Research article

Dynamical analysis and optimal control of an multi-age-structured vector-borne disease model with multiple transmission pathways

  • Received: 04 November 2024 Revised: 13 December 2024 Accepted: 20 December 2024 Published: 31 December 2024
  • MSC : 34E10, 65C30, 92B05

  • Based on the diversity of transmission routes and host heterogeneity of some infectious diseases, a dynamical model with multi-age-structured, asymptomatic infections, as well as horizontal and vectorial transmission, is proposed. First, the existence and uniqueness of the global positive solution of this model is discussed and the exact expression of the basic reproduction number $ \mathcal{R}_0 $ is obtained using the linear approximation method. Further, we deduce that the disease-free steady state $ \mathcal{E}^0 $ is globally asymptotically stable for $ \mathcal{R}_0 < 1 $, the endemic steady state $ \mathcal{E}^* $ exists and the disease is persistent for $ \mathcal{R}_0 > 1 $. In addition, the locally asymptotically stability of $ \mathcal{E}^* $ is also obtained under some certain conditions. Next, our model is extended to a control problem and the existence and uniqueness of the optimal control by using the Gateaux derivative. Finally, numerical simulations are used to explain the main theoretical results and discuss the impact of age-structured parameters and control strategies on the prevention and control of vector-borne infectious diseases.

    Citation: Huihui Liu, Yaping Wang, Linfei Nie. Dynamical analysis and optimal control of an multi-age-structured vector-borne disease model with multiple transmission pathways[J]. AIMS Mathematics, 2024, 9(12): 36405-36443. doi: 10.3934/math.20241727

    Related Papers:

  • Based on the diversity of transmission routes and host heterogeneity of some infectious diseases, a dynamical model with multi-age-structured, asymptomatic infections, as well as horizontal and vectorial transmission, is proposed. First, the existence and uniqueness of the global positive solution of this model is discussed and the exact expression of the basic reproduction number $ \mathcal{R}_0 $ is obtained using the linear approximation method. Further, we deduce that the disease-free steady state $ \mathcal{E}^0 $ is globally asymptotically stable for $ \mathcal{R}_0 < 1 $, the endemic steady state $ \mathcal{E}^* $ exists and the disease is persistent for $ \mathcal{R}_0 > 1 $. In addition, the locally asymptotically stability of $ \mathcal{E}^* $ is also obtained under some certain conditions. Next, our model is extended to a control problem and the existence and uniqueness of the optimal control by using the Gateaux derivative. Finally, numerical simulations are used to explain the main theoretical results and discuss the impact of age-structured parameters and control strategies on the prevention and control of vector-borne infectious diseases.



    加载中


    [1] M. Eder, F. Cortes, N. Teixeira de Siqueira Filha, G. V. Araújo de França, S. Degroote, C. Braga, et al., Scoping review on vector-borne diseases in urban areas: transmission dynamics, vectorial capacity and co-infection, Infect. Dis. Poverty, 7 (2018), 90. https://doi.org/10.1186/s40249-018-0475-7 doi: 10.1186/s40249-018-0475-7
    [2] J. B. H. Njagarah, F. Nyabadza, A metapopulation model for cholera transmission dynamics between communities linked by migration, Appl. Math. Comput., 241 (2014), 317–331. https://doi.org/10.1016/j.amc.2014.05.036 doi: 10.1016/j.amc.2014.05.036
    [3] T. Berge, S. Bowong, J. M. S. Lubuma, Global stability of a two-patch cholera model with fast and slow transmissions, Math. Comput. Simulat., 133 (2017), 142–164. https://doi.org/10.1016/j.matcom.2015.10.013 doi: 10.1016/j.matcom.2015.10.013
    [4] G. Adegbite, S. Edeki, I. Isewon, J. Emmanuel, T. Dokunmu, S. Rotimi, et al., Mathematical modeling of malaria transmission dynamics in humans with mobility and control states, Infectious Disease Modelling, 8 (2023), 1015–1031. https://doi.org/10.1016/j.idm.2023.08.005 doi: 10.1016/j.idm.2023.08.005
    [5] R. Zhang, J. L. Wang, On the global attractivity for a reaction–diffusion malaria model with incubation period in the vector population, J. Math. Biol., 84 (2022), 53. https://doi.org/10.1007/s00285-022-01751-1 doi: 10.1007/s00285-022-01751-1
    [6] M. Y. Cao, J. T. Zhao, J. L. Wang, R. Zhang, Dynamical analysis of a reaction–diffusion vector-borne disease model incorporating age-space structure and multiple transmission routes, Commun. Nonlinear. Sci., 127 (2023), 107550. https://doi.org/10.1016/j.cnsns.2023.107550 doi: 10.1016/j.cnsns.2023.107550
    [7] M. Brown, M. Jiang, C. Yang, J. Wang, Modeling cholera transmission under disease control measures, J. Biol. Syst., 29 (2021), 219–244. https://doi.org/10.1142/S0218339021400015 doi: 10.1142/S0218339021400015
    [8] M. A. Kuddus, A. Rahman, Modelling and analysis of human–mosquito malaria transmission dynamics in Bangladesh, Math. Comput. Simulat., 193 (2022), 123–138. https://doi.org/10.1016/j.matcom.2021.09.021 doi: 10.1016/j.matcom.2021.09.021
    [9] B. Wang, X. H. Tian, R. Xu, C. W. Song, Threshold dynamics and optimal control of a dengue epidemic model with time delay and saturated incidence, J. Appl. Math. Comput., 69 (2023), 871–893. https://doi.org/10.1007/s12190-022-01766-3 doi: 10.1007/s12190-022-01766-3
    [10] J. Chen, J. C. Beier, R. S. Cantrell, C. Cosner, D. O. Fuller, Y. T. Guan, et al., Modeling the importation and local transmission of vector-borne diseases in Florida: the case of Zika outbreak in 2016, J. Theor. Biol., 455 (2018), 342–356. https://doi.org/10.1016/j.jtbi.2018.07.026 doi: 10.1016/j.jtbi.2018.07.026
    [11] G. Zaman, A. Khan, Dynamical aspects of an age-structured SIR endemic model, Comput. Math. Appl., 72 (2016), 1690–1702. https://doi.org/10.1016/j.camwa.2016.07.027 doi: 10.1016/j.camwa.2016.07.027
    [12] A. Khan, G. Zaman, Global analysis of an age-structured SEIR endemic model, Chaos Soliton. Fract., 108 (2018), 154–165. https://doi.org/10.1016/j.chaos.2018.01.037 doi: 10.1016/j.chaos.2018.01.037
    [13] X. J. Wang, Y. Y. Shi, J. A. Cui, Z. L. Feng, Analysis of age-structured pertussis models with multiple infections during a lifetime, J. Dyn. Diff. Equat., 31 (2019), 2145–2163. https://doi.org/10.1007/s10884-018-9680-0 doi: 10.1007/s10884-018-9680-0
    [14] L.-M. Cai, C. Modnak, J. Wang, An age-structured model for cholera control with vaccination, Appl. Math. Comput., 299 (2017), 127–140. https://doi.org/10.1016/j.amc.2016.11.013 doi: 10.1016/j.amc.2016.11.013
    [15] J. C. Huang, H. Kang, M. Lu, S. G. Ruan, W. T. Zhuo, Stability analysis of an age-structured epidemic model with vaccination and standard incidence rate, Nonlinear Anal. Real, 66 (2022), 103525. https://doi.org/10.1016/j.nonrwa.2022.103525 doi: 10.1016/j.nonrwa.2022.103525
    [16] Y. Yu, Y. S. Tan, S. Y. Tang, Stability analysis of the COVID-19 model with age structure under media effect, Comp. Appl. Math., 42 (2023), 204. https://doi.org/10.1007/s40314-023-02330-w doi: 10.1007/s40314-023-02330-w
    [17] S. S. Liang, S. F. Wang, L. Hu, L. F. Nie, Global dynamics and optimal control for a vector-borne epidemic model with multi-class-age structure and horizontal transmission, J. Biol. Syst., 31 (2023), 375–416. https://doi.org/10.1142/S0218339023500109 doi: 10.1142/S0218339023500109
    [18] Q. Richard, M. Choisy, T. Lefèvre, R. Djidjou-Demasse, Human-vector malaria transmission model structured by age, time since infection and waning immunity, Nonlinear Anal. Real, 63 (2022), 103393. https://doi.org/10.1016/j.nonrwa.2021.103393 doi: 10.1016/j.nonrwa.2021.103393
    [19] B. Khajji, A. Kouidere, M. Elhia, O. Balatif, M. Rachik, Fractional optimal control problem for an age-structured model of COVID-19 transmission, Chaos Soliton. Fract., 143 (2021), 110625. https://doi.org/10.1016/j.chaos.2020.110625 doi: 10.1016/j.chaos.2020.110625
    [20] P. Wu, Z. R. He, A. Khan, Dynamical analysis and optimal control of an age-since infection HIV model at individuals and population levels, Appl. Math. Model., 106 (2022), 325–342. https://doi.org/10.1016/j.apm.2022.02.008 doi: 10.1016/j.apm.2022.02.008
    [21] Z.-K. Guo, H.-F. Huo, H. Xiang, Optimal control of TB transmission based on an age structured HIV-TB co-infection model, J. Franklin I., 359 (2022), 4116–4137. https://doi.org/10.1016/j.jfranklin.2022.04.005 doi: 10.1016/j.jfranklin.2022.04.005
    [22] J. Y. Yang, L. Yang, Z. Jin, Optimal strategies of the age-specific vaccination and antiviral treatment against influenza, Chaos Soliton. Fract., 168 (2023), 113199. https://doi.org/10.1016/j.chaos.2023.113199 doi: 10.1016/j.chaos.2023.113199
    [23] J. Z. Lin, R. Xu, X. H. Tian, Global dynamics of an age-structured cholera model with multiple transmissions, saturation incidence and imperfect vaccination, J. Biol. Dynam., 13 (2019), 69–102. https://doi.org/10.1080/17513758.2019.1570362 doi: 10.1080/17513758.2019.1570362
    [24] S.-F. Wang, L. Hu, L.-F. Nie, Global dynamics and optimal control of an age-structure Malaria transmission model with vaccination and relapse, Chaos Soliton. Fract., 150 (2021), 111216. https://doi.org/10.1016/j.chaos.2021.111216 doi: 10.1016/j.chaos.2021.111216
    [25] A. Khan, G. Zaman, Optimal control strategies for an age-structured SEIR epidemic model, Math. Method. Appl. Sci., 45 (2022), 8701–8717. https://doi.org/10.1002/mma.7823 doi: 10.1002/mma.7823
    [26] X. Wang, Y. M. Chen, M. Martcheva, L. B. Rong, Asymptotic analysis of a vector-borne disease model with the age of infection, J. Biol. Dynam., 14 (2020), 332–367. https://doi.org/10.1080/17513758.2020.1745912 doi: 10.1080/17513758.2020.1745912
    [27] C. Castillo-Chevez, H. R. Thieme, Asymptotically autonomous epidemic models, In: Mathematical population dynamics: analysis of heterogeneit, Mathematical Sciences Institute, Cornell University, 1994.
    [28] D. Schmeidler, Fatou's lemma in several dimensions, Proc. Amer. Math. Soc., 24 (1970), 300–306. https://doi.org/10.1090/S0002-9939-1970-0248316-7 doi: 10.1090/S0002-9939-1970-0248316-7
    [29] H. L. Smith, X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal. Theor., 47 (2001), 6169–6179. https://doi.org/10.1016/S0362-546X(01)00678-2 doi: 10.1016/S0362-546X(01)00678-2
    [30] Y. H. Kang, Identification problem of two operators for nonlinear systems in Banach spaces, Nonlinear Anal. Theor., 70 (2009), 1443–1458. https://doi.org/10.1016/j.na.2008.02.025 doi: 10.1016/j.na.2008.02.025
    [31] K. R. Fister, H. Gaff, S. Lenhart, E. Numfor, E. Schaefer, J. Wang, Optimal control of vaccination in an age-structured cholera model, In: Mathematical and statistical modeling for emerging and re-emerging infectious diseases, Cham: Springer, 2016,221–248. https://doi.org/10.1007/978-3-319-40413-4_14
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(80) PDF downloads(10) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog