambda^*_5(t, 0), \end{align} (6.9)

    with the transversality conditions

    \begin{equation*} \Lambda^*_1(T, a) = 0, \quad\Lambda^*_2(T, a) = 0, \quad\Lambda^*_3(T, a) = 0, \quad\Lambda^*_4(T, a) = 0, \quad\Lambda^*_5(T, b) = 0, \end{equation*}

    with the boundary conditions

    \begin{equation*} \Lambda^*_1(t, a^+) = 0, \quad\Lambda^*_2(t, a^+) = 0, \quad\Lambda^*_3(t, a^+) = 0, \quad\Lambda^*_4(t, a^+) = 0, \quad\Lambda^*_5(t, b^+) = 0. \end{equation*}

    Theorem 8. If u_1^* , u_2^*\in U represent optimal controls that minimize the objective function \mathcal{J}(u_1, u_2) , and (S^*_h(t, a), A^*_h(t, a), I^*_h(t, a), R^*_h(t, a), I^*_v(t, b)) and (\Lambda^*_1(t, a), \Lambda^*_2(t, a), \Lambda^*_3(t, a) , \Lambda^*_4(t, a), \Lambda^*_5(t, b)) denote the corresponding state and adjoint variables, respectively, then

    \begin{equation*} \begin{aligned} u_1^*(t, a)& = \min\bigg\{l_1, \max\bigg\{0, \frac{S^*_h(t, a)(\Lambda^*_1(t, a)-\Lambda^*_4(t, a))}{B_1}\bigg\}\bigg\}, \\ u_2^*(t)& = \min\bigg\{l_2, \max\bigg\{0, \frac{I^*_v(t, b)\Lambda^*_5(t, b)}{B_2}\bigg\}\bigg\}. \end{aligned} \end{equation*}

    Proof. The Gateaux derivative of \mathcal{J}(u_1, u_2) is

    \begin{align*} 0\leq &\mathcal{J}'(u_1, u_2) = \int_0^T\int_0^{a^+}\Big[\tau_1\check{A}_h+\tau_2\check{I}_h+B_1u_1h_1\Big]\mathrm{d}a\mathrm{d}t +\int_0^T\int_0^{a^+}\Big[\tau_3\check{I}_v+B_2u_2h_2 \Big]\mathrm{d}b\mathrm{d}t\\ = &\int_0^T\int_0^{a^+}\check{S}_h(t, a)\bigg[-\frac{\partial \Lambda^*_1(t, a)}{\partial t}-\frac{\partial \Lambda^*_1(t, a)}{\partial a} +(\lambda_1(t, a)+\lambda_2(t, a)+\mu_h(a)+u_1(t, a))\\ &\times\Lambda^*_1(t, a)-b_h(a)\Lambda^*_1(t, 0)-q(\lambda_1(t, a)+\lambda_2(t, a)) \Lambda^*_2(t, a)-(1-q)(\lambda_1(t, a)+\lambda_2(t, a))\\ &\times\Lambda^*_3(t, a)-u_1(t, a)\Lambda_4(t, a)\bigg]\mathrm{d}a\mathrm{d}t+\int_0^T\int_0^{a^+}\check{A}_h(t, a) \bigg[-\frac{\partial\Lambda^*_2(t, a)}{\partial t}-\frac{\partial\Lambda^*_2(t, a)}{\partial a}\% \\&+(k(a)+\gamma_1(a)+\mu(a))\Lambda^*_2(t, a)-b_h(a)\Lambda^*_1(t, 0) +\alpha\int_0^{a^+}\beta_2(a)S_h(t, a)z_2(a)\Lambda^*_1(t, a)\mathrm{d}a\\ &-q\int_0^{a^+}\beta_2(a)\alpha S_h(t, a)z_2(a)\Lambda^*_2(t, a)\mathrm{d}a -(1-q)\alpha\int_0^{a^+}S_h(t, a)z_2(a)\Lambda^*_3(t, a)\mathrm{d}a\\ &-k(a)\Lambda^*_3(t, a)-\gamma_1(a)\Lambda^*_4(t, a) -\Big(\frac{\Lambda_v}{\mu_v}-\int_{0}^{a^+}\check{I}_v(t, b)\mathrm{d}b\Big)\beta_3(a)\Lambda^*_5(t, 0)\bigg]\mathrm{d}a\mathrm{d}t\% \\&+\int_0^T\int_0^{a^+}\check{I}_h(t, a)\bigg[-\frac{\partial\Lambda^*_3(t, a)}{\partial t}-\frac{\partial\Lambda^*_3(t, a)}{\partial a} +(\gamma_2(a)+\mu_h(a))\Lambda^*_3(t, a)-b_h(a)\Lambda^*_1(t, 0)\\ &+\int_0^{a^+}\beta_2(a)S_h(t, a)z_2(a)\Lambda^*_1(t, a)\mathrm{d}a -q\int_0^{a^+}\beta_2(a)S_h(t, a)z_2(a)\Lambda^*_2(t, a)\mathrm{d}a \\ &-(1-q)\int_0^{a^+}\beta_2(a)S_h(t, a)z_2(a)\Lambda^*_3(t, a)\mathrm{d}a-\gamma_2(a)\Lambda^*_4(t, a) \\ &-\Big(\frac{\Lambda_v}{\mu_v}-\int_{0}^{a^+}\check{I}_v(t, b)\mathrm{d}b\Big)\beta_3(a)\Lambda^*_5(t, 0)\bigg]\mathrm{d}a\mathrm{d}t +\int_0^T\int_0^{a^+}\check{R}_h(t, a) \bigg[-\frac{\partial\Lambda^*_4(t, a)}{\partial t}-\frac{\partial\Lambda^*_4(t, a)}{\partial a}\\ &+\mu_h(a)\Lambda^*_4(t, a)-b_h(a)\Lambda^*_1(t, 0) +\int_0^T\int_0^{a^+}\tilde{I}_v(t, b)\bigg[-\frac{\partial \Lambda^*_5(t, b)}{\partial t}-\frac{\partial\Lambda^*_5(t, b)}{\partial b} +(\mu_v+u_2(t))\\ &\times\Lambda^*_5(t, b)+\Big(\frac{\Lambda^*_v}{\mu_v}-{a^+})\int_{0}^{a^+}\beta_3(a)(\alpha{A}_h(t, a)+{I}_h(t, a))\mathrm{d}a\Lambda^*_5(t, 0) ]\mathrm{d}b\mathrm{d}t\\ &+\int_0^T\bigg[\int_0^{a^+}B_1u_1(t, a)l_1(t, a)\mathrm{d}a +\int_0^{a^+}B_2u_2(t)l_2(t)\mathrm{d}b \bigg]\mathrm{d}t. \end{align*}

    Using the optimal values of the state variables, the above inequality can be expressed as

    \begin{align*} 0\leq&\int_0^T\int_0^{a^+}l_1(t, a)\Big[S^*_h(t, a)(\Lambda^*_4(t, a)-\Lambda^*_1(t, a))+B_1u_1(t, a)\Big]\mathrm{d}a\mathrm{d}t\\ &+\int_0^T\int_0^{a^+}l_2(t)\Big[-I^*_v(t, b)\Lambda^*_5(t, b)+B_2u_2(t)\Big]\mathrm{d}b\mathrm{d}t. \end{align*}

    Hence, the optimal control variable can be characterized as

    \begin{align*} u_1^*(t, a)& = \min\bigg\{h_1, \max\bigg\{0, \frac{S^*_h(t, a)(\Lambda^*_1(t, a)-\Lambda^*_4(t, a))}{B_1}\bigg\}\bigg\}, \\ u_2^*(t)& = \min\bigg\{h_2, \max\bigg\{0, \frac{I^*_v(t, b)\Lambda^*_5(t, b)}{B_2}\bigg\}\bigg\}, \end{align*}

    where u_i^*\in L^{\infty}(\Omega) and 0\leq u_i^*\leq h_i(i = 1, 2) . This finishes the proof.

    Subsequently, we confirm the existence of a unique optimal control strategy. Given the complexity of finding control sequences and associated states that converge to the optimal controls and states in the partial differential equation model with age structure, we resort to obtaining minimizing sequences of approximate functions using Ekeland's Principle [30] from [31]. Let us assume the existence of a pair of control variables that minimize the following objective function:

    \begin{align*} \mathcal{J}_{\epsilon}(u_1, u_2) = \mathcal{J}(u_1, u_2)+\sqrt{\epsilon}\Big(\|u_1^{\epsilon}-u_1\|_{L^1(\Omega)}+ \|u_2^{\epsilon}-u_2\|_{L^1(\Omega)}\Big). \end{align*}

    Theorem 9. If (u_1^{\epsilon}, u_2^{\epsilon}) is the minimization sequence of \mathcal{J}_{\epsilon}(u_1, u_2) , then

    \begin{equation*} u_1^{\epsilon} = \min\bigg\{l_1, \max\bigg\{0, \frac{S^{\epsilon}_h(\Lambda_1^{\epsilon}-\Lambda_4^{\epsilon}) -\sqrt{\epsilon}\theta_1^{\epsilon}}{B_1}\bigg\}\bigg\}, \quad u_2^{\epsilon} = \min\bigg\{l_2, \max\bigg\{0, \frac{I^{\epsilon}_v\Lambda_5^{\epsilon} -\sqrt{\epsilon}\theta_2^{\epsilon}}{B_2}\bigg\}\bigg\}, \end{equation*}

    where the function \theta_i^{\epsilon} \in L^{\infty}(\Omega) such that |\theta_i^{\epsilon}|\leq1(i = 1, 2) for all (t, a)\in \Omega .

    The proof of this theorem is similar to Theorem 8 and is omitted here.

    Theorem 10. There exists a unique optimal control (u_1^*, u_2^*) to minimize objective function \mathcal{J}(u_1, u_2) if \frac{T}{B_1} and \frac{T}{B_2} are sufficiently small.

    Proof. Define two functions by

    \begin{align*} &Q_1(u_1) = \min\bigg\{h_1, \max\bigg\{0, \frac{S^{\epsilon}_h(\Lambda_1^{*\epsilon}-\Lambda_4^{*\epsilon}) -\sqrt{\epsilon}\theta_1^{\epsilon}}{B_1}\bigg\}\bigg\}, \\ &Q_2(u_2) = \min\bigg\{h_2, \max\bigg\{0, \frac{I^{\epsilon}_v\Lambda_5^{*\epsilon} -\sqrt{\epsilon}\theta_2^{\epsilon}}{B_2}\bigg\}\bigg\}. \end{align*}

    basing on [31], taking into account both sets of control variables (u_1, u_2) and (\hat{u}_1, \hat{u}_2) , along with the Lipschitz properties of the state and adjoint variables, we can derive the following conclusions:

    \begin{equation*} \|Q_1(u_1)-Q_1(\hat{u}_1)\|\leq\frac{K_1 T}{B_1}\|u_1-\hat{u}_1\|_{L^{\infty}(\Omega)}, \quad \|Q_2(u_2)-Q_2(\hat{u}_2)\|\leq\frac{K_2 T}{B_2}\|u_2-\hat{u}_2\|_{L^{\infty}(\Omega)}, \end{equation*}

    given the L^{\infty} bounds of the state and its adjoint solution. Here, K_1 and K_2 are ascertained, correlating with these bounds and the Lipschitz constants. Provided that \frac{T}{B_1} and \frac{T}{B_2} are sufficiently small, then

    \begin{equation*} \|u_1-u_1^{\epsilon}\|\leq\frac{\sqrt{\epsilon}}{B_1-K_1 T}, \qquad \|u_2-u_2^{\epsilon}\|\leq\frac{\sqrt{\epsilon}}{B_2-K_2 T}. \end{equation*}

    This suggests that (u_1^{\epsilon}, u_2^{\epsilon}) converges to (u_1^*, u_2^*) . Applying Ekeland's principle, we can conclude that

    \begin{equation*} \mathcal{J}(u_1^*, u_2^*)\leq\inf\limits_{(u_1, u_2)\in U}\mathcal{J}(u_1, u_2), \quad \text{as}\quad\epsilon\rightarrow 0. \end{equation*}

    The proof is completed.

    To better interpret the theoretical results and to analyze the impact of age structure and multiple transmission routes on the spread of the disease, some numerical simulations are conducted. For this purpose, the finite difference method is used to discretize the extended eigenline of model (2.3) as

    \begin{align} S_h(i+1, j) = &S_h(i, j)+\Delta t\bigg[\frac{-(S_h(i, j)-S_h(i, j-1))}{\Delta a}-[z_2((j-1)\Delta a)(C_1+C_2)\\ &+\mu_h((j-1)\Delta a)]S_h(i, j)\bigg], \\ A_h(i+1, j) = &A_h(i, j)+\Delta t\bigg[\frac{-(A_h(i, j)-A_h(i, j-1))}{\Delta a}+qz_2((j-1)\Delta a)(C_1+C_2) S_h(i, j)\\ &-[\gamma_1((j-1)\Delta a)+k((j-1)\Delta a)+\mu_h((j-1)\Delta a)]A_h(i, j)\bigg], \\ I_h(i+1, j) = &I_h(i, j)+\Delta t\bigg[\frac{-(I_h(i, j)-I_h(i, j-1))}{\Delta a}+(1-q) z_2((j-1)\Delta a)(C_1+C_2) S_h(i, j)\\ &+k((j-1)\Delta a)A_h(i, j)-[\gamma_2((j-1)\Delta a)+\mu_h((j-1)\Delta a)]I_h(i, j)\bigg], \\ R_h(i+1, j) = &R_h(i, j)+\Delta t\bigg[\frac{-(R_h(i, j)-R_h(i, j-1))}{\Delta a}+\gamma_1((j-1)\Delta a)A_h(i, j)\\ &+\gamma_2((j-1)\Delta a)I_h(i, j)-\mu_h((j-1)\Delta a)R_h(i, j)\bigg], \\ I_v(i+1, j) = &I_v(i, j)+\Delta t\bigg[\frac{-(I_v(i, j)-I_v(i, j-1))}{\Delta b}-\mu_vI_v(i, j)\bigg], \end{align}

    where C_1 = \int_{0}^{\infty}\beta_1(b)I_{v}(t, b)\mathrm{d}b , C_2 = \int_{0}^{\infty}\beta_2(a)(\alpha A_{h}(t, a)+I_{h}(t, a))\mathrm{d}a , and use the complex trapezoidal formula for linear approximations. Then fix some basic parameters of model (2.3) as \alpha = 0.45 , q = 0.6 , k(a) = 1.5\times 10^{-4}(1+\sin(0.1\pi a)) , \gamma_1(a) = 0.38(1+\sin(0.1\pi a)) , \gamma_2(a) = 0.16(1+\sin(0.1\pi a)) , \beta_3(a) = 4\times 10^{-5}(1+\sin(0.1\pi a)) , \mu_h(a) = \frac{0.01}{80-a} .

    First, the effects of the probabilities of human-to-human (that is, \beta_2(a) ) and vector-to-human (that is, z_1(a) ) on the basic reproduction number \mathcal{R}_0 are discussed. According to the expression for the reproduction number \mathcal{R}_0 , \beta_2(a) and z_2(a) are positively correlated with \mathcal{R}_0 , which is shown in Figure 1(a). In addition, from Figure 1(b), it also reveals that when \beta_2(a) < 0.1 , z_2(a) = 0.1(1+\sin(0.1\pi a)) , then \mathcal{R}_0 < 1 . Therefore, appropriate use of some preventive measures (wearing long clothes and long sleeves, vaccination, going to fewer places where people congregate, etc.) can lead to a reduction in \mathcal{R}_0 , thus controlling the spread of vector-borne diseases.

    Figure 1.  Sensitivity of the main parameters on the basic reproduction number \mathcal{R}_{0} , where, z_2(a) = 0.1(1+\sin(0.1\pi a)) , \beta_1(b) = 7.5\times 10^{-4}(1+\sin(0.1\pi b)) , and \beta_2(a) = 1.1\times 10^{-4}(1+ \sin(0.1\pi a)) .

    Now, we choose \beta_2(a) = 0.05(1+ \sin(0.1\pi a)) , z_2(a) = 0.1(1+\sin(0.1\pi a)) , \beta_1(b) = 7.5\times 10^{-4}(1+\sin(0.1\pi b)) , and \beta_2(a) = 1.1\times 10^{-4}(1+ \sin(0.1\pi a)) , the basic reproduction number \mathcal{R}_{0}\approx 0.4893 < 1 by direct calculation. From Theorem 3, we know that the disease-free steady state of model (2.6) is globally asymptotically stable. In this scenario, the density distributions of the asymptomatic infected individuals and infected vectors are shown in Figure 2(a) and (b), respectively. That is, the number of infected individuals and vectors of infection in all age groups gradually approaches 0 as time t increases. In addition, Figure 2(c) and (d) show that although the disease is ultimately extinct, the distribution of infected individuals is still age-heterogeneous. Therefore, in the process of disease prevention and control, the limited medical resources can be more reasonably deployed by fully considering the age distribution characteristics of the infected.

    Figure 2.  The disease-free steady state of model (2.6) is globally asymptotically stable with \mathcal{R}_{0}\approx 0.4893 < 1: (a) the density distribution of e_h(t, a) ; (b) the density distribution of I_v(t, b) ; (c) the age distribution of I_h(t, a) varies over time; (d) the age distribution of I_v(t, b) varies over time.

    However, if we change the transmission rates to z_2(a) = 0.3(1+\sin(0.1\pi a)) , \beta_1(b) = 0.0025(1+\sin(0.1\pi b)) and \beta_2(a) = 0.03(1+\sin(0.1\pi a)) , then \mathcal{R}_{0}\approx 2.606 > 1 . According to Theorem 4, exists the unique endemic steady state for model (2.6). The plots in Figure 3(a) and (b) represent that the distributions of symptomatic infected individuals and infected vectors, respectively. Meanwhile, the numerical simulation results indicated that the period and size of the disease outbreaks varied among different age groups and are very closely related to the actual age of the individuals and the age of infection of the vectors. Therefore, the age structure factor plays a crucial role in the spread of the vector-borne disease. As can be seen from the plots, I_h(t, a) and I_v(t, b) tend to the endemic steady state as t tends to infinity for different initial values. In the same manner, as time approaches infinity, the density distributions of S_h(t, a) , A_h(t, a) , and R_h(t, a) converge towards their respective endemic steady state, indicating asymptotic stability. This implies that the disease is persistent.

    Figure 3.  The existence and stability of the endemic steady state of model (2.6) with \mathcal{R}_{0}\approx 2.606 > 1: (a) the density distribution of I_h(t, a) ; (b) the density distribution of I_v(t, b) .

    Finally, we consider the effect of the control strategy on the distribution of disease. For this purpose we choose all control strengths to be constants (that is, u_1(t, a) = u_1 and u_2(t) = u_2 are constants) and focus on characterizing the age distribution of those who contract the disease for the same control intensity. The plots in Figure 4(a) and (b) show the effect of the control strategy on symptomatic infected individuals and infected vectors, which shows that the total number of infected individuals can be significantly reduced by increasing vaccine coverage (or awareness of personal protection) in susceptible individuals and insecticide spraying of infected vectors. Further, the red and blue curves in Figure 4(c) and (d) indicate the age distribution of infected hosts and infected vectors, respectively, in the early stages of control (i.e., when t is relatively small). Numerical simulations show that vaccination rates (or personal protective measures) provide better protection for younger populations, while mosquito eradication rapidly reduces the number of infected vectors. More fundamentally, when discussing the impact of control measures on disease transmission, as depicted in Figure 5(a), the peaks of infected hosts progressively diminished, and the total number of infected hosts significantly decreased with the escalation of control measure u_1 intensity from 0.1 to 0.3, and then to 0.9. Additionally, Figure 5(b) illustrates that the number of infected vectors also gradually decreased with the increasing intensity of control measure u_2 , which was varied from 0.15 to 0.25 and ultimately to 0.95. Consequently, it is evident that the use of high-intensity control measures can lead to a significant reduction in both the number of infected individuals and vectors.

    Figure 4.  The effects of the control strategies for disease transmission, where, the red curve and blue curve are used to represent transmission without control and with control, respectively: (a) the distribution of I_h(t, a) ; (b) the distribution of I_v(t, b) ; (c) the age distribution of I_h(t, a) with and without control; (d) the age distribution of I_v(t, b) with and without control.
    Figure 5.  Effects of different controls u_1 and u_2 on infected hosts and vectors, respectively: (a) the effect of u_1 on I_h(t, a) ; (b) the effect of u_2 on I_v(t, b) .

    Considering the prevalence of asymptomatic infections and the distinct differences in social activities among different age groups, in this paper, we construct a novel model that incorporates physiological age and factors such as multiple transmission routes and asymptomatic infections, setting our model apart from existing ones. Using linear approximation, the comparison principle, and Fatou's lemma, we derive the basic reproduction number, denoted as \mathcal{R}_{0} . We demonstrate that the disease-free steady state is globally asymptotically stable if \mathcal{R}_{0} < 1 . Conversely, under specific conditions, a unique endemic steady state exists and is locally asymptotically stable when \mathcal{R}_{0} > 1 . Furthermore, when \mathcal{R}_{0} > 1 , the disease exhibits uniform persistence, which is a key focus of this paper.

    In addition, we introduce two control measures, u_1(t, a) and u_2(t) , representing vaccination or personal protection for susceptible individuals and insecticide spraying for vectors, respectively, aimed at disease control. This extension transforms our model into an optimal control problem involving partial differential equations with multiple age structures. We establish the existence and uniqueness of solutions to the optimal control problem and the associated equations for the control variables by employing the Gâteaux derivative. This approach is uncommon in the existing literature and represents a significant contribution of this paper. Finally, the theoretical findings of this paper are substantiated by numerical simulations, which confirm the impact of multiple transmission routes and age-structured factors on the spread of vector-borne disease.

    Nevertheless, there remains a substantial territory that warrants further exploration. While we have delineated specific conditions for establishing the local asymptotic stability of the endemic steady state, our numerical simulations suggest that these conditions may be unnecessary. Therefore, it is essential to investigate methods for achieving local asymptotic stability of the endemic steady state without imposing additional constraints. Furthermore, to conduct a rigorous theoretical analysis, this study has excluded the influences of climate change variables—such as temperature, humidity, and rainfall—as well as uncertainties regarding vector population size and behavior in the mathematical modeling. Consequently, developing vector-borne disease models that incorporate multifactorial dynamics and examining how various factors influence disease prevention and control strategies represent compelling areas for future research.

    Huihui Liu: Formal analysis, Conceptualization, Writing-original draft, Writing–review and editing; Yaping Wang and Linfei Nie: Funding acquisition, Supervision, and Editing. All authors have accepted responsibility for the entire content of this manuscript and consented to its submission to the journal, reviewed all the results, and approved the final version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to thank the anonymous reviewers and the editors for their valuable suggestions for the improvement of the paper. This research is partially supported by the Tianshan Talent Training Program (Grant No.2022TSYCCX0015), the National Natural Science Foundation of China (Grant No. 12361103), and the Scientific Research and Innovation Project of Outstanding Doctoral Students in Xinjiang University (Grant No. XJU2024BS044).

    The authors declare that there is no conflict of interest regarding the publication of this paper.



    [1] M. Eder, F. Cortes, N. Teixeira de Siqueira Filha, G. V. Araújo de França, S. Degroote, C. Braga, et al., Scoping review on vector-borne diseases in urban areas: transmission dynamics, vectorial capacity and co-infection, Infect. Dis. Poverty, 7 (2018), 90. https://doi.org/10.1186/s40249-018-0475-7 doi: 10.1186/s40249-018-0475-7
    [2] J. B. H. Njagarah, F. Nyabadza, A metapopulation model for cholera transmission dynamics between communities linked by migration, Appl. Math. Comput., 241 (2014), 317–331. https://doi.org/10.1016/j.amc.2014.05.036 doi: 10.1016/j.amc.2014.05.036
    [3] T. Berge, S. Bowong, J. M. S. Lubuma, Global stability of a two-patch cholera model with fast and slow transmissions, Math. Comput. Simulat., 133 (2017), 142–164. https://doi.org/10.1016/j.matcom.2015.10.013 doi: 10.1016/j.matcom.2015.10.013
    [4] G. Adegbite, S. Edeki, I. Isewon, J. Emmanuel, T. Dokunmu, S. Rotimi, et al., Mathematical modeling of malaria transmission dynamics in humans with mobility and control states, Infectious Disease Modelling, 8 (2023), 1015–1031. https://doi.org/10.1016/j.idm.2023.08.005 doi: 10.1016/j.idm.2023.08.005
    [5] R. Zhang, J. L. Wang, On the global attractivity for a reaction–diffusion malaria model with incubation period in the vector population, J. Math. Biol., 84 (2022), 53. https://doi.org/10.1007/s00285-022-01751-1 doi: 10.1007/s00285-022-01751-1
    [6] M. Y. Cao, J. T. Zhao, J. L. Wang, R. Zhang, Dynamical analysis of a reaction–diffusion vector-borne disease model incorporating age-space structure and multiple transmission routes, Commun. Nonlinear. Sci., 127 (2023), 107550. https://doi.org/10.1016/j.cnsns.2023.107550 doi: 10.1016/j.cnsns.2023.107550
    [7] M. Brown, M. Jiang, C. Yang, J. Wang, Modeling cholera transmission under disease control measures, J. Biol. Syst., 29 (2021), 219–244. https://doi.org/10.1142/S0218339021400015 doi: 10.1142/S0218339021400015
    [8] M. A. Kuddus, A. Rahman, Modelling and analysis of human–mosquito malaria transmission dynamics in Bangladesh, Math. Comput. Simulat., 193 (2022), 123–138. https://doi.org/10.1016/j.matcom.2021.09.021 doi: 10.1016/j.matcom.2021.09.021
    [9] B. Wang, X. H. Tian, R. Xu, C. W. Song, Threshold dynamics and optimal control of a dengue epidemic model with time delay and saturated incidence, J. Appl. Math. Comput., 69 (2023), 871–893. https://doi.org/10.1007/s12190-022-01766-3 doi: 10.1007/s12190-022-01766-3
    [10] J. Chen, J. C. Beier, R. S. Cantrell, C. Cosner, D. O. Fuller, Y. T. Guan, et al., Modeling the importation and local transmission of vector-borne diseases in Florida: the case of Zika outbreak in 2016, J. Theor. Biol., 455 (2018), 342–356. https://doi.org/10.1016/j.jtbi.2018.07.026 doi: 10.1016/j.jtbi.2018.07.026
    [11] G. Zaman, A. Khan, Dynamical aspects of an age-structured SIR endemic model, Comput. Math. Appl., 72 (2016), 1690–1702. https://doi.org/10.1016/j.camwa.2016.07.027 doi: 10.1016/j.camwa.2016.07.027
    [12] A. Khan, G. Zaman, Global analysis of an age-structured SEIR endemic model, Chaos Soliton. Fract., 108 (2018), 154–165. https://doi.org/10.1016/j.chaos.2018.01.037 doi: 10.1016/j.chaos.2018.01.037
    [13] X. J. Wang, Y. Y. Shi, J. A. Cui, Z. L. Feng, Analysis of age-structured pertussis models with multiple infections during a lifetime, J. Dyn. Diff. Equat., 31 (2019), 2145–2163. https://doi.org/10.1007/s10884-018-9680-0 doi: 10.1007/s10884-018-9680-0
    [14] L.-M. Cai, C. Modnak, J. Wang, An age-structured model for cholera control with vaccination, Appl. Math. Comput., 299 (2017), 127–140. https://doi.org/10.1016/j.amc.2016.11.013 doi: 10.1016/j.amc.2016.11.013
    [15] J. C. Huang, H. Kang, M. Lu, S. G. Ruan, W. T. Zhuo, Stability analysis of an age-structured epidemic model with vaccination and standard incidence rate, Nonlinear Anal. Real, 66 (2022), 103525. https://doi.org/10.1016/j.nonrwa.2022.103525 doi: 10.1016/j.nonrwa.2022.103525
    [16] Y. Yu, Y. S. Tan, S. Y. Tang, Stability analysis of the COVID-19 model with age structure under media effect, Comp. Appl. Math., 42 (2023), 204. https://doi.org/10.1007/s40314-023-02330-w doi: 10.1007/s40314-023-02330-w
    [17] S. S. Liang, S. F. Wang, L. Hu, L. F. Nie, Global dynamics and optimal control for a vector-borne epidemic model with multi-class-age structure and horizontal transmission, J. Biol. Syst., 31 (2023), 375–416. https://doi.org/10.1142/S0218339023500109 doi: 10.1142/S0218339023500109
    [18] Q. Richard, M. Choisy, T. Lefèvre, R. Djidjou-Demasse, Human-vector malaria transmission model structured by age, time since infection and waning immunity, Nonlinear Anal. Real, 63 (2022), 103393. https://doi.org/10.1016/j.nonrwa.2021.103393 doi: 10.1016/j.nonrwa.2021.103393
    [19] B. Khajji, A. Kouidere, M. Elhia, O. Balatif, M. Rachik, Fractional optimal control problem for an age-structured model of COVID-19 transmission, Chaos Soliton. Fract., 143 (2021), 110625. https://doi.org/10.1016/j.chaos.2020.110625 doi: 10.1016/j.chaos.2020.110625
    [20] P. Wu, Z. R. He, A. Khan, Dynamical analysis and optimal control of an age-since infection HIV model at individuals and population levels, Appl. Math. Model., 106 (2022), 325–342. https://doi.org/10.1016/j.apm.2022.02.008 doi: 10.1016/j.apm.2022.02.008
    [21] Z.-K. Guo, H.-F. Huo, H. Xiang, Optimal control of TB transmission based on an age structured HIV-TB co-infection model, J. Franklin I., 359 (2022), 4116–4137. https://doi.org/10.1016/j.jfranklin.2022.04.005 doi: 10.1016/j.jfranklin.2022.04.005
    [22] J. Y. Yang, L. Yang, Z. Jin, Optimal strategies of the age-specific vaccination and antiviral treatment against influenza, Chaos Soliton. Fract., 168 (2023), 113199. https://doi.org/10.1016/j.chaos.2023.113199 doi: 10.1016/j.chaos.2023.113199
    [23] J. Z. Lin, R. Xu, X. H. Tian, Global dynamics of an age-structured cholera model with multiple transmissions, saturation incidence and imperfect vaccination, J. Biol. Dynam., 13 (2019), 69–102. https://doi.org/10.1080/17513758.2019.1570362 doi: 10.1080/17513758.2019.1570362
    [24] S.-F. Wang, L. Hu, L.-F. Nie, Global dynamics and optimal control of an age-structure Malaria transmission model with vaccination and relapse, Chaos Soliton. Fract., 150 (2021), 111216. https://doi.org/10.1016/j.chaos.2021.111216 doi: 10.1016/j.chaos.2021.111216
    [25] A. Khan, G. Zaman, Optimal control strategies for an age-structured SEIR epidemic model, Math. Method. Appl. Sci., 45 (2022), 8701–8717. https://doi.org/10.1002/mma.7823 doi: 10.1002/mma.7823
    [26] X. Wang, Y. M. Chen, M. Martcheva, L. B. Rong, Asymptotic analysis of a vector-borne disease model with the age of infection, J. Biol. Dynam., 14 (2020), 332–367. https://doi.org/10.1080/17513758.2020.1745912 doi: 10.1080/17513758.2020.1745912
    [27] C. Castillo-Chevez, H. R. Thieme, Asymptotically autonomous epidemic models, In: Mathematical population dynamics: analysis of heterogeneit, Mathematical Sciences Institute, Cornell University, 1994.
    [28] D. Schmeidler, Fatou's lemma in several dimensions, Proc. Amer. Math. Soc., 24 (1970), 300–306. https://doi.org/10.1090/S0002-9939-1970-0248316-7 doi: 10.1090/S0002-9939-1970-0248316-7
    [29] H. L. Smith, X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal. Theor., 47 (2001), 6169–6179. https://doi.org/10.1016/S0362-546X(01)00678-2 doi: 10.1016/S0362-546X(01)00678-2
    [30] Y. H. Kang, Identification problem of two operators for nonlinear systems in Banach spaces, Nonlinear Anal. Theor., 70 (2009), 1443–1458. https://doi.org/10.1016/j.na.2008.02.025 doi: 10.1016/j.na.2008.02.025
    [31] K. R. Fister, H. Gaff, S. Lenhart, E. Numfor, E. Schaefer, J. Wang, Optimal control of vaccination in an age-structured cholera model, In: Mathematical and statistical modeling for emerging and re-emerging infectious diseases, Cham: Springer, 2016,221–248. https://doi.org/10.1007/978-3-319-40413-4_14
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(362) PDF downloads(25) Cited by(0)

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog