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Abstract: Based on the diversity of transmission routes and host heterogeneity of some infectious
diseases, a dynamical model with multi-age-structured, asymptomatic infections, as well as horizontal
and vectorial transmission, is proposed. First, the existence and uniqueness of the global positive
solution of this model is discussed and the exact expression of the basic reproduction number Ry is
obtained using the linear approximation method. Further, we deduce that the disease-free steady state
& is globally asymptotically stable for R, < 1, the endemic steady state & exists and the disease is
persistent for Ry > 1. In addition, the locally asymptotically stability of & is also obtained under some
certain conditions. Next, our model is extended to a control problem and the existence and uniqueness
of the optimal control by using the Gateaux derivative. Finally, numerical simulations are used to
explain the main theoretical results and discuss the impact of age-structured parameters and control
strategies on the prevention and control of vector-borne infectious diseases.
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1. Introduction

According to a report by the World Health Organization (WHO), vector-borne diseases account for
approximately 17% of all illnesses caused by infectious diseases. Common vector-borne diseases are
Malaria, Dengue fever, Zika, Cholera, Yellow fever, West Nile fever, and so on. Vector-borne diseases
result in more than 1 billion illnesses and over 1 million fatalities annually [1]. Considering that vector-
borne diseases have caused great damage to human health and the social economy, it is urgent to study
the laws of their transmission and how to prevent and control them.

In the past few decades, many scholars have conducted in-depth and detailed studies on the spread
and control of various vector-borne diseases by establishing mathematical models and a series of
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remarkable research results have been achieved [2-6]. Major studies include the expression of the basic
reproduction number, the existence and stability of various equilibria, the persistence and extinction of
diseases, and optimal control problems, etc. In particular, Brown et al. [7] presented a mathematical
model of Cholera transmission, established the local and global stability of the equilibria characterizing
the threshold dynamics of Cholera, and discussed the influence of pathogens in the dynamics of Cholera
spread. In [8], Kuddus et al. proposed a model for the dynamics of Malaria transmission between
humans and mosquitoes, analyzed the existence and global stability of equilibria and found that the
rate of contact between humans and mosquitoes had a significant effect on Malaria spread through
parameter estimation. Wang et al. [9] studied the threshold dynamics of a Dengue epidemic model,
and the results showed that controlling the number and activity of vectors can significantly affect the
speed and extent of disease spread. Further, it is noted that vector-borne diseases can be transmitted
not only through vectors but also between individuals and individuals. For example, Chen et al. [10]
found that Zika can be transmitted not only between hosts and vectors to each other but also within
host populations. More specifically, an infected person can spread it to his (her) partner through sexual
intercourse.

It is well known that the physiological age of the host population is a key factor in the transmission
and control of infectious diseases, as the risk of infection varies with age, and interactions between
different age groups are heterogeneous. For example, SARS-CoV-2, the virus behind COVID-19, is
particularly dangerous for individuals over 60, especially those over 80. Centers for Disease Control
reports show that 31-59% of 75—-84-year-olds diagnosed require hospitalization, compared to 14-21%
of those aged 20—44, highlighting the influence of age in disease severity and transmission dynamics.
Noting this feature, researchers have proposed various age-structured models to study the transmission
dynamics of infectious diseases [11-13]. In [14], Cai et al. established an age-structured Cholera
model and discussed the threshold dynamic behavior of the model and the effect of actual age structure
on the spread trend of the disease. Huang et al. [15] presented a stability study of an age-structured
epidemiological model and showed that actual age affects an individual’s risk of infection and more
accurately describes the dynamics of disease transmission in different age groups. Yu et al. [16]
proposed an age-structured COVID-19 model, discussed the significant differences in the influence
of different age groups on the spread of disease due to differences in their activity ranges, and revealed
the importance of age structure in the disease transmission process.

It is worth noting that in the process of transmission of vector-borne diseases, the spread capacity of
the infected vector is closely related to its age of infection. Particularly for vectors such as mosquitoes
with short life cycles, which have different transmission potentials at different stages of post-infection.
Therefore, in order to analyze the dynamics of disease spread more accurately, it is essential to consider
that mosquitoes have an age of infection. For example, Liang et al. [17] presented a model of vector-
borne disease with multiple class age structures, gave an exact expression for the basic reproduction
number, and discussed the effect of the age of infection of the vectors on the basic reproduction number
and the spread and control of the disease. In [18], Richard et al. proposed a model of human-vector
Malaria transmission related to infection age, discussed the effect of vector infection age on Malaria
transmission, and found through numerical simulations that the effects of different intervention policies
differed in mosquito populations with different ages of infection.

The issue of optimal control is of great significance in the development of preventive measures
for the spread of disease. Therefore, the study of the optimal control problem for age-structured
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epidemiological modeling has attracted the attention of many researchers [19-22]. For example,
Lin et al. [23] proposed an age-structured Cholera model with vaccination as a control strategy;
The results of the study suggest that vaccination strategy at the beginning of a Cholera outbreak can
significantly reduce the number of infections and is the most cost-effective strategy. Wang et al. [24]
proposed and studied the global dynamics of an age-structured Malaria model with vaccination; The
existence of optimal control is analyzed and effective measures to control Malaria transmission are
obtained. Khan et al. [25] developed an age-structured SEIR model, using vaccination and treatment
as control measures; The existence of optimal control variables was demonstrated using a suitable
objective function.

Based on the above discussion, a novel coupled ordinary differential-partial differential equations
model is proposed to discuss the impact of physiological age, infection age, multiple transmission
routes, and asymptomatic infected persons on the spread of vector-borne diseases. The structure of our
paper is arranged as follows. In Section 2, the model is given, and the existence and uniqueness of a
global positive solution are verified. In Sections 3 and 4, the basic reproduction number Ry is defined,
and the global asymptotic stability of the disease-free steady state and the local asymptotic stability of
the endemic steady state are discussed. Section 5 demonstrates the consistent persistence of the model.
In Section 6, vaccination and insecticide spraying are applied to the model to demonstrate the existence
of optimal control. The main results are explained through numerical simulations in Section 7, and a
short conclusion is given in the last section.

2. Model formulation

The host population of an area is classified into four mutually exclusive categories: susceptible,
asymptomatically infected, symptomatically infected, and recovered individuals. And, their density
functions with age a at time ¢ are denoted as S,(t,a), A,(t,a), I(t,a), and R,(t,a), respectively.
Therefore, the total host population is given by N,(t,a) = S,(t,a) + Au(t,a) + I,(t,a) + R,(t,a). The
vector population is divided into two subclasses: susceptible and infected vectors, where the quantity
of susceptible vectors at time ¢ is denoted by S ,(¢) and the density function of infectious vectors with
infection age b at time ¢ is denoted by I,(¢, b). Then, the total quantity of vector population is given by
N, () =S§,(t)+ fooo 1,(t,b)db. According to the transmission law of pathogens between host populations
and vectors, susceptible individuals can be infected by the bite of infected vectors at a rate of 4,(, a),
and susceptible host can also be infected by contacting the infected hosts at a rate A,(¢, @), where the
force of infection is defined as follows:

A(t,a) = z(a) f Bi(D)1(t,b)db, Ax(t,a) = z5(a) f Ba(a)(@A,(t, a) + Ii(1, a))da,
0 0

here, z;(a) and z;(a) represent the age-dependent contact rates of vector-to-host and host-to-host,
respectively; 8;(b) and 5,(a) denote the infection rates of vector-to-host and host-to-host, respectively.
Further, considering the host behavioral habits, it is assumed that z;(a) = pz,(a), where p is a positive
constant.

Based on the above statements, a novel epidemic model with multiple transmission routes and
multiple age-factor couplings is constructed

(g N ﬁ) Su(t, @) = (i (t, @) + o(t, @) + (@) u(t, ),
t Oa
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0 0
(E * 5g | At @) = gl a) + 4, a)S it a) = (vi(a) + k(a) + pn(a)An(t, a),
g o0
%" a In(t,a) = (1 = @)(Ai(1, @) + L, @)Sy(t, a) + k(a)Ax(t, a)
= (v2(a@) + up(@),(t, a), 2.1
g o0
(E * 3a Ry(t,a) = yi(@)Au(t, a) + y2(@)],(t, a) — p(@)Ry(t, a),
ds,(») «
Fraale Ay =S8, f B3(a)(@Au(t, a) + I(t, a))da — p,S (1),
0
g o0
—+ — |1, b) = —u,l,(t,Db),
( pal b) (t.b) = —u,1,(1,b)
with the boundary and initial conditions
$(1,0) = f bi@Ny(t,a)da, Ay(t,0) = (1, 0) = Ry(1,0) = 0, 1 > 0;
0
- " . _ 2.2)
1,(1,0) =S,(0) | Bsa)@A,(t,a) + I,(t,a))da, t = 0; §,(0,a) = Sy(a),
0
Ah(o, a) = AhO(a)5 I/'l(o’ a) = IhO(a)a Rh(oa a) = Rh()(a)’ SV(O) = SVO, IV(O’ b) = IVO(b)
The biological explanations for the other parameters of model (2.1) are shown in Table 1.
Table 1. Biological explanations of model parameters.
Parameter Description Units
a Ratio of infection rate between asymptomatic and symptomatic infection (0 < @ < 1) None
by(a) Age-specific fertility rate of hosts 1/day
un(a) Age-specific natural mortality of hosts 1/day
q Probability of susceptible individuals being infected to become asymptomatic infections None
k(a) Age-specific conversion rate of asymptomatic to symptomatic infections 1/day
yi(a) Age-specific recovery rate of asymptomatic infections 1/day
va(a) Age-specific recovery rate of symptomatic infections 1/day
Bs(a) Rate of transmission of pathogen from infected hosts to susceptible vectors 1/day
A, Recruitment rate of vector population 1/day
My Natural mortality of vectors 1/day

Remark 1. Due to the prevalence of vector-borne diseases, numerous scholars have established and
discussed vector-borne diseases [18,26]. In our model, considering the behavioral differences of hosts
of different ages, it is proposed that host populations have physiological ages. Given the relatively
short life cycle of vector populations, it is not necessary to consider their physiological age. However,
there is a strong correlation between infectivity and age at infection, so it is important to consider the
age of infection of the vector.

In addition, the following assumptions are reasonable based on the biological background of (2.1).
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(H;) A, and y, are positive constants, g € (0, 1), and functions S ,o(a), Ano(a), Inp(a), Ry(a), and 1,4(b)
are non-negative, continuously integrable functions.

(H,) Functions by,(a), Bi(a), Bx(a), Bs(a) € L} (R,) and they are extended to zero outside the maximum
age a', where, L! (R,) is the space of Lebesgue integrable nonnegative functions on the interval
[0, +0).

(H;) Functions k(a), yi(a), y2(a), u(a) € LL(R,) and fooo ¢(a)da = +oo, where, ¢(a) = k(a), yi(a) and
y2(a).

(Hy) There is a positive constant yo such that uy,(a) > o for a € [0, a'].

Notice that the total quantity of vector population satisfies
dN,(1)
dr

Therefore, N, () = N,(0)e ™'+ %(1 —e 1), that is, lim,_,. N,(f) = 2— According to the limiting theory
of dynamical systems [27], the dynamics of model (2.1) is equivalent to the following model:

= A, _,quv(t)-

0 0
%t o Sn(t,a) = —(A1(t,a) + (1, a) + u(a)S (1, a),

t Oa
0 0
o + o Ap(t,a) = q(A(t,a) + ,(t,a)S 1(t, a) — (yi(a) + k(a) + up(a)An(t, a),
g + 9 In(t,a) = (1 = @)(Ai(t,a) + A:(t,a))S (2, a) + k(a)A,(t, a)

t Oa

= (r2(@) + pp(a)ly(t, a), (2.3)
(g + 2)Rh(l, a) = yi(@)Ay(t,a) + y2(a)l(t, a) — up(a)Ry(t, a),
t Oa

o 0
(& + %) Iv(t, b) - _ﬂvlv(t7 b)?

1,(1,0) = (2— - f L b)db) f " B@(aAn(t, @) + (1, a)da.
v 0 0

Next, we consider the existence and uniqueness of the global nonnegative solutions of model (2.3).
To do so, define a Banach space X" = L'(R,) x --- x L'(R,) with the norm ||| = Y, |lgill for
0 = (@1, ,p,) € X", where |lgj]| = fow lpi(a)lda. Obviously, X" = LY(R,) x --- x L} (R}) is the
positive cone of X". Further, we denote Y; = Xi and the linear operator A, ; : D(A,;) C Y| — Y, be

defined by
A [OL'(R+)] _ [ d;‘ﬁ(o) ],
¥ 3 "M

where the domain D(A, ;) of operator A, ; is D(A, 1) = {Opir,)} X WH(R,), WH(R,) represents the
Sobolev space of all absolutely continuous functions on R,.

According to the assumptions (H;), for 4 € C (C is the domain of complex numbers) with Re(1) >
—iy, then A € r(A, ) (r(A) is the resolvent of an operator (A). Therefore, the explicit expression for
the resolvent of the operator ‘A, ; is derived

A - A, )" [gj = lOL;R*)] = @(a) = Yy (0)e b Er0ds 4 f ’ W(s)e™ b bt
0
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for (Y1, yn)" € Xi, where I represents the unit matrix. Further, one defines linear operators Aj; :
D(ﬂh’,‘) C Yl - YI’ 1= 1, 2, 3, 4, by

A [OL'(R+)] _ [ —¢1(0) ] A [OL'(R+)] _ [ —¢(0) ]
"¢ ~4 | "2 g ~% (kY|
OL'(R+)] _ [ —¢3(0) ] [OL'(R+)] _ [ —¢4(0)
HAns [ b3 —% — (un +v2)3|’ Ana b4 —% — s’

where D(Ay, ) = D(Apa) = D(A3) = D(Apa) = Opieyy X WHR,).

We can choose A € C such that Re(1) > —uy. Therefore, for A € (r(Aj 1 )Nr(Ap)Nr(Ap3)Nr(Apa)),
and for any (¥, ¥,)" € X2, the following explicit expression for the resolvent is available:

_ || Opw,) B || Opw,)
(A=) [l/’z]_[ & ] @ -Ar2) [llfz]_[ ¢2 ]
R ZY B (V3 RN 124 B (V3T
(=) L/’z]_[ ¢ ] W= [1/12]_[ b ]

if and only if

é1(a) = ¢1(0)e—f0 (un(s)y+)ds f‘ﬂz(s)e_ﬁ (un(r)+dT g
0
a
Pr(a) = ¢2(O)e—foa(llh(s)+k(s)+71(s)+/1)ds +f wz(T)e—fTanh(S)+k(s)+71(s)+/l)dsdT
0

a
b3(a) = ¢3(0)e” I un(s)+y2(s)+)ds + f Un(t)e” L un(s)+y2(s)+)ds dr,
0

¢4(a) — ¢4(O)e_ f()aﬂh(s)ds + f ¢’2(T)e— fra'uh(s)dsd‘['_
0
Define A : D(A) c X — X be a linear operator as
A= diag(ﬂh,l ’ ﬂhg, ﬂh,3, ﬂh,4, ﬂv,l),

where, D(A) = D(Aj ) X D(Apz) X D(A3) X D(Apa) X D(A, ). From the above discussion and
Theorem 3.2 in [18], the linear operator A is a Hille-Yosida operator and the infinitesimal generator
of Cy-semigroup. Further, let

u(® = (0p1g,ys St ) Oz At D01 eys In(t, ), Oy ys Ri(t, ), Opie,ys L(2, )"
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5
and X, = ({OR} X Ll(R+)) , anonlinear operator ¥ : Xy — X, as

iy br@Ni(t, a)da
_(/ll(t’ a) + /IZ(t’ a))Sh(t’ Cl)
0
q(i(t, @) + As(t, a))S (2, @)
0
(1 = @)(i(t, @) + Aa(t, @))S (1, @) + k(@)A(t, a)
0
Y1(@A(t, a) + y2(a),(t, a)
(8 = 77 LG, b)db) [ Bs(@)@A(t, @) + (1, a))da
0

F(u(n) =

-

where, Ai(t,a) = pza(a) [; Bi(B)L(t,bYb, Do(t,a) = 2(a) [} Bala)@Ay(t,a) + Iy(t,a))da. Then,
model (2.3) can be reformulated as the abstract Cauchy problem

du(t)
5 = A+ F ).t > 0, (2.4)

u(0) = (0, S 0,0, Apo, 0, Lo, 0, Ry, 0, Ip)" € X.

From Theorem 3.5 in [15], or Theorem 3.2 in [18], the following result on the existence and
uniqueness of a solution for the Cauchy problem (2.4) is valid.

Theorem 1. The problem (2.4) admits a unique global classical solution on X,; That is, model (2.3)
has a unique global positive solution for the positive initial value.

Adding up the first four equations in model (2.3) gives the overall equation

g 0
(8_t + a—a)Nh(t, a) = —up(a)Ny(t, a), (2.5)

with N, (z,0) = fooo br(@)N,(t, a)da, N;(0,a) = Nyo(a) = So(a) + Ap(a) + Io(a) + Ruo(a). System (2.5)
is resolved following the characteristic curve ¢ — a = ¢ (c is a constant)

N,(t — a, 0)e~ b H@dr t>a,

Na(0,a — e~ ka4 g

Nh(f, Cl) = {

To ensure the existence of a steady state, it is assumed that the population’s net reproduction rate
is identical to 1, i.e., fooo bh(a)e_fo #MdTdq = 1. Hence, the steady state of system (2.5) is N,"(a) =

N2(0)e™h 0% \where N©(a) = So(a) + Ao(a) + Io(a) + Ro(a). By a simple calculation, we obtain

;" Ny (@)da . A,
N7 (0) = ——= , N =lmN,(t) = —.
j(; e—fo p;,(‘r)d‘rda t—00 My
To simplify the initial boundary value problem, model (2.3) is normalized by
Sh(t’ a) Ah(t7 Cl) . Ih(t, Cl)
l, = . t’ = D) l’ = ’
sy(t,a) N;" @ en(t,a) NZO (@) in(t,a) N,‘j’ (@)
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Rh(t’ Cl) . _ Iv(t7 b)
N i) =

v

rh(ta Cl) =

Then, model (2.3) and the force of infections become

% + % sp(t,a) = — (A,(t,a) + L,(t,a)) sy(t, a),

g . % en(t, @) = gLt @) + (b, @) si(t, @) — (y1(@) + ka)en(t, @),

g + % in(t, @) = (1 = ) (Ai(t, @) + Aa(t, @) su(t, @) + k(@en(t, @) — yo(@in(t, @), (2.6)
% N % r(t, @) = yi(@en(t, a) + ya@in(t, @),

% ' % (1, b) = —,i,(1, ),

and
Ai(t,a) = zi(a) fomﬁl(b)iv(t, b)N;°db, A,(t,a) = z2(a) fomﬁz(a)N,‘f(a)(aeh(t, a) + ip(t,a))da,
with the initial and boundary conditions s,(z,0) = 1, e,(z,0) = i,(z,0) = r,(¢,0) = 0 and
i,(2,0) = (1 - ﬁw i,(2, b)db) Lwﬁg(a)N,‘f’(a)(aeh(t, a) + ip(t,a))da,

sp(0,a) = spo(a), ex(0,a) = ep(a), iy(0,a) = i(a), r(0,a) = r(a), i,(0,b) =1i,(b),

where s;,(t,a) + e, (t,a) + iy(t,a) + ry(t,a) = 1.
3. Stability of the disease-free steady state

There exists a disease-free steady state &° = (1,0, 0,0, 0) for model (2.6). Denote A,(t, a)+A»(t, a) =
2(a)W(t), where

W) = pf Bi(b)i,(t, b)N; db + f Ba(a)N,’ (a)(aen(t, a) + iy(t, a))da.
0 0

To study the local stability of the disease-free steady state, it suffices to calculate the linearized system
of model (2.6) at &°. We introduce the variable transformations s,(t,a) = 3,(t,a) + 1,e,(t,a) =
en(t, a),iy(t, a) = iy(t, ), ry(t, a) = 7,(t,a),i,(t,b) = i,(t,b), and get a linearized system as

0 0 _

E + % Eh(t’ a) = _ZZ(a)W(t)9

0 0\ _ - _

% + —|en(t,a) = qo(a)W(t) — (yi(a) + k(a))e,(t, a),
t  Oa

g + 9 in(t,a) = (1 = Qz2(@W(1) + k(a)e,(t, a) — y2(a)in(t, a), (3.1)
t  Oa

AIMS Mathematics Volume 9, Issue 12, 36405-36443.
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0 0 =
(E i %) Pu(t, a) = yi(@)e,(t, a) + v2(a)iy(t, a),

o 0\ . -
(E + %) lv(t9 b) - ,uvlv(t’ b)»

with the initial and boundary conditions

5(t,0) = 2,(1,0) = i5(1,0) = Fu(1,0) = 0, 7,(1,0) = f " B @NE (@(a(t.a) + Tyt a))da,
0
510, @) = 510(a), (0, a) = &n(a), iK(0,a) = in(a), 74(0,a) = Fio(a), i,(0,b) = i (b),

where

W) =p f Bi(b)i,(t,b)N>db + f Ba(a)N)°(a)(@ey(t, a) + iy(t, a))da.
0 0

Assume that system (3.1) has the solution of exponential form 5,(z,a) = §,(a)e", e,(t,a) = e,(a)e",
int,a) = i(a)eV, F(t,a) = Fu(a)e" and i,(t,b) = i,(b)e", from which the following equation is
obtained:

dig(a) = —A5u(a) — 22(a)Wy,
a
e
% = =(1+y1(a) + k(a))ex(a) + gz2(a) Wo,
di i
zgila) = —(A + y2(a))in(a) + k(a)e,(a) + (1 — @)za(a)Wy, (3.2)
d_ —_
rzﬁla) = —AFy(a) + y1(a)éy(a) + y»(a)iy(a),
d_'v b - - 00 )
zd; ) _ —(A + p)iy(b), i,(0) = fo B3(a)N*(a)(aey(a) + iy(a))da,
where N .
Wo=p f Bi(D)in(b)N;db + f Ba(@)N} (@) (aey(a) + in(a))da. (3.3)
0 0

Solving the second, third and fifth equations of system (3.2) yields
en(a) = f qza(T)Woe ™ WnkoNs g,
0
in(a) = f [K(D)2y(T) + (1 = @za(m)Wole k720 gr, (34)
0
- b 0 _
i,(b) = e b (’”/“’)dsf Bs(a)N,’ (a)(aey(a) + i(a))da.
0
Substituting &,(a) in (3.4) into i,(a) and i,(b) yields
in(a) =Wy f |k(7) f 2a(s)e K @HDIg 1 (1 — g)y(r)|e b Mg,
0 0

;v(b) e foh(/l+lvlv)d5f ,33(a)NZ°(a)[a'f qu(T)W()e_ fra(/1+)’l(s)+k(s))dsd‘r (35)
0 0
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+ W f [k(T) f qzo(s)e” K mmkmang g 4 (g —Q)Zz(T)]e‘ fru(“”“))dsdr]da.
0 0

Substituting e,(a) and (3.5) into (3.3), one gets
Wo =p fo " Bibje Ly fo w&(a)Nf(a)[a fo gaa(rye Fumoonsge
+ foa | = @za(r) + k(1) fo T qza(s)e” f;“”‘(”)*k(””d"ds]e‘ Fm@asqr
+ fo  Bala W) fo " gor(oye Famosonsgr | fo [ - 900

.
+ k(1) f qza(s)e” K “*"“”*"“mdnds]e‘ fra(“”(s))dsdr]da.
0

dadb

Dividing both the left and right sides of the above equation by W, (W, # 0), it follows that
1 fo i by fo vy @|o fo gea(mye Koo gy
* fo |(1 = 9aa(@) + k(2) fo T QZ2(s)e_f“”‘(”)*k(”))d”ds]e‘fra(“”(”)dsdr]dadb
+ fo ) BN (a)| fo ) g2a(re- @O gy | jo‘ ‘ (1 - ()

.
+ k(1) f qza(s)e” S5 ryiGp+kam)dn g s]e— S @rya(ds 7
0

da

=:F(Q). (3.6)

The basic reproduction number of model (2.6) is defined as Ry =: F(0), or expressly as
Ro =p f Bi(bye b mis N f B3(@N, (a)|a f qza(r)e” NI gr
0 0 0
+ fﬂ (1= @za(0) + k() f gza(s)e™ b kgl [ 72(”‘”dr]dadb
0 0

+ fmﬁz(a)Nhoo(a)[a/f 6]22(7')3_ frﬂ(yl(s)+k(s))dsd7_ N fa [(1 B q)ZZ(T)
0 0

a
0

+ k(7) f qza(s)e” [ ('7)+k('7))d’7ds]e_ F VZ(S)d“dT]da.
0

For the stability of the disease-free steady state E, we obtain the following result.

Theorem 2. The disease-free steady state E° of model (2.6) is locally asymptotically stable if Ry < 1
and unstable if Ry > 1.

Proof. According to (3.6), it is easy to see that dF(1)/dA < 0, and lim,_, ., F(1) = 0, lim,,_o, F(1) =
+00. Consequently, the characteristic equation (3.6) has a unique real root. If Ry < 1, i.e., F(0) < 1,
then F(1) = 1 has a unique negative real root 4*. Now, we claim that all other roots have negative real
parts. In fact, if there is a root A = x + iy with x > 0 such that F(1) = 1. Then

1 =|F(x +1y)|
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= 'p fo B ﬁl(b)e—ibye—fobum»dij" fo ) ﬁ3(d)N;°(a)[a L a gza(1)e
x o= K GrkeNds g 4 fo ¢ [ (1 — g)ea(®) + k(D) jo‘f S
x e~ Jr Gy ap+k(mdn g s] o (@=0) o= [y (9)ds dr] dadb
* fo cx)ﬂz(cl)N,‘j0 (a)[a f: gza(T)e V@D [ rksNds g7
+ foa [(1 - q)22(7) + k(1) L T gz ()T [ @ kmn ds]

x e V@D [{Cnds g (44

00 . § - |
<p f ,31(b)|e“by|e_f0(“/“’)dSN;x’ f ,83(a)Nh°°(a)[a f‘” qZZ(T)|e_1y(a_T)
0 o )

x e ke @HObgr o f |(1 = @za(7) + k() f qza(9)e ™
0 0

x o TGk g S] e

S

0 0
+ f [(1 - Q)Zz(T) + k(1) f qz2(s)|e—iy(‘r—s)
0 0

o fr”(””(-"))dsdr]da

e JY ety 1 (9)+k(s))ds dr

e i ornp+km)dn g S]

X |e—iy(u—r)

= F(x).

Since F(A) is a monotonically decreasing function with respect to A, it follows that Re(1) = x < A*.
This implies that all complex roots of Eq (3.6) have negative real parts. Hence, the disease-free steady
state E° of model (2.6) is locally asymptotically stable if R, < 1. Conversely, if R, > 1, indicating
F(0) > 1, Eq (3.6) possesses a unique positive real root. In such a scenario, & is unstable. This
concludes the proof. O

Theorem 3. The disease-free steady state E° of model (2.6) is globally asymptotically stable if Ry < 1.

Proof. Define g(t,a) = (A,(t,a) + A:(t, a))s;(t, a); It follows from the inequality s,(¢,a) < 1 that
g(t,a) < A(t,a) + (t,a) = 2(@)W(1).

By integrating model (2.6) over the characteristic line defined as t — a = constant, we obtain

e foa zg(s)W(t—a+s)ds’ > a,
sp(t,a) =

z2(a—t+$5)W(s)ds

Spola — t)e_fo t<a,
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a
f qg(t, e g, 1> a,
0

t
en(t, a) = enola — e f()’(yl(a—t"'s)"'k(“—""s))ds + f QZQ(G —t+7)
0

X W(T)sp(t,a—t +1)e” Fonta-reoka-reodsqr ¢ < g

f a[(l — @)g(t,7) + k(T)ep(t, T)]e” F 2y, t>a,
0

in(t, a) = inola —t)e” o rta=reeds | f [(1 = @)zo(a —t + T)W(T)
0

'
Xsp(t,a—t+71)+k(a—t+71)e,(t,a—1t+ T)]e_fr vla-tt9dsqr < g

f [y1(Den(t, T) + y2(D)in(, T)1d7,
ra(t,a) =4 V0 )
rola—1) + f [yila—t+v)e(r,a—t+71)+y2(a—t+1)ip(t,a —t + 7)]dr,

0

e I mds (1 - foo i,(t, b)db) foo,Bg(a)NZ"(a)(aeh(t, a) + iy(t,a))da, t>b,
iv(ta b) = 0 0
ivo(b — e o mds, t <b.

When a < t and b < t are as specified in Eq (3.8), we obtain
in(t, a) = fo a [(1 —q)g(t, 7) + k(1) fo ' qa(t, S)e—fjm(n)+k(n>>dnds]e— Frdsgr
i1, b) =e~ b1 - fo i bdb) fo ) B@N; (@|a fo " ggtt, e Fonomonsgy
+ f: [(1 —q)g(t,7) + k(1) fo ' qg(t, s)e” L’<71<n>+k<n>>dnds]e— Fnds g7

Using Eqgs (3.8) and (3.10), one obtains

da.

8(t,a) <z (a)W(1)

=Zz(a)(p fo Bi(b)i(1, b)N;7db + fo BaAa)Ny (a)(aeh(t,a)+ih(t,a))da)

! b 00 a a
<z(a)p f Bi(bye™ b wds e f ,33(a)N;°(a)[a f qgg(t, T)e” k O gz
0 0 0

+ f (1= 9)et, 1) + k() f q8(t, s)e—ffm(m*’f("))d"ds]e-fr“72<~”dsdr]dadb
0 0

!
+ z2(a) f ,BZ(a)N,j"(a)[a f qg(t, T)e—f,(y.<s>+k<s>>dsdT
0 0
+ f (1 - gt 7) + k(@) f gg(t. sl (7‘(")+"("”d”ds]e‘fra”(”dsdr]da
0 0

+p fwﬁl(b)iv(t, b)N; db + fooﬁz(a)N;"(a)(aeh(t, a) + i(t,a))da.

(3.7

(3.8)

t>a,

t<a,

(3.9)

(3.10)

(3.11)

AIMS Mathematics Volume 9, Issue 12, 36405-36443.



36417

Define G(a) = limsup,_, g(t,a) and, by applying Fatou’s lemma [28] to the left and right ends of
inequality (3.11) when # — oo, observe that

G(a) <z(a)p f wﬂ«b)e‘fob“v‘“Nﬁ" f mﬁs(aw;"(a)[“ f | gG(rye Fones gy
0 0 0

+ f (1= )G(x) + k(r) f qG(s)e‘LT(VI(”)J“"("))d”ds]e‘f:”(”d“dr]dadb
0 0

+ 2(a) f BN} ()| f gG(r)e FNOHNsgr
0 0

+ f (1 - )G + kD) f 4G()e [ kg e £ r0sqrda,
0 0

Assigning the constant V' as

V=p f Bi(b)e” th”"dst" f ﬂ3(a)N;°(a)[a f qG(1)e Jon)+kNds 4
0 0 0
+ f [(1 - q)G(1) + k(1) f gG(s)e K on+kman g s]e_ Fvads g
0 0
+ f ﬁz(a)N;O(a)[af qG(t)e” fra(71(5)+k(3))dsd,r
0 0

+ f |- 9)G(@) + k(r) f qG(s)e-f5<w<’7>+k<’7>>dnds]e-ffvz(”dsch]da.
0 0

dadb

Then G(a) < z2(a)V, therefore

V<p f Bibye hm Ny f ﬁz(a)NZ"(a)[a f qa(r)e” ke
0 0 0
+ f [(1—61)22(T)+k(7) f C]Zz(s)e_f;(y‘(””k(”))d”ds]e_fraVZ(S)deT]dadb
0 0
+ f Ba(a)N}; (a)V[a f qza()e F 1Ok g
0 0

+ f [(1 — @2a(7) + k(1) f qza(s)e” fsr(”(””k(”))d”ds]e_ F 72(S)‘]‘Sdr]da
0 0
:VR().

By the inequality, if Ry < 1, we conclude that V = 0, implying G(a) = 0, or equivalently,
limsup,_,, g(¢, @) = 0. Considering the expression in (3.8), one receives

limey(t,a) =0, limiy(t,a)=0, limr,(t,a)=0, limi, (t,b)=0.

t—o00 t—oo t—o00 1—o00
Note that s,(t,a) = 1 — e,(t,a) — i)(t,a) — r;(t, a); Taking the limit, we obtain lim,_,, s;(t,a) = 1, as
t — oco. Moreover, according to Theorem 1, if Ry < 1, the disease-free steady state E° of model (2.6)

is globally asymptotically stable. This concludes the proof. O
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4. Existence and stability analysis of the endemic steady state

Insights regarding the existence and stability of the endemic steady state &*(s}(a), e;(a), i (a),
r;(a), i,(b)) within model (2.6) can be derived as follows:

Theorem 4. If Ry > 1, there exists a unique endemic steady state & for model (2.6).

Proof. The endemic steady state & (s} (a), e;(a), i}(a), r)(a), i;(b)) of model (2.6) satisfies the following
equations

d %

sc’l’ff) = —n@W'si(a).

i qz2(@)W:s,(a) — (yi(a) + k(a))e,(a),
ek (1 = @Qz(a)Ws,(a) + k(a)e,(a) — y.(a)i,(a), 4.1)
dr;(a) . .

a - vi(a)e,(a) + y:2(a)iy(a),

a

d'* b 00 00

lé; ) = —u,i,(b), 0,(0)=(1- fo i,(b)db) fo B3(a)N; (a)(ae,(a) + iy (a))da,

where . .
W =p f Bi(b)i*(b)NZdb + f Ba(@)N;°(a)(ae;(a) + ij(a))da. 4.2)
0 0

Solve the first to fifth equations of (4.1)
si(a) = e h2OWds o) = f: qza(DW* s (r)e F (ks g
iy(a) = fo a[(l — P@W’ s (1) + k(D)e;(D)]e™ F »%dr, (4.3)
is(b) = e~ b w1 - fo b)) fo " B @NE @ (ae(@) + iy(@)da

Substitution s (a) into ¢;(a) and i,(a) yield

'
eia) = f Gz (D) W*e™ b 2OW s [0 HkoMs g
0

ih(a) = f 1 - pramwre =0 gy f W 4
0 0

% e b 2WW g [T m+komdng s]e* Fnds g

Substituting (4.4) for ij(b) in (4.3) gives that
l:(b) =e” fob/lvdx(l — f l:(b)db)f &(a)N,‘f’(a)[afd (IZ2(T)W*6_ f()TQ(S)W*ds
0 0 0
x e~ O f [(1 = a(We b 20" 8 4 ) f ga(sW* (45
0 0

x e~ b 2mWdg= [[onm+komdng s]e— K r6dsgrlda.
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Substituting (4.4) and (4.5) into (4.2), and simplifying the equation yields
l=p f Bi(b)N;e” fob"”d“(l - f i*(b)db) f Bs(a) N,‘l"’(a)[a f gza(T)e” T 22 W*ds
0 0 0 o

x e~k OEHOMsgr 4 f [(1 — Qe h 2OV 4 k() f gza(s)e” b =W dn
0 0

o L’<71<ﬂ)+k(”))d”ds]e— I yz(s)dsdT]dadb + f Ba(a)N,’(a))
0

(1
X [a fu gzo(t)e” Jo 2&Wds = [fon () +hsNds g 4 f [(1 — (e [ oaoweds
0 0

+ k(1) f Cgaase b 2 dng= [k gg|e- I yz(s)dsd'r]da
0
=:H(W"). (4.6)

Letting W* = 0 gives

H(0) =p f Bi(bye b misNz f ,33(a)N,‘1’°(a)[oz f qza()e kOO g
0 0 0
+ f |(1 - 92 + k(7) f gza(s)e” (7‘(’7)+k(’7))d”ds]efra”(”d“dr]dadb
0 0

+ foole(a)N;f(a)[afa q12(7')e_ fra(yl(s)+k(s))dsdT N fa [(1 B q)ZZ(T)
0 0 0

+ k(1) f qza(s)e” ﬁT(V'(”)+k(”))d”ds]e‘ K 72("')dsdr]da
0
=Ro.

Note that model (2.6) exhibits a unique endemic steady state &, which corresponds to the existence
of a unique positive root W* satisfying H(W*) = 1. Considering the equation s,(a) + ¢,(a) + i,(a) +
ri(a) = 1, where s;(a) > 0 and 0 < @ < 1, it implies that @e;(a) + i;(a) < 1. Consequently, for any
W* > 0, there exists a

1 0 | 0
HW") = W[P fo Bi(b)i(b)N;7db + fo Ba(a@)Ny; (a)(aey(a) + ij(a)da

1 00 00
b)db dal.
W*[pfo Bi(b) +f0 Ba(adal

Considering the aforementioned inequality, there is H(W*) < 1 when W* = p fom Bi(a)da+ fom B2(b)db.
Moreover, H(W*) behaves as a continuous and decreasing function of W*, with H(0) > 1 for Ry > 1.
Hence, equation (4.6) exists a unique real root on (0, p fooo Bi(a)da + fooo B2(b)db). This implies the
existence of a unique &" in model (2.6) when R, > 1. The proof is concluded. O

<

The local asymptotic stability of the endemic steady state & is analysed below. If we consider
5,(t,a), ey(t,a), iy(t,a), #4(t,a) and 7,(t,b) as disturbances at the state &, the linear system of
model (2.6) at & takes the form

((% + (%) $(t,a) = = 2(a)W(t)sy(a) — 22(@)W*§(1, @),
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36420

o 0 -
(5 + %) en(t,a) = g2(@)W®)s, (@) + qz2(@)WSi(t, a) — (v1(a) + k(a))é,(t, a),

0 0\~ ~
(E + 8_0) int,a) =(1 — (@)W (D)s;(@) + (1 — @)z2(@W*5,(t, a) (4.7)
+ k(a)g,(t, a) — y2(a)in(t, a),
a 0 ~
(a_r + 8—a) Fu(t, a) =y1(@)én(t, a) + y2(a)iy(t, a),
AV
(E + %) lv(t’ b) - /'lvlv(tv b),
and
1,(t,0) = — f ) 1,(t, b)db f ) Bs(a)N,’ (a)(ae,(a) + i,(a))da
0 0
ol - f i*(b)db) f B (@NE (@)a2)(a) + Ty(a@))da,
0 0
where

W@ =p f B1(b)i,(t,b)N>db + f Ba(@)N;°(a)(a@y(t, a) + 1(t, a))da.
0 0

Moreover, assume that system (4.7) has an exponential solution of the form §,,(z, a) = §,(a)e"’, &,(t,a) =
en(@)e®, iy(t,a) = i(a)e”, i(t, a) = #(a)e” and i,(t, b) = i,(b)e*". Thereby, the functions §,(a), &,(a),
in(a), 7r(a) and 7,(D) satisfy the following equations

dzlc(la) = —(w + 2(@W3K(a) — 22(@)Ws;(a),

dégfla) = —(w +y1(a) + k(a)é,(a) + gz(@W*5,(a) + gz2(a)Ws (a),

di 3 )

lgia) = —(w + y2(a))in(a) + (1 = z(@W*5i(a) + (1 — @)z2(@)W s} (a) + k(a)éy(a), (4.8)
d?dhia) = —wiy(a) + yi(a)é,(a) + v (a)ix(a),

di, (b .

S = w0+ D)

1,(0) = — f 1,(b)db f B3(@)N;°(a)(ae;(a) + ij(a))da
0 0
+(1 - f i,(b)db) f Bs(@)N;’ (a)(@@y(a) + in(a))da,
0 0

where

00

W=p f ,81(b)7v(b)N§° db + f Ba(a)N; (a)(aéy(a) + in(a))da.
0 0

It is important to acknowledge that the functions §,(a), &,(a), iy(a), #4(a), and 7,(b) may have positive
or negative values. Assuming §, = 5,/W, &, = &,/W, 1, = i,/W, #, = #/W and i, = 7,/W, then
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system (4.8) becomes

Based on the expression for W, it follows that

I=p f Bi(b)i ()N db + f Ba(@)N} (a)(@ey(a) + in(@)da =: T(w).
0 0

Solving the first to fifth equations of (4.9) yields
(@) = - fo (@) (e k@O gy,
2u(a) = f (DWW §H(T) + 5°(x))e™ k=g
ina) = foa (1= 92(@W*8(7) + 53 + k(D)ey(r) e~k 20,
by = e b1 - fo " iib)db) fo " B@N] @8 (@ + T@)da
- fo )b fo " Bu@N (@(ae(@ + iia)dal.
Substituting é;,(a) into i,(a) and 7,(b) yields

@ = [ [ = @@ s+ s+ ko [ amow s

+ 5(s))e” k @rnemrkmdng S]e— F@mnds g,
fv(b) :e_J(-)b(lev)ds(l _f ii(b)db)f ﬁg(a)N;;o(a)f [aff qz2o(T) (W™ §,(1)
0 0 0 0
N SZ(T))e_ fra(w+'}’l(5)+k(5))dsd7. + fﬂ [(1 _ q)ZZ(T)(W*S;h(T) + S;;(T)) + k(T)
0

X f qza(s)(W* 3y(s) + s;(s»e-fs’<w+w<">+k<">>d"ds]e—ff<w+n<s>>dsaT]da
0

& gc(l“) = —(w + 2@W")§i(@) - 22(a)s}(a),
LD < (w0 +71(@ + K@)21(a) + gl@ W 51(@) + g22(@)5;(@),
d?gi“) = —(@+ 72@)@ + (1 — P(@W*53(@) + k@en(a) + (1 — g)eal@)s) (@),
TG — i@ + yi(@2n@) + yo@ita),
di;g’ R )
(0) = - fo )b fo " By@N @)ae)(a) + @) da
. fo " i(b)db) fo " BN (@)(@en(@) + h@)da,

4.9)

(4.10)

4.11)

(4.12)
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_ fo " 5(b)db fo " B@N(@)ael(@) + il (@)da.
Substituting (4.11), (4.12) into (4.10) yields
T(w) =p fo mﬁl(bw;’"e‘fo“”*“”d‘?[(l— fo " b)ab) fo BNy @ fo ()
X ey (a, )dr + fo (1 = ea(re Iy (a, e + fo  krye s
X j; TqW*zZ(s)e_w(a_S)cp(T, s)dsdT]da+ fo ) 1,(b)db fo ) B3(@)N;"(a)

(4.13)
X (aey(a) + iy(a))da

db + fo ) ﬁz(a)N;f(a)[a j: qz2(T)e” " Vp(a, T)dt
" foau — Q@) Vy(a, Tdr + fo k(rye™ ks
X j(; ' gW*zo(s)e (1, s)dsd‘r]da,
where
o(a,7) = Fontrkamydng- [ 20Wdy _ pp+ f ¢ 2@ E onmrkGmdn - [ 226w dy de,
W(a,) = £ g [ amwan _yys f aa(ee £ e [ angg,

Proposition 1. Assume that ¢(a,7) > 0 and y(a,7) > 0; For 0 <n < s<t< ¢ <a, then, T(w) isa
decreasing function of w satisfies lim,,_,, T (w) = 0 and lim,,_,_, T(w) = +o0 and T(0) < 1.

Proof. By utilizing the expression in (4.13), ensuring that ¢(a,n7) > 0 and ¥(a,n7) > O enables
us to derive fundamental properties of T(w), obtain T(w) > 0, T'(w) < 0, lim,_ 00 T(w) = O,
lim,,,_o T(w) = +00. From Eq (4.13), letting w = 0 has

00 , o - .
o= pf BUbINTe bl - f i,(b)db) f Bs(@)Ny® (a)[a f 42>(7)
0 0 0 .
x ¢~ b 2OV dsem 1k f ' [(1 - @)2a(T)e” 7 2a(sW*ds
0
+ k(1) f ) qzo(s)e” Jo W dng [ForG+kam)dn ds]e‘ [ ya(sds dT]dadb
0
(07 fa QZz(T)e_ fOT Zz(s)W*dse— f:(yl (s)+k(s))d5dT
0

+ fo B2(a)N, ()

* f (1 = @ra(r)eh 20V 4 k() f gza(s)e™ b 20
0 0

x e Js (nOm+kam)dn g S]e— Jrds g

da-p f Br(B)NZe b wds
0

x (1 - fo i,(b)db) fo B3(@)N;’ (a)[oz fo qz(nW* f (&)
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x = b W ang [ oo f (1 - @)z(n)W* f 22(6)
0 T
x ¢~ b 2W dne= [rmingeqr | fﬂ k()e™ k720 f qz(s)W*
0 0

X f ZQ(H)e_fOGZZ(G)W*dee‘f(f(yl(e)Jrk(e)) ded@dsdr]dadb+ f Ba(a)N(a)
K 0
X[a f (D)W f (E)e K 2w ang [ontmkming g
0 T

+ f a(l - qQ)n(n)W* f ’ zz(f)e‘ﬁ@(")w*d"e_ ffa”(”)d”dgdr + f k(1)
0 T 0

x e~ ks f qz(s)W* f Zz(H)e‘ngZZ(G)W*d"e‘far(yl(")+"((’))d9d9dsd7]da
0 s

<HW") =M < 1,

where

M= [ pone i (o [ paniale [ wow [ e
« & B amWang [onmsminggqr f a(l — W f” @
0 T
><e_f(fZZ(”)W*d”e_ffa”(")d"dde+ f k(r)e™ J v f T qz(s)W*
0 0
X f ' zZ(G)e-ff zz@W*df’e—fJ(w(0>+k<9>>d"d9dsdr]dadb+ fo ) Ba(a)N;*(a)
X [a f " g (O)W* f ' H(E)e K 2wedn - Fonekmang g
0 T
+ fo a(l - Qn(n)W” f 22(&)e” f 2w ane- [ rmdgeqr + f: k(T)

x ek 7205 f qz2(s)W* f Zz(H)C_IOH 2OW e fé;(”(9)+k(9))d9d0dsd7]da > 0.
0 s
The proof is completed.

The subsequent result pertains to the local asymptotic stability of the endemic steady state.

Theorem 5. Under ¢(a,n) > 0 and Y¥(a,n) > 0 for 0 <n < s <1< €< a, then the endemic steady

state of model (2.6) is locally asymptotically stable if Ry > 1.

Proof. Similar to the proof of Theorem 2, the above discussion and the Proposition 1, if Ry > 1,
¢(a,7) > 0and Y(a,7) > O hold forall 0 <5 < s < 7 < € < q, then there exists a unique negative real
root T(w) = 1, and all complex roots possess negative real parts. Consequently, the endemic steady

state of model (2.6) achieves local asymptotic stability if Ry > 1. This finishes the proof.

O
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5. Uniform persistence

In this subsection, we consider the uniform persistence of model (2.6) using the continuation theory
of an infinite dimensional dynamical system.

Lemma 1. Given that u(t,-;ug) = (sp(t,-),en(t,-),in(t,-), ry(t,-),i,(t,-)) represents the solution of
model (2.6) with the initial condition uy = (sy0(a), exo(a), ino(a), ro(a), i,o(b)) € X, then

(i) there is a positive constant g, > 0 such that liminf,_,, || s,(t,) ||p1 > &1 for spo(a) > 0;
(i) if there exists t* > 0 such that e,(t*,-) > 0, or i(t*,-) > 0, or i, (t*,-) > 0, then ¢(t,-) > 0 for t > t,
where, ¢(t,-) = ey(t,), in(t,-) and i, (t,-).

Proof. Proof (i), by s,(t,a) + ey(t,a) + iy(t,a) + rp(t,a) = 1 and 0 < @ < 1, it follows that ae,(t, a) +
in(t,a) < 1. Subsequently, based on model (2.6), it can be inferred that

where A(a) = 22(a) |p [, B1(b)db + [~ Ba(a)da). Therefore, it is possible to obtain

(6% + ;—a) Su(t,a) = =Aa)$u(t,a), $,(t,0) = 1.
Let’s denote §,(a) = e Iy 23s anqg applying the comparison principle, one can conclude that
liminf, .., s,(¢,a) > §;(a). Consequently, there is a £; > 0 such that liminf,_ || s,4(z,-) [[11> &;.

Now, we turn to the (i7). If there exits a t* > 0 such that ¢,(¢*,-) > 0, then one has ¢,(¢,a) > 0 for
t > t* due to the expression of equation (3.7). Further, form the expressions of Eqgs (3.8) and (3.9), one
has r,(t,a) > 0 and i,(¢,b) > O for ¢t > ¢* due to the facts i,(t*,a) > 0 and s,(t*,a) > 0. Similarly, for
rp(t*,-) > 0 or i (t*,-) > 0, we also can get ¢(t,-) > 0 for ¢t > 1, here, ¢(t, ) = e,(t,-), in(t,-) and i,(t, ).
This completes the proof of conclusion (ii). O

Theorem 6. IfRO > 1, fOI" initial value up = (sp0(), €r0(), ino(+), rro(+), 1,0(+)) € X with epo(-) + ipo(-) +
i,0(:) > O, then there exists a constant &, > 0 such that the solution u(t, -;ug) = (s,(t,-), en(t, ), ix(t, *),
rh(t9 ')a iv(t7 )) SatiSﬁeS

hl}lionf || QDh(t, ) ”Ll> €, ‘Ph(t, ) = Sh(t, ')9 eh(ta ')9 ih(t7 ')9 rh(ta ')a iv(ta )

Proof. Define

a=infla: f oo(yl(s) + k(s))ds = 0 and f ) y2(s)ds =0}, b=inf{b: f ) pyds = 0},
a a b
b

ey(t,a)da > 0, f in(t,a)da > 0 and f (1, b)db > o},
0 0

Y:{u(t)eX:f
0
a b

Y = X\Y = {u(t) €X: f ~ey(t,a)da = 0 or f i(t,a)da = 0 or f it b)db = o}.
0 0

0

]
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From Lemma 1, we understand that Y serves as a positive invariant set for model (2.6) concerning the
solution semi-flow u(¢), denote Ny = {ug € 0Y : u(t, up) € 9Y,t > 0}, where w(uy) denotes the omega
limit set of u(t, uy). Now, one claims that {E°} = Upen, @(tto).

It is evident that u(z,E”) = &° holds for any ¢ > 0, implying {E°} C ,,en, @(uo). On the contrary,
for any uy € N3y, we have fogeh(t, a)da = 0 or fogih(t, a)da = 0 or foé i,(t,b)db = 0. Let’s start by
considering the scenario where fog en(t,a)da = 0, implying e;(t,a) = 0. According to model (2.6), this
leads to

0 = gsu(t, a)zg(a)[pf Bi(b)N;7i,(t, b)db + f Ba(a)N, (a)(ae(t, a) + ix(t, a))da].
0 0

Thus, the above equation holds if and only if i,(t,a) = i,(t,b) = 0. So there is (a% + %) sp(t,a) = 0
with s,(¢,0) = 1. The lim,_,, s,(t,a) = 1 by s,(t,a) + en(t,a) + iy(t,a) + r(t,a) = 1, and so w(uy) =
{E°}. Similar to the case of fogeh(t, a)da = 0, one also has w(uy) = {&E°} when fog in(t,a)da = 0 or
foé i,(t,b)db = 0, thereby |, cn, w(uo) C {E°). In conclusion, it follows that {E°} = (J,,cn, @(uo).
Therefore, all solutions of model (2.6) converge to {E°} on dY as t — oo .

Further, it is shown that the uniformly weakly repulsive of {E°}, i.e., there exists a constant § > 0
such that limsup,_, || u(t, uo) — &Y |lx> 6 for any initial values uy € X. Using the counter-argument.
Suppose that otherwise, that is, there exists an initial value u; € X such that limsup,_,, || u(t, u;) —
&" ||x< 6. Thus, there exists 7 > 0 such that, for any t > T,

1-0<s(t,)<1+6, O0<eut,))<06, 0<iyt,)<o, 0<nr(t,))<o, 0<ilf, ) <06

It is clear that from model (2.6)
(% N %) enlt,@) 2 (A4(t,0) + (6, @) (1 = 6) - (yi(@) + k@)en(t, @),
(a% + %) (@) 2(1 = @) (41,0 + (e, @) (1 - 6) + k(@en(t, @) — y>(@int, @),
(% + (%) (e, @) 2p(@en(t, a) + ya(@)int, a).
(a% N a%) i(1,5) = — 1,y (1. D).

Get the auxiliary system as

g o0

o * 32|60 = 4 (1.0 + 1ot ) (1= 8) = (11(@) + K(@)es(t,a),

g 0

6_ 4+ = i_h(f, a)=(1- C[) (&(l‘, a) + Q(t’ a)) (1-9)+ k(a)@(t, a) — Vz(a)i_h(t, a), (5.1
t da

o 0

o+ o | 1t a) = Yi(@e(r, @) + 2@t a),

o o\ ..

a—t + % l_v(l, b) - _ﬂvl_v(ta b)’
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with the initial and boundary conditions
ei(1,0) = i5(t,0) = r,(1,0) = 0,
L,(t,0)=(1- fom 6db) fomﬁg(a)Nh“(a)(aﬁ(t, a) + i(t, a))da,
en(0,a) = e0(@), in(0,a) = iso(@), r(0,a) = ro(@), i,(0,b) = iv(b),

where

A1(t,a) + (8, a) = pza(a) f Bi(B)i(BINdb + 25(a) f Bo(@N(a)(aen(@) + in(@))da.
0 0

The following exponential form of solution is obtained for system (5.1) as follows: e,(t,a) = e_h(a)ef” ,
in(t,a) = ix(@e”, r(t,a) = r(a)e” and i,(1,b) = i,(b)e”" , one has A,(1, a) + A (t,a) = za(a)e”’ A, where

A= pf B1(b)i,(D)N,db + f Ba(a)N) (a)(aen(a) + in(a))da.
0 0

Consequently,
dey(a)
— = —(p +y1(@) + k(a))ex(a) + gz2(a)A(1 = ),
diy(a)
—— = ~(p + @)@ + (1 = P2@A(1 - 6) + k(@ex(a). (5-2)
drp(a)
Ea = —pr(a) + Y (a)e_h(a) + YZ(a)i_h(a)’
diy (b) .

b0 == [ aab) [ @V @aa + ianda
Solving the equations of system (5.2) yields
en(a) = fo g(1 = (M)A h P g,
in(@) = fo (1 - @)1 - 9atOA + k(Deole F My (5.3)
(@) = ﬁ a[yl(T)e_h(T) +y2(Din(0) e dr,
ib) = (1 - fo " sdb) fo B @V (@) aen(@ + iy(a)dae™ b,

Substituting e;(a) in (5.3) into ix(a) and i,(b) yields

in(a) = fo [(1 — (1 = 8)z2(DA + k(1) fo g(1 = 6)z2(s)
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% Ae~ ks rn+kam)dng s]e— Frera(onds g
iy(b) =(1 - I}m odb) Lmﬁ3(a)Nf(a)[a I}a q(1 = 0)za(7) (5.4)
x Ae~ K (P @ks)dsqr fo ' [(1 - q)(1 =)z (1A
+ k(1) fo T qza($)A(1 — §)e f nmkimdigy|
< e f,"(pm(s»dsdT]dae [ prands
Substituting (5.3) and (5.4) into the expression for A yields
l=p f:&(b)fo’{(l - fow 6db) f:ﬂ3(a)N;°(a)[a foa q(1 = 6)za(7)

o o= Pk g7 fo i (1= @)1 = 6)za(7) + k(1) fo gaals)

x (1 —6)e” JEpryi+kmdn g S]e— fra(l’m(‘”dfdr]dae fo”(pwv)ds}db

+ \fo ) Ba(a)N,° (a)[a f(; ’ q(1 = 6)za(1)e” J ey +k()ds 41

+ foﬂ [(1 = @1 = 6)za(7) + k(1) fo T gza(s)(1 - §)e” b +”(")+"(’7))d”ds]

« e K pr7a()ds g T] da

=:D(p). (5.5)

It is obvious from the expression for D(p) that D(p) is a monotonically decreasing function with respect
to p, lim,_, D(p) = 0, and

D(0) =p f BIBINZe b (1 - f 5db) f Bi@N; (@)|a f 4(1 = 8)2(0)
0 0 0 0
x e~ J @k g f ' [(1 — @)1 = 6)z2(7) + k(1) f T qz2(5s)
0 0
% (1 = 6)e~ k 0rm+kmng sle” s yz(s)dsdT]dadb
- [ anz@le [ a0 - e Foomome
0 0

+ f [(1 =1 = O)za(7) + k(1) fT gz2(s)(1 = o)e” fsr(”("”k("))d”ds]
0 0
xe k 72(S)d‘vdT]da.

Taking a sufficiently small ¢ so that
lim D(0) =p f Bi(bye b m Ny f @V (@)|a f gza(r)e” O gy
— 0 0 0
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dadb

+ f [(1 — @)22(7) + k(1) f qza(s)e” LT(V'(”)+k(”))d”ds]e‘ Frdsgr
0 0

+ f ) ﬁz(a)N,‘j’(a)[a fﬂ qza(T)e” Jon@rkends g 4 fa [(1 N
0 0 0

+ k(T) f qu(s)e_ f;(?’l (77)+k(77))d77ds]e— fTa 72(S)dsdT]da
0
:Ro.

It appears that when R, > 1, there exists a unique positive root of Eq (5.5), meaning the solution
(en(t, "), in(t,"), ru(t,-), i,(t,-)) of system (5.1) becomes unbounded as t > T. Consequently, the
solution (_sh(t, -),?h(t, ), E(t, ), ra(t, +), i,(2, ) of model (2.6) also becomes unbounded for ¢ > T, which
contradicts the boundedness of u(z, -; uy). Hence, conclude that {E°} is uniformly weakly repulsive.

To summarize, {E°} is an isolated invariant set on X, and WS(E) N Y = 0, where W¥(&°) is a
stable subset of &°. Moreover, there is no closed loop from &° to E° on dY. By applying persistence
theory [29], results in the uniform persistence of model (2.6). This completes the proof. m|

6. Optimal control problem

For all vector-borne infectious diseases, vaccination strategies for susceptible populations (denoted
as uy(t,a)) and elimination strategies for infectious vectors (denoted as u,(f)) can be proposed.
Therefore, by introducing the control variables u; and u, model (2.3) obtains

52 + 9 Snt,a) = =(Ai(t,a) + (1, a) + up(a)S w(t, a) — ui(t, a)S 4(t, a),
t Oa
0 0
P + %0 Au(t,a) = q(A1(t,a) + (8, a)S (1, a) — (k(a) + yi(a) + up(a)Ay(t, a),
0 0
gy + — |t a) = (1 = @)(Ai(t, a) + A:(1,a))S (1, a) + k(a)A(t, a)
t Oa

— (v2(a) + pp(@)I,(t, a), (6.1)

0 0
(& + %)Rh(t’ a) = yi(@A(t, a) + y2(a)(t, a) — pp(@)Ry(t, a) + u (1, a)S (2, a),

0 0
(87 v %)Iv(t, b) = —du(t,b) — w1 (1, b,

where
b+ +
A4(t, a) = pza(a) f Bi(b)L(t,b)db, A(t,a) = z2(a) f Ba(a)(aA(t, a) + (1, a))da,
0 0

with the initial and boundary conditions

+

Su(t,0) = f bu(a)Ny(t, a)da, e;(t,0) = I,(t,0) = Ru(2,0) = 0,
0

1,0y = (22 - f " 1, b)db) f Bs(a@)(@A(t, a) + (1, a))da,
0 0

Hy
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S$10,a) = Sp(a), Ay(0,a) = Ay(a), 1;(0,a) = Ijp(a), Ry(0,a) = Ry(a), 1,(0,b) = 1,0(b).

Considering practical scenarios, replace the upper limit of the age-related integral with a finite value
a* > 0. the control set as follows

U ={ut,a) € L*(Q)|(t,)) € Q= (0,T) x(0,a"), 0 <ui(t,a) <, l; <00, i =1, 2},

therefore, the objective function of our optimal control problem is

T a’ B B
Ty, tr) = f f [TlAh(t, Q) + 1ol (t, a) + jlu%(t, ayr;1,(t, a) + Ezug(t, a)|dadt, (6.2)
0 0

where 7; and B; are defined as positive coefficients, serving to adjust the significance attributed to the
state and control variables, respectively (i = 1, 2, 3; j = 1, 2). The existence of optimal control is
proofed as follows.

Theorem 7. There exist optimal control variables ui(t, a), u;(t,b) € U such that
Ty, uz) = min (g, ua),
ul,uzeU

satisfies the initial and boundary conditions of system (6.1).

The demonstration of Theorem 7 closely resembles that of Theorem 3.1 in [25], hence, it will be
omitted here.

Select an additional control u§(z,a) = u;(t,a) + €l;(¢,a) and u5(r) = uy(t) + €l>(1), where [,(t, a) and
I, (¢) are variation functions and € € (0, 1), then

S; = Sh(l/lf), A; = Ah(uf)a IZ = Ih(ule)7 RZ = Rh(uf)a 15 = Iv(l/lf)

Therefore, the equation of state variables corresponding to the new control variables u{ (i = 1, 2) are

0o 0
(E + %) Sita) = — (A{(t,a) + A5(t, a) + wp(a))S (t, a) — ui(t,a)S;(t, a),

a 0
(a_t + %)AZ(L a) = q(Ai(t,a) + A3(1, ))S (1, a) — (k(a) + yi(a) + uu(a)A; (¢, a),

g o0
(8_t + %) I;(t,a) = (1 — q)(A](t, a) + A5(t,a))S ;(t,a) + k(a)A;(t, a)
- (72(@) + (@)1, @),

o 0
(E + %)R;(t, a) = yi(@A(t, a) + y2(@) (1, a) — u(@)R;(t, a) + ui(t, a)S (¢, a),

a 6 € _ € € €
(& + %)Iv(t’ b) = - ,uvlv(l‘, b) uz(t)lv(t9 b)a
where

A1(t,a) = pzo(a) f Bi(D)(t,b)db,  A5(t,a) = z5(a) f Ba(a)(A;(t, a) + 1(t, a))da,
0 0
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with the boundary conditions

+

S§;,(2,0) = f by(@)N;,(t,a)da, Aj(1,0) = I;(2,0) = R;(1,0) = 0,
0

I5(t,0) = (ﬁ - f ' I£(t, b)db) f a Bs(a)(@AL(t, a) + I(t, a))da,
0 0

v

and the initial conditions
§30,a) = Sy(a), A,(0,a) = Ap(a), I;(0,a) = I(a), R,(0,a) = Ry(a), I;(0,b) = 1,4(b),

where N (t,a) = S;(t,a) + Aj(t,a) + I,(t,a) + R;(t,a), we find the following difference quotient

é(t. q) — t . Af(t,a) — Au(t,a v I;(t,a) — I)(t,a ¥
$Hta)=Sita) | St a), W) At a) W(t, ), i)~ llta) I\(t, a),
€

€
R;(ta a) - Rh(t, a)

€

€

— Ru(t,a), — I(t,b), as € — 0.

Where S ,(, a), Au(t, a), I,(t, a), R(t, a) and I,(z, b) comply with the following system

aS, aS y '
?ﬁ+~—f:-—umnm+ﬂxam+uum+umnmwua@—smLm@mﬁfwﬁxm
t oa 0
X[w%0¢0+ﬂaﬂﬂmrwifaﬁd@ﬁ@bM4-4dn@SALm,
0
0A,  0A « “ . 9
3ﬁ+—1:ﬁmmm+bmmwmﬂwqwmmmmLf/Mmhmmm+hmmha
t da 0
+gfﬁ@mmwﬂ—mm+mmﬂmm&m@
0
o, ol ‘ “
-;+——:a—wmmm+@mwmmﬂmwhwmmﬂmmﬂf‘&mmmmﬂ> (6.3)
t Oa 0
+nmmw+gfﬁ@mmwﬂ+mmm—mw+m@mmm
0
oR, OR . . y .
— T o = @A) + 7@t a) - p@R,(1, @) + (@)1, @) + bt @) (5, a),
ol, al, . y
2 T = o d(t, D) — ux()1,(¢,b) — L(D1,(2, b),

with the boundary conditions

+

&mm=f‘m@M@mm,&@m=nmm=mmm=&
0

1}(;,0):(5— fﬂ I,(t, b)db) f Bs(a)(@A(t,a) + I,(t,a))da
0 0

v
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+(ﬁ [ I, b)db) ' Bi(a)(aA,(t, a) + Ii(t, a))da,
My 0 0

and the initial conditions
S4(0,a) =0, A,(0,a) =0, I,(0,a) =0, Ry(0,a)=0, I,0,b)=0,

where Ny(t, a) = S,(t, a)+Au(t, a)+1,(t,a)+ Ry(t, a). In order to find the adjoint equations, we consider
the first equation of the system (6.3) as
a8, oS y
0 =({—F+ =+ (i(t.0) + a(t,@) + puy(a) + (1, a)S it @) + S 1, @)2a(a)

x| f: Bo@|ai(t,a) + Ty(t, @)]da+ p f; Bi®) (1, b)db |

+ L1, a)S (1,0, A} (1, @),
ON(t,a)  ON(t,q)
ot oa

T + T a
+ f f 11(t,a)S (t, )N’ (1, a)dadt + f | f S u(t,a)2a(@)A; (¢, a)dal
0 0 0 0

x[ f Ba@)| @Ayt @) + Iy(t.@)| + p f ﬁl(b)fv(t,b)db]dt (6.4)
0 0

T +
-~ f f bu(@)Ny(t, )N’ (¢, 0)dadt,
0 0

with the conditions S ,(0,a) = 0, S,(t,a*) = 0, A*(T,0) = 0 and {(f, &) = fOT fo‘” fgdadt. Similarly,
the rest of the equations for system (6.3) can become

=(($(t.a). - + (it @) + o(t, @) + (@) + w1, DA (1, @),

04, 0A y « .
0=((=" +— —a((t.a) + bt )S (1. a) ~ gt a)Zz(a)[ f Ba(@)|adi(t, a)
0

+ It a)| +p f PO, b)db] + (K@) +1(@) + (@)A1, @), A1, @)
0

ON;(t,a) ON(t,a)
ot oa

T a’
=((A(t.a), + (K@) +71(@) + p(@)A3(t, @)~ fo fo q(Ai(t, a)

jo‘ B2(a) (6.5)

+

T
+ Ao(t, @)S (1, )AS(t, a)dadr — g f [ f S (t, @)za(@)A5(t, a)dal
0

0

x [@Au(t, @) + Iy(t,a)| + p f Bi(D)I(t, b)db]dt,
0

under the initial conditions A,(0, a) = 0, A,(t,a*) = 0, A3(T,0) = 0.
o, ol . «
0=((5* + 2= - (1 - )it @) + Aot @)S u(t, @) = (1 = @) (t, a)Zz(a)[ f Ba@)|e
ot oa 0

x Au(t, @) + Ii(t, @) | + p f: BB, b)db| = kAu(t, @) + (2(@) + pn(@)Ii(t, @), A1, @)) ).
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y AN(t, ON(t, T e
=((Iit.a), - gf 9 g(a “)+<yz<a)+uh(a)>A§<r,a)>)1— fo fo (1-9)

T +
X ({1, @) + Aot a)S ut, AL @)dadr — (1 - g) f [ f St (@A, a)da]
0 0

[ f ' Bo(@|ai(t,a) + Tyt @)]da+ p f " B, b)db]dt 6.6)
0 0

T at
- f f k(a)A,(t, a)\;(t, a)dadt,
0 0

under the initial conditions 7,(0,a) = 0, I,(t, A*) = 0, A}(T,0) = 0

=<<6R’1 LR ) — ya@Tit, ) + @it 0

ot da
— (1, S (1, @) = L1, @S (1, @), Ny(1, @),
e IN(t,a) ANt a)
={(Reo =5 - =5

+ w@A (@),
T +
- f fﬂ (i(@An(t, @) + ya(@) i, ) Ay (t, a)dadt (6.7)
0 0
A+
- f (i (t, @S (1, @) + (1, @)S (1, @) Aj(t, a)dady,
0 0

under the initial conditions R,(0,a) = 0, Ry(t,a*) = 0, Ai(T,0) = 0

:<<% 6_1 + (uy + i), b) + LOL(L, b), A5(t, b)>>

ot
aA* t,b) ONL(t,b
R TRt
X A5(t, b) f fﬂ L()1,(t, b)A5(t, b)dbdt (6.8)

T
- f f I,(t,0)A%(t, 0)dbdst,
0 0

under the initial conditions 7,(0,b) = 0, I,(t,b*) = 0, AX(T,0) = 0 and ({f, &))» = fOT fol” fgdbdt.
Next the Lagrangian £ function is defined as

‘£(Svh’ Avh’ ih’ Rh’ iv)
T + . . B1 ) T at . 32 ) T at .
= TlAh + 1ol + —ul]dadt + [T3Iv + —uz]dbdt - Ai(t,a)
0 0 2 0 0 2 0 0
oS, 08 "
X {8—;’ + a—h + (A1(1, @) + D(t, @) + pp(a) + ui (£, @)S (¢, @) + S (1, a)Zz(a) f Ba(a)
0

x [ady(t, @) + Ty(t, @) da + p f BB, b)db] - 1L a)S &, a)}dadt
0
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A
f f A5, a) -+ 6_ —q(/h(l a) + (1, @)S (1, @) — gS (1, @)

X 72(a) f Ba(@)|@dy(t,a) + Iyt a)|da + p f ﬁl(b)iv(r,mdb]

{(9];, th

+ (k(@) + y1(@) + p(@) A, a) dadt— f f A3(t,a) a

A+
— (1 = @i (t, @) + a(t, @))S (1, @) — (1 = @)S (¢, @)za(a) ﬁ Bo(a)

X [oAh(t, a) + L1, a) da +p f ' Bi(b) (1, b)db] — k(a)A (1, a)

8R h 6Rh

oy T yi(@A(t, a)

— V2 @(t, @) + p(@Ry(t, @) — w, (1, )S (1, @) = 11 (1, @)S (1, @)

[ sl

By solving = = 0, J£ =0, 5 = 0, g,{— = 0, % = 0, combined with Eqs (6.4)-(6.8), then we obtain
the adjoint equatlons

+ (ya2(a) + u(a@) L, a) dadt— f f Ay, a)

dadt

— + (u, + (), (1, b) + LI (t, b)]dbdt

ON[(t,a) OA|(t,a)
+
ot oa

= [4(1,a) + (1, a) + pn(a) + i (t, DA (1 @) — br(a)Aq(2,0)

= q(i(t,a) + (1, @) A5(1, @) — (1 — @)(A4(1, @) + Aa(2, @)
X A5(t,a) — uy(t, a)A (1, a),
ONS(t,a) ONS(t,a)
ot * oa

= =11 + [k(a) + yi(a) + up(a)]AS(t, a) — by(a)A(2,0)
+a ﬁ Ba(a)S n(t, a)z2(a)Ai(t,a)da — g L Ba(a)S n(t, a)zo(a)A5(t, a)da
-(1-9 f Ba(a)S (1, )z2(a)A5(t, a)da — k(a)A5(t, a)
0

A a+ . a+
~yi@A(ta) - (= - fo I,(t, b)db) fo Bs(@)aAi(t,0), (6.9)

14

ONi(t,a) ONi(t,a)
+
ot oa

= =1 + [y2(@) + u(@)A5(t, a) — b(a)A((2,0)
+ f Ba(a)S 1(t, a)z2(a)A|(t,a)da — g f Ba(a)S n(t, a)zo(a)A5(t, a)da
0 0
-(1-9) L Bo(a@)S i(t, a)z2(a)A5(t, a)da — yr(a)Ay(t, a)

A, a " .
-( - f I,(,b)db) f B3(@)A5(2,0),
Hv 0 0
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ON(ha) N0, a)

ot

o = m@A(1.a) = b@A (2, 0),

ONL(t,b) ON(1,D)
+ —

ot

oy = T3 T+ n0]AS@ D)

Ao .
+(=-a?) | Bsla)Au(t. @) + I(r, a)dans(z, 0),
My 0

with the transversality conditions

AN(T,a)=0, ANT,a)=0, A5T,a)=0, A)T,a)=0, A T,b)=0,

with the boundary conditions

Ai(t,a") =0, Ait,a")=0, Ai(t,a")=0, Ait,a")=0, Airb")=0.

Theorem 8. If uj, u; € U represent optimal controls that minimize the objective function [ (u;, u,),
and (S}(1.a), A}(t,a). I;(t,a). Ry(t.a). (1. b)) and (N}(t,a), Ay(t,a). Ay(r,a), Aj(t,a), Ay(t,b)) denote
the corresponding state and adjoint variables, respectively, then

St a) (A1, a) — Nyt a)) }}
B, ’
L't b)NL(t, b
HLDED),

u;(t,a) = min {11 , max {O,

W(f) = min {12, max {o,

Proof. The Gateaux derivative of I (uy, u) is

T + T +
0 <J" (uy, ur) = f f [nA,, + 10 + Blulhl]dadt + f f [131} + Bzuzhz]dbdt
0 0 0 0

AIMS Mathematics

ot oa
X Ai(t,a) = by(a)A(t,0) — q(A1(t,a) + (2, a))A5(t, a) — (1 — q)(A,(t, a) + (2, @)
ONi(t,a)  ONS(t,a)
ot ~ da

T ONi(t,a)  ON(t,a)
L fo Sa(t, a)[ - - + (4, a) + (1, a) + pp(a) + u (1, a))

T +
X Aj(t, a) — ui(t, a)Aq(t, a)]dadt + f f A, a)[ —~
0 0

+ (k(a) + y1(a) + p(@)A5(1, a) = b(@)A((1,0) + f Ba(a)S u(t, a)z2(@)A( (1, a)da
0

-q f Ba(a)as u(t, a)za(a)A5(t,a)da — (1 — @) f Sn(t, a)z2(a)A5(t, a)da
0 0

v

A, . .
— K@)A3(t, @) = (@At @) - (= - j: I,(t, b)db)Bs (@) A (t, O)]dadt

T pat ON;(t,a)  ON;(t,a) . .
+ f f I(z, a)[ S v + (r2(@) + pn(@)A5(t, a) — bu(a) A1 (2, 0)
0o Jo a

+ f Ba(a)S u(t, a)z2(a)A|(t,a)da — q f Ba(a)S u(t, a)z2(a)A5(t, a)da
0 0
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-(I-9) f: B2(a)S (8, a)z2(@)A5(t, a)da — ya(a)Ay(t, a)

A, . . T ONi(t,a)  ONi(t,a)
_(;_ f Iv(t,b)db),83(a)A5(t,O)]dadt+ fo f Rh(t,a)[— ia; - jﬁa

ON(t,b)  OAL(t,D)
ot ob

T +
+ w(@)A,(t, a) — by(a)A((t,0) + f f I(t, b)[ - + (U + us(2))
0o Jo

x AL(t, b) + (’;— —a") f: Bs(a)(@Ay(t, a) + Iy(t, a))daA’(t, 0)]dbd:

+

T a +
+ f [ f Buuy (1. a)ly (¢ a)da + f Bzuz(t)lz(t)db]dt.
0 0 0

Using the optimal values of the state variables, the above inequality can be expressed as
T at
0< f f L(t,@)| S (1. a)(A(t, @) — Aj(t, @) + By (t, a) |dadt
o Jo

T +
+ f f L(D)| = It D)A(, b) + Byuy(1)]dbdt.
0 0

Hence, the optimal control variable can be characterized as

S, a)(A((t,a) — Ny(t, a)) } }

ui(t,a) = min {hl , max {O,

B,
I:(t,b)AL(t, b
u5(f) = min {h2, max {0, M}},
B)
where u; € L*(Q) and 0 < u; < h;(i = 1,2). This finishes the proof. O

Subsequently, we confirm the existence of a unique optimal control strategy. Given the complexity
of finding control sequences and associated states that converge to the optimal controls and states in
the partial differential equation model with age structure, we resort to obtaining minimizing sequences
of approximate functions using Ekeland’s Principle [30] from [31]. Let us assume the existence of a
pair of control variables that minimize the following objective function:

Je(ur,up) = J(uy,up) + \/E(”Mf — |l ) + llu; — u2||L1(Q))-

Theorem 9. If (uf, u5) is the minimization sequence of J(uy, u), then

SE(AS — AS) — Veds IEAE — ebs
uj = min {ll,max {O, A B4) Ve 1}}, u5 = min {lz,max {0, %\/_2}}’
1 2

where the function 6; € L*(Q) such that |05| < 1(i = 1,2) for all (t,a) € Q.
The proof of this theorem is similar to Theorem 8 and is omitted here.
Theorem 10. There exists a unique optimal control (uj, u;) to minimize objective function J (uy, uy) if

T T -
B and 5 are sufficiently small.
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Proof. Define two functions by

SHAG = AY) - e

—

IEAY — ~ebs
5

0O1(#;) = min {h1 , max {0,

0>(ur) = min {hz, max {0,

basing on [31], taking into account both sets of control variables (u;, u,) and (i1, it;), along with the
Lipschitz properties of the state and adjoint variables, we can derive the following conclusions:

. K\ T R . KT R
101 (uy) = Q1 (@) < B%uul — i@y 1102G1) — Qa(@)]] < B%uuz — ol
1 2

given the L™ bounds of the state and its adjoint solution. Here, K; and K, are ascertained, correlating
with these bounds and the Lipschitz constants. Provided that 31] and 312 are sufficiently small, then

Ve ] Ve
—— |-l ——.
B, - K| T

—yéll <
ey — ]| < KT

This suggests that (uf, u5) converges to (uj, u3). Applying Ekeland’s principle, we can conclude that
Ty, u5) < <uf§geuj(”" u), as €—0.

The proof is completed. O

7. Numerical simulations

To better interpret the theoretical results and to analyze the impact of age structure and multiple
transmission routes on the spread of the disease, some numerical simulations are conducted. For this
purpose, the finite difference method is used to discretize the extended eigenline of model (2.3) as

(S ) — Salis j— 1))
Aa
+ 1 = DAD]S 4G, j)],

—(An(Q, j) = An(i, j— 1))
Aa

= [y1((j = DAa) + k((j = DAa) + pp((j = DAa) A4, j)],

—(In(, j) — LG, j— 1))
Aa

+k((j = DA@)A,G, J) = [y2((G = DAa) + pun((j = DAL, J')],

(Ru(i, j) — Ry(i, j — 1))
Aa

+y2((J = DA@)L(, j) = un((G = DARK(, )|,

Sui+ 1, ) =8, j) + Al[ = [22((j = DAa)(Cy + C3)

A+ 1, ) =Ax(G, ) + At[ +q22((j = DAa)(Cy + C2)84(, )

i+ 1, ) =L, j) + At[ + (1 = @)22((j = DAa)(Cy + C2)S (3, )

Ry(i + 1, j) =Ru(i, j) + At[_ +y1((J = DA@)A,(, j)
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—(L,G, ) — LG, j— 1))
Ab

LG+ 1,J) =1G, ) + o] ~ (i, )|
where C; = fooo Bi1(b)I,(t,b)db, C, = fooo Ba(a)(@Ay(t, a) + I,(t,a))da, and use the complex trapezoidal
formula for linear approximations. Then fix some basic parameters of model (2.3) as @ = 0.45, g =
0.6, k(a) = 1.5 x 1074(1 + sin(0.17a)), vi(a) = 0.38(1 + sin(0.17a)), y»(a) = 0.16(1 + sin(0.17a)),
Bi(a) = 4 x 10731 + sin(0.17a)), up(a) = é)(')(ila.

First, the effects of the probabilities of human-to-human (that is, B,(a)) and vector-to-human
(that is, z;(a)) on the basic reproduction number R, are discussed. According to the expression
for the reproduction number R, 5,(a) and z,(a) are positively correlated with Ry, which is shown
in Figure 1(a). In addition, from Figure 1(b), it also reveals that when fB,(a) < 0.1, z(a) =
0.1(1 + sin(0.1ma)), then Ry < 1. Therefore, appropriate use of some preventive measures (wearing
long clothes and long sleeves, vaccination, going to fewer places where people congregate, etc.) can
lead to a reduction in Ry, thus controlling the spread of vector-borne diseases.

(a) (b)

(¢ ))
))
))
))

P13

= - 0.08 0.1 o
o 0.02 '10-04 ©.06 o 0.01 0.02 0.08 0.04 0.05 0.06 0.07 0.08 0.09 0.1
(32 B2

Figure 1. Sensitivity of the main parameters on the basic reproduction number R,, where,
22(a) = 0.1(1 + sin(0.17a)), B1(b) = 7.5 X 107*(1 + sin(0.12b)), and B>(a) = 1.1 x 1074(1 +
sin(0.17a)).

Now, we choose B,(a) = 0.05(1 + sin(0.17a)), zx(a) = 0.1(1 + sin(0.17a)), B1(b) = 7.5 x 107*(1 +
sin(0.17h)), and B(a) = 1.1 x 107*(1 + sin(0.1xa)), the basic reproduction number R, ~ 0.4893 < 1
by direct calculation. From Theorem 3, we know that the disease-free steady state of model (2.6) is
globally asymptotically stable. In this scenario, the density distributions of the asymptomatic infected
individuals and infected vectors are shown in Figure 2(a) and (b), respectively. That is, the number
of infected individuals and vectors of infection in all age groups gradually approaches O as time ¢
increases. In addition, Figure 2(c) and (d) show that although the disease is ultimately extinct, the
distribution of infected individuals is still age-heterogeneous. Therefore, in the process of disease
prevention and control, the limited medical resources can be more reasonably deployed by fully
considering the age distribution characteristics of the infected.

However, if we change the transmission rates to z;(a) = 0.3(1 + sin(0.17a)), 51(b) = 0.0025(1 +
sin(0.17b)) and B,(a) = 0.03(1 + sin(0.17a)), then Ry ~ 2.606 > 1. According to Theorem 4, exists
the unique endemic steady state for model (2.6). The plots in Figure 3(a) and (b) represent that the
distributions of symptomatic infected individuals and infected vectors, respectively. Meanwhile, the
numerical simulation results indicated that the period and size of the disease outbreaks varied among
different age groups and are very closely related to the actual age of the individuals and the age of
infection of the vectors. Therefore, the age structure factor plays a crucial role in the spread of the
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vector-borne disease. As can be seen from the plots, I,,(¢, a) and I,(¢, b) tend to the endemic steady state
as ¢ tends to infinity for different initial values. In the same manner, as time approaches infinity, the
density distributions of S (¢, a), A,(t, a), and R, (¢, a) converge towards their respective endemic steady
state, indicating asymptotic stability. This implies that the disease is persistent.

(a) (b)

100C
0

0.4 0.18

=10
t=40
t=70
t=100

035 [ = 0.16 -

0.3

0.25

Ih(t,a)
(th)

0.2 F

0.15

=50
=100
=150
0.05 [ =200

0.1

o 10 20 30 40 50 60 70 80 o 0.05 0.1 0.15 0.2 0.25 0.3
a b

Figure 2. The disease-free steady state of model (2.6) is globally asymptotically stable with
Ry ~ 0.4893<1: (a) the density distribution of e,(t, a); (b) the density distribution of 1,(, b);
(c) the age distribution of I,(¢, a) varies over time; (d) the age distribution of 1,(¢, b) varies
over time.

(a) (b)

Figure 3. The existence and stability of the endemic steady state of model (2.6) with R, =~
2.606>1: (a) the density distribution of 7,(¢, a); (b) the density distribution of /,(z, b).

Finally, we consider the effect of the control strategy on the distribution of disease. For this
purpose we choose all control strengths to be constants (that is, u;(t,a) = u; and uy(t) = u, are
constants) and focus on characterizing the age distribution of those who contract the disease for the
same control intensity. The plots in Figure 4(a) and (b) show the effect of the control strategy on
symptomatic infected individuals and infected vectors, which shows that the total number of infected

AIMS Mathematics Volume 9, Issue 12, 36405-36443.



36439

individuals can be significantly reduced by increasing vaccine coverage (or awareness of personal
protection) in susceptible individuals and insecticide spraying of infected vectors. Further, the red
and blue curves in Figure 4(c) and (d) indicate the age distribution of infected hosts and infected
vectors, respectively, in the early stages of control (i.e., when ¢ is relatively small). Numerical
simulations show that vaccination rates (or personal protective measures) provide better protection for
younger populations, while mosquito eradication rapidly reduces the number of infected vectors. More
fundamentally, when discussing the impact of control measures on disease transmission, as depicted
in Figure 5(a), the peaks of infected hosts progressively diminished, and the total number of infected
hosts significantly decreased with the escalation of control measure u,; intensity from 0.1 to 0.3, and
then to 0.9. Additionally, Figure 5(b) illustrates that the number of infected vectors also gradually
decreased with the increasing intensity of control measure u,, which was varied from 0.15 to 0.25 and
ultimately to 0.95. Consequently, it is evident that the use of high-intensity control measures can lead
to a significant reduction in both the number of infected individuals and vectors.

(a) (b)

wio control
wio control 2 with control

[ ] with control

o 10 20 30 40 50 60 70 80 o 0.05 0.1 0.15 0.2 0.25 0.3
a b

Figure 4. The effects of the control strategies for disease transmission, where, the red
curve and blue curve are used to represent transmission without control and with control,
respectively: (a) the distribution of I,(t,a); (b) the distribution of I,(¢,b); (c) the age
distribution of /,(z, a) with and without control; (d) the age distribution of /,(¢, b) with and
without control.
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(a) (b)

u,=0.1
u,=0.3
u,=0.5
u,=0.7

u,=0.15

u,=0.35
u,=0.55
u,=0.75

u,=0.95

u,=0.9

60 80 100

100 150 200 250

Figure 5. Effects of different controls #; and u, on infected hosts and vectors, respectively:
(a) the effect of u; on I,,(¢, a); (b) the effect of u, on I,(z, b).

8. Conclusions

Considering the prevalence of asymptomatic infections and the distinct differences in social
activities among different age groups, in this paper, we construct a novel model that incorporates
physiological age and factors such as multiple transmission routes and asymptomatic infections, setting
our model apart from existing ones. Using linear approximation, the comparison principle, and Fatou’s
lemma, we derive the basic reproduction number, denoted as Ry. We demonstrate that the disease-free
steady state is globally asymptotically stable if Ry < 1. Conversely, under specific conditions, a unique
endemic steady state exists and is locally asymptotically stable when R, > 1. Furthermore, when
Ro > 1, the disease exhibits uniform persistence, which is a key focus of this paper.

In addition, we introduce two control measures, u;(f,a) and u,(f), representing vaccination or
personal protection for susceptible individuals and insecticide spraying for vectors, respectively, aimed
at disease control. This extension transforms our model into an optimal control problem involving
partial differential equations with multiple age structures. We establish the existence and uniqueness
of solutions to the optimal control problem and the associated equations for the control variables by
employing the Gateaux derivative. This approach is uncommon in the existing literature and represents
a significant contribution of this paper. Finally, the theoretical findings of this paper are substantiated
by numerical simulations, which confirm the impact of multiple transmission routes and age-structured
factors on the spread of vector-borne disease.

Nevertheless, there remains a substantial territory that warrants further exploration. While we have
delineated specific conditions for establishing the local asymptotic stability of the endemic steady state,
our numerical simulations suggest that these conditions may be unnecessary. Therefore, it is essential
to investigate methods for achieving local asymptotic stability of the endemic steady state without
imposing additional constraints. Furthermore, to conduct a rigorous theoretical analysis, this study has
excluded the influences of climate change variables—such as temperature, humidity, and rainfall—as
well as uncertainties regarding vector population size and behavior in the mathematical modeling.
Consequently, developing vector-borne disease models that incorporate multifactorial dynamics and
examining how various factors influence disease prevention and control strategies represent compelling
areas for future research.
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