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it showcases compelling applications, demonstrating how these derived polynomials may offer
meaningful solutions within specific engineering scenarios.
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1. Introduction and preliminaries

The investigation into the fusion of diverse polynomial types to generate inventive multi-variable
generalized polynomials is a contemporary and applied research field. This area of study is particularly
relevant due to the notable attributes inherent in these polynomials, which encompass recurrence
and explicit relationships, functional and differential equations, summation formulas, symmetric and
convolution properties, and determinant representations. The significance of these characteristics
extends across various academic domains, making multi-variable hybrid special polynomials a
compelling subject of exploration. One crucial aspect of these polynomials is their capacity to establish
recurrence and explicit relationships. This means that certain patterns or behaviors repeat, providing
researchers with a powerful tool for useful tool for comprehending and forecasting mathematical
phenomena. Additionally, the ability to formulate functional and differential equations using these
polynomials enhances their utility in solving complex mathematical problems. This feature is
especially valuable in applications where dynamic relationships or rates of change need to be modeled
and analyzed.

Summation formulas, another key attribute, allow for the concise representation of series or
sequences, simplifying complex mathematical expressions. The symmetric and convolution properties
of these polynomials add further versatility, enabling researchers to explore various mathematical
operations and manipulations. Moreover, the determinant representations of multi-variable hybrid
special polynomials open up new possibilities in linear algebra and matrix theory. The link
between polynomials and determinants offers a fresh perspective on solving systems of equations
and understanding the structural properties of mathematical objects. The practical applications of
these polynomials span a wide range of fields. In number theory, they contribute to the study of
integers and their properties, while in combinatorics, they find applications in counting and arranging
discrete structures. Classical and numerical analysis benefit from the versatility of these polynomials
in approximating functions and solving mathematical problems. Theoretical physics, with its intricate
mathematical descriptions of the physical world, also stands to gain from the application of multi-
variable hybrid special polynomials. These polynomials can provide elegant solutions to complex
equations arising in the realm of theoretical physics. Additionally, the field of approximation theory
benefits from the adaptability of these polynomials in representing functions with a high degree of
accuracy. This is particularly valuable in scenarios where precise mathematical models are essential,
such as in engineering, computer science, and data analysis.

In essence, the exploration of multi-variable hybrid special polynomials is not merely an abstract
pursuit but holds substantial promise for addressing real-world challenges and advancing our
understanding across a spectrum of scientific and mathematical disciplines. As researchers delve
deeper into this intricate realm, the potential for practical applications continues to grow, making it
a captivating and impactful avenue of study.

Several new categories of hybrid polynomials have been developed to harness their utility and
unlock their application potential. This endeavor aims to enrich further the mathematical tools available
for addressing complex challenges across a diverse spectrum of pure and applied mathematical
disciplines.

Polynomial sequences hold substantial significance across various domains, encompassing fields
like applied mathematics, theoretical physics, and approximation theory. Specifically, Bernstein
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polynomials of order n serve as fundamental building blocks for polynomials with degrees equal
to or less than n. Dattoli and their collaborators comprehensively examined Bernstein polynomials,
employing operational techniques to delve into their intricacies and properties [1]. In their exploration,
they ventured into the realm of Appell sequences, an expansive class encompassing renowned
polynomial sequences such as Euler polynomials, Bernoulli or Miller-Lee polynomials.

The exploration and thorough examination of novel classes of hybrid special polynomials associated
with Appell sequences, as evidenced in sources like [2–7], impart a critical role to these polynomials
across a diverse array of disciplines. This impact extends to fields such as engineering, biology,
medicine, and the physical sciences. The importance of these hybrid special polynomials is
emphasized by their distinctive features, which include their involvement in generating functions,
integral representations, series definitions, differential equations, and more. The identification and
understanding of innovative families of hybrid special polynomials, particularly those linked to
Appell sequences, mark a significant advancement in mathematical research. The references cited,
such as [2–8], serve as foundational works that contribute to the knowledge and exploration of
these specialized polynomials. The r-parametric forms and certain charecteristics and properties of
multivariable special polynomials are explored in [9–14].

In engineering, the application of hybrid special polynomials is noteworthy due to their versatile
characteristics. These polynomials play a crucial role in solving differential equations, providing
elegant solutions to complex engineering problems. The interplay between these polynomials and
generating functions is particularly valuable in engineering applications, where the ability to represent
functions concisely is essential. In the realm of biology, the implications of hybrid special polynomials
are diverse. Their involvement in series definitions allows for the succinct representation of biological
processes and phenomena. This can aid in modeling and understanding complex biological systems,
offering insights into patterns and relationships within biological data.

In the physical sciences, the significance of hybrid special polynomials is further accentuated. Their
role in differential equations proves instrumental in describing physical phenomena and predicting
behavior in various scientific domains. The use of series definitions and integral representations
contributes to the development of mathematical models that accurately represent physical processes.
The defining characteristics of these hybrid special polynomials, including their involvement in
generating functions, integral representations, series definitions, differential equations, and more,
underscore their versatility and applicability across diverse disciplines. As researchers delve deeper
into the intricacies of these polynomials, new avenues for application and discovery emerge, expanding
the influence of these mathematical entities in fields critical to human understanding and progress.

In various technological and scientific fields, challenges are frequently raised in the form of
differential equations, with solutions often taking the shape of special functions. Consequently, these
hybrid special polynomials prove invaluable in articulating and resolving challenges that arise in the
continually evolving landscape of scientific disciplines.

The generating function presented in [15] can be expressed as:

eh1t+h2t2+h3t3 =

∞∑
n=0

Dn(h1, h2, h3)
tn

n!
. (1.1)

This generating function corresponds to the 3-variable Hermite polynomials (3VHP) denoted as
Dn(h1, h2, h3).
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When setting h3 to zero, the 3VHP reduce to a set of polynomials known as the 2-variable Hermite
Kampé de Fériet polynomials (2VHKdFP) denoted as Dn(h1, h2). These 2VHKdFP polynomials are
well-documented in [16].

Furthermore, if we set h3 to zero, h1 to 2h1, and h2 to −1, the 3VHP transform into the classical
Hermite polynomials, represented as Dn(h1), as detailed in [17].

Furthermore, the set of polynomials denoted as D[m]
n (h1, h2, · · · , hm), commonly referred to as

multivariable Hermite Polynomials (MHP) [18], is defined by the following relation:

exp(h1ξ + h2ξ
2 + · · · + hmξ

m) =

∞∑
n=0

D[m]
n (h1, h2, · · · , hm)

ξn

n!
. (1.2)

The operational rule for these polynomials is expressed as:

exp

h2
∂2

∂2
h1

+ h3
∂3

∂3
h1

+ · · · + hm
∂m

∂m
h1

 hn
1 = D[m]

n (h1, h2, · · · , hm). (1.3)

Additionally, these polynomials can be represented in series form as:

D[m]
n (h1, h2, · · · hm) = n!

[n/m]∑
r=0

hr
m D

[m]
n−mr(h1, h2, · · · , hm−1)

r! (n − mr)!
. (1.4)

In the study described in [19], a unified formulation is introduced for a particular group
of polynomials referred to as the “Apostol type Frobenius Euler polynomials” (ATFEP). These
polynomials are formally represented by the denotation Kn(h1; λ; u), as defined in [20]. Let us review
the generative expression associated with these polynomials, which can be represented as follows:(

1 − u
λeξ − u

)
eh1ξ =

∞∑
n=0

Kn(h1; λ; u)
ξn

n!
, (1.5)

where, u ∈ C, u , 1.
When we set h1 to zero in the previous expression, it yields the Apostol-type Frobenius-Euler

numbers (ATFEN) denoted as Kn(λ; u) of order β, described as:(
1 − u
λeξ − u

)
=

∞∑
n=0

Kn(λ; u)
ξn

n!
. (1.6)

Moreover, when we set u to minus one, the Apostol-type Frobenius-Euler polynomials (ATFEP)
become Apostol-Euler polynomials denoted as An(h1; λ). Additionally, when we set λ to one, the
Apostol-Euler polynomials (AEP) transform into Euler polynomials represented as An(h1), as detailed
in [21]. Moreover, the ATFEP, when λ equals one, becomes the Frobenius-Euler polynomials denoted
as Kn(h1; u), as outlined in [22].

Fractional calculus is one of the fields of mathematical analysis that is remarkably growing.
Applications are feasible in a variety of disciplines, including probability theory, statistics, economics,
physics, biology, or electrochemistry.

The idea of fractional calculus, which entails the extension of integration to non-integer orders,
possesses a fascinating historical context. Its roots can be traced back to the early stages of
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differential calculus, notably in the latter part of 17th century when the distinguished mathematician
and philosopher Leibniz, in his rivalry with Newton, first proposed the concept of a fractional derivative
with an order of 1/2. However, it wasn’t until Liouville’s dedicated and thorough investigations
that a comprehensive exploration of this subject occurred, ultimately yielding precise and rigorously
conducted research.

The integration of integral transformations and specialized polynomials provides a robust and
efficient methodology for dealing with fractional derivatives. This approach has gained considerable
prominence and is recognized as a potent tool with widespread applicability across diverse industries.
By combining particular polynomials like Chebyshev, Hermite, or Laguerre polynomials with integral
transforms like Laplace or Fourier transforms, researchers and practitioners are able to develop efficient
methods for deriving solutions for fractional differential equations. Such techniques have demonstrated
their efficacy in various sectors, including engineering, finance, signal processing, and physics.

The fusion of integral transforms and specialized polynomials has emerged as a reliable method
in the realm of fractional calculus. The interest in this method is underscored by the historical
contributions of mathematicians and engineers, as evidenced in the published results of Oldham and
Widder [23, 24]. Fractional operators, a long-standing focus of mathematical inquiry, have been
effectively addressed using integral transforms, with roots tracing back to the seminal contributions
of Riemann and Liouville, as highlighted in academic literature [23, 24].

Notably, the seamless integration of integral transformations and specialized polynomials has been
acknowledged as a valuable technique, as demonstrated in works such as [25, 26]. These sources
emphasize the importance of this combined approach and provide further insights into its real-world
applications and theoretical advancements when handling fractional derivatives. Researchers and
practitioners have extensively explored the benefits of this technique, leading to a deeper understanding
of fractional calculus and its versatile applications.

In practical terms, this integrated methodology enables researchers and professionals to navigate
the complexities of fractional calculus with precision. By employing integral transforms alongside
specialized polynomials, such as Laguerre, Hermite, or Chebyshev polynomials, they can develop
efficient solutions for fractional differential equations. The versatility of these techniques is exemplified
by their successful application in diverse sectors. In engineering, for instance, the integrated approach
aids in modeling and solving complex problems. In finance, it facilitates the analysis of fractional
processes, while in signal processing, it contributes to the extraction of meaningful information from
signals. Furthermore, in physics, this methodology proves valuable in describing and predicting
fractional phenomena.

In conclusion, the fusion of integral transformations and specialized polynomials stands as a
reliable and effective strategy for addressing fractional derivatives. Its broad applicability across
various industries highlights its significance as a powerful tool in the hands of researchers and
professionals. This integrated approach not only facilitates the analysis and solution of fractional
differential equations but also contributes to advancing our understanding of fractional calculus and its
practical implications in diverse fields.

In [25], the authors explored the broader potential of integral transforms. Within their research,
they investigate the use of Euler’s integral to increase the range of applications for integral transforms
beyond their conventional boundaries. The Euler’s integral, represented as:
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q−µ =
1

Γ(µ)

∫ ∞

0
e−qξξµ−1dξ, min{Re(µ),Re(q)} > 0, (1.7)

provides a thorough basis for enhancing the versatility and effectiveness of integral transformations in
a variety of fields. Through the integration of Euler’s integral into the integral transform framework,
researchers are able to acquire the ability to address a wider range of complex mathematical equations
encountered across a range of fields. This enlarged framework provides fresh viewpoints on fractional
derivatives and their applications, inspiring creative solutions and methods of problem-solving.

This study highlights the potential for more progress in this area and provides practitioners
and researchers with a valuable instrument for dealing with difficult problems involving fractional
derivatives in a wider setting.

Furthermore, in the same study [25], it becomes evident that the following axioms hold true for first
and second-order derivatives:(

β −
∂

∂h1

)−µ
g(h1) =

1
Γ(µ)

∫ ∞

0
e−βξξµ−1 eξ

∂
∂h1 g(h1)dξ =

1
Γ(µ)

∫ ∞

0
e−βξξµ−1 g(h1 + ξ)dξ, (1.8)(

β −
∂2

∂h2
1

)−µ
g(h1) =

1
Γ(µ)

∫ ∞

0
e−βξξµ−1 e

ξ ∂2

∂h2
1 g(h1)dξ, (1.9)

these equations hold true for first and second-order derivatives, as demonstrated in their research.
An effective approach to dealing with fractional operators involves harnessing the synergy between

exponential operators and well-suited integral representations. Researchers and professionals can
efficiently manage fractional operators by capitalizing on the inherent properties of exponential
operators while selecting appropriate integral representations. This approach facilitates the exploration
of cutting-edge mathematical concepts and streamlines the precise analysis of fractional derivatives.
The utilization of exponential operators and specialized integral representations forms a robust
foundation for addressing fractional operators, ultimately yielding enhanced methods and solutions
in various mathematical and scientific domains.

The natural progression of certain aspects of hybrid special polynomials, achieved by incorporating
principles of monomiality, operational rules, and other relevant properties, is both evident and
beyond dispute. Monomiality first emerged in 1941 when Steffenson initially proposed the idea of
a poweroid [27], which was later improved by Dattoli [2]. These operational approaches remain in
active use across various domains, including classical optics, quantum mechanics, and mathematical
physics. Consequently, these methods are powerful and efficient research instruments.

Consequently, the fusion of multivariable Hermite polynomials D[m]
n (h1, h2, · · · , hm) defined

in (1.2) and Apostol-type Frobenius-Euler polynomials [28, 29] defined in (1.5), guided by the
principles of monomiality and operational rules, leads to the creation of a novel polynomial entity
known as multivariable Hermite-Apostol type Frobenius-Euler polynomials. These polynomials are
characterized by the generating relation:(

1 − u
λeξ − u

)
exp(h1ξ + h2ξ

2 + · · · + hmξ
m) =

∞∑
n=0

HK[m]
n (h1, h2, · · · , hm; λ; u)

ξn

n!
, (1.10)

accompanied by the operational rule:

exp
(
h2

∂2

∂h1
2 + h3

∂3

∂h1
3 + · · · + hm

∂m

∂h1
m

) {
F[m]

n (h1; λ; u)
}

= HK[m]
n (h1, h2, · · · , hm; λ; u). (1.11)

AIMS Mathematics Volume 9, Issue 6, 16297–16312.



16303

The remainder of the article unfolds as follows: The expanded version of multivariable Hermite-
Apostol type Frobenius-Euler polynomials (MHATFEP) is unveiled and scrutinized using the
monomiality principle and operational methodologies. Section 2 introduces these EMVHATFEP by
leveraging generating functions and operational definitions involving fractional operators. Moving on
to Section 3, we delve into the quasi-monomial attributes inherent to the EMVHATFEP. Additionally,
this section lays out the recurrence relations and summation formulas for these extended polynomials.
Section 4 offers practical applications through the examination of specific cases, and finally, the paper
concludes in the concluding section.

2. Extended multivariable Hermite Apostol type Frobenius Euler polynomials (EMVHATFEP)

The operational rule and generating function for the EMVHATFEP are the main topics of this
section. Fractional operators are used to introduce and study these polynomials. First we derive the
operational rule for these polynomials as the operational rule offers a method for performing algebraic
operations on the EMVHATFEP. First operational connection is demonstrated by the succeeding result:

Theorem 2.1. The following operational connection holds for EMVHAFEP

µHKn(h1, h2, h3, · · · , hm; λ; u; β):(
β −

(
h2
∂2

∂h2
1

+ h3
∂3

∂h3
1

+ · · · + hm
∂m

∂hm
1

))−µ
Kn(h1; λ; u) =

µHKn(h1, h2, h3, · · · , hm; λ; u; β). (2.1)

Proof. By substituting q with β −
(
h2

∂2

∂h2
1

+ h3
∂3

∂h3
1

+ · · · + hm
∂m

∂hm
1

)
in Eq (1.7) of Euler’s integral and

subsequently applying this modified equation to Kn(h1; λ; u), we obtain the following result:(
β −

(
h2
∂2

∂h2
1

+ h3
∂3

∂h3
1

+ · · · + hm
∂m

∂hm
1

))−µ
Kn(h1; λ; u)

=
1

Γ(µ)

∫ ∞

0
e−βξξµ−1 exp

(
h2ξ

∂2

∂h2
1

+ h3ξ
∂3

∂h3
1

+ · · · + hmξ
∂m

∂hm
1

)
Kn(h1; λ; u)dξ. (2.2)

As evident from Eq (1.11), the following result is achieved:(
β −

(
h2
∂2

∂h2
1

+ h3
∂3

∂h3
1

+ · · · + hm
∂m

∂hm
1

))−µ
Kn(h1; λ; u)

=
1

Γ(µ)

∫ ∞

0
e−βξξµ−1

HKn(h1, h2ξ, h3ξ, · · · , hmξ; λ; u)dξ. (2.3)

The new set of polynomials,
µHKn(h1, h2, h3, · · · , hm; λ; u; β), are introduced by utilising the

transformation given on the right-hand side of Eq (2.3). These polynomials are recognised as
Frobenius-Euler polynomials of the extended Hermite-Apostol type. Consequently, we make the
following connection:

µHKn(h1, h2, h3, · · · , hm; λ; u; β) =
1

Γ(µ)

∫ ∞

0
e−βξξµ−1

HKn(h1, h2ξ, h3ξ, · · · , hmξ; λ; u)dξ. (2.4)

Hence, by taking into account expressions (2.3) and (2.4), we confirm the validity of statement (2.1).
�
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Theorem 2.2. For the EMVHATFEP, denoted as
µHKn(h1, h2, h3, · · · , hm; λ; u; β), the provided

generating expression is valid and can be expressed as follows:

(1 − u) exp(h1w)
(λew − u) (β − (h2w2 + h3w3 + · · · + hmwm))µ

=

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; λ; u; β)
wn

n!
. (2.5)

Proof. By multiplying Eq (2.4) by wn

n! and then summing over all possible values of n, we can deduce
the following:

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; λ; u; β)
wn

n!

=

∞∑
n=0

1
Γ(µ)

∫ ∞

0
e−βξξµ−1

HKn(h1, h2ξ, h3ξ, · · · , hmξ; λ; u)
wn

n!
dξ.

Therefore, considering the expression (1.10) on the right-hand side of the preceding equation, we can
determine that:

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; λ; u; β)
wn

n!

=
(1 − u) exp(h1w)

(λew − u) Γ(µ)

∫ ∞

0
e−

(
β−(h2w2+h3w3+···+hmwm)

)
ξ ξµ−1dξ. (2.6)

By examining the integral expression (1.7), we can derive statement (2.5). �

3. Explicit forms and identities

Explicit forms in mathematics and science are crucial for their clarity and directness, revealing
underlying structures and aiding interpretation. They simplify calculations, support analytical insights,
and facilitate comparisons between objects. Essential for practical applications, they provide efficient
models for solving real-world problems, enhancing accessibility and usability in both theoretical
research and practical contexts. Engineers, physicists, and practitioners rely on explicit forms to
develop computationally efficient mathematical models, driving advancements across various fields
of science and engineering.

Continuing, we will now provide the detailed expression for the EMVHATFEP by presenting the
following results:

Theorem 3.1. The EMVHATFEP can be expressed in the following explicit form:

µHKn(h1, h2, h3, · · · , hm; λ; u; β) =

n∑
s=0

(
n
s

)
Ks(h1; λ; u) µHn−s(h2, h3, · · · , hm; β). (3.1)

Proof. The generative expression (2.5) can be represented in the following manner:

(1 − u) exp(h1w)
(λew − u) (β − (h2w2 + h3w3 + · · · + hmwm))µ

=
(1 − u)eh1w

(λew − u)
1

(β − (h2w2 + h3w3 + · · · + hmwm))µ
. (3.2)

AIMS Mathematics Volume 9, Issue 6, 16297–16312.



16305

This can be further represented as:

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; λ; u; β) =

∞∑
s=0

Ks(h1; λ; u)
ws

s!

∞∑
n=0

µHn(h2, h3, · · · , hm; β)
wn

n!
. (3.3)

By substituting n with n−s and applying the Cauchy product rule to the right-hand side of the preceding
expression, we can derive statement (3.1). �

Theorem 3.2. The EMVHATFEP adhere to the provided explicit expression:

µHKn(h1, h2, h3, · · · , hm; λ; u; β) =

n∑
s=0

(
n
s

)
Ks(λ; u) µHn−s(h1, h2, h3, · · · , hm; β). (3.4)

Proof. The generative expression (2.5) can be represented in the following manner:

(1 − u) exp(h1w)
(λew − u) (β − (h2w2 + h3w3 + · · · + hmwm))µ

=
(1 − u)

(λew − u)
eh1w

(β − (h2w2 + h3w3 + · · · + hmwm))µ
. (3.5)

This further can be rewritten as
∞∑

n=0
µHKn(h1, h2, h3, · · · , hm; λ; u; β) =

∞∑
s=0

Ks(λ; u)
ws

s!

∞∑
n=0

µHn(h1, h2, h3, · · · , hm; β)
wn

n!
. (3.6)

By substituting n with n−s and applying the Cauchy product rule to the right-hand side of the preceding
expression, we can derive statement (3.4). �

Looking ahead, as we examine the generative properties of the EMVHATFEP, denoted as
µHKn(h1, h2, h3, · · · , hm; λ; u; β), we can deduce the recurrence relations that govern these polynomials.
Recurrence relations represent mathematical formulas that define a multidimensional array or
sequence’s terms in a recursive manner. They allow us to relate each subsequent term in relation
to the ones that precede it. These relations prove particularly valuable when we aim to generate an
array or sequence’s values in a systematic manner, beginning with one or more initial terms.

By taking derivatives with respect to h1, h2, h3, · · · , hm, and β of the generative expression (2.5), we
can deduce the following recurrence relations for the multivariable Hermite-Apostol type Frobenius-
Euler polynomials (MVHATFEP)

µHKn(h1, h2, h3, · · · , hm; λ; u; β):

∂

∂h1

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
=n

µHKn−1(h1, h2, h3, · · · , hm; λ; u; β),

∂

∂h2

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
=µ n(n − 1)

µ+1HKn−2(h1, h2, h3, · · · , hm; λ; u; β)),

∂

∂h3

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
=µ n(n − 1)(n − 2)

µ+1HKn−3(h1, h2, h3, · · · , hm; λ; u; β),

...

∂

∂hm

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
=µ n(n − 1)(n − 2) · · · (n − m + 1)

µ+1HKn−m(h1, h2, h3, · · · , hm; λ; u; β),
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∂

∂β

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
= − µ

µHKn(h1, h2, h3, · · · , hm; λ; u; β). (3.7)

Upon examining the aforementioned relations, the following expressions are validated:

∂

∂h2

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
= −

∂3

∂h2
1∂β

µHKn(h1, h2, h3, · · · , hm; λ; u; β),

∂

∂h3

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
= −

∂4

∂h3
1∂β

µHKn(h1, h2, h3, · · · , hm; λ; u; β),

...

∂

∂hm

(
µHKn(h1, h2, h3, · · · , hm; λ; u; β)

)
= −

∂m+1

∂hm
1 ∂β

µHKn(h1, h2, h3, · · · , hm; λ; u; β). (3.8)

The operational framework established in Theorem 2.1 can be extended to various identities
associated with Frobenius-Euler polynomials, which have been extensively studied to derive the
EMVHATFEP denoted as

µHKn(h1, h2, h3, · · · , hm; λ; u; β). To accomplish this, we perform the

subsequent operation using the operator (O) defined as
(
β −

(
h2

∂2

∂h2
1

+ h3
∂3

∂h3
1

+ · · · + hm
∂m

∂hm
1

))−µ
on

identities that involve Frobenius-Euler polynomials Kn(h1; u) [30]:

uKn(h1; u−1) + Kn(h1; u) = (1 + u)
n∑

k=0

(
n
k

)
Kn−k(u−1)Kk(h1; u), (3.9)

1
n + 1

Kk(h1, u) + Kn−k(h1, u) =

n−1∑
k=0

(
n
k

)
n − k + 1

n∑
l=k

((−u)Kl−k(u)Kn−l(u) +2uKn−k(u)) Kk(h1, u)Kn(h1, u),

(3.10)

Kn(h1, u) =

n∑
k=0

(
n
k

)
Kn−k(u)Kk(h1, u), (n ∈ Z+). (3.11)

The EMVHATFEP, denoted as
µHKn(h1, h2, h3, · · · , hm; λ; u; β), are derived by applying the operator

(O) to both sides of the preceding equations:

u
µHKn(h1, h2, h3, · · · , hm; λ; u−1; β) +

µHKn(h1, h2, h3, · · · , hm; λ; u; β)

= (1 + u)
n∑

k=0

(
n
k

)
Kn−k(u−1)

µHKk(h1, h2, h3, · · · , hm; λ; u; β), (3.12)

1
n + 1 µHKk(h1, h2, h3, · · · , hm; u; β) +

µHKn−k(h1, h2, h3, · · · , hm; λ; u; β) =

n−1∑
k=0

(
n
k

)
n − k + 1

n∑
l=k

((−u)

Kn−l(u) Kl−k(u) + 2uKn−k(u))
µHKk(h1, h2, h3, · · · , hm; u; β)

µHKn(h1, h2, h3, · · · , hm; λ; u; β), (3.13)

µHKn(h1, h2, h3, · · · , hm; u; β) =

n∑
k=0

(
n
k

)
Kn−k(u)

µHKk(h1, h2, h3, · · · , hm; λ; u; β), (n ∈ Z+).

(3.14)
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4. Applications

In this section, we will derive particular special cases of the EMVHATFEP and establish their
corresponding outcomes:

Corollary 4.1. The EMVHATFEP can be transformed into the extended multivariable Hermite
Frobenius-Euler polynomials by setting λ = 1. Thus, by inserting λ = 1 into the left side of Eq (2.1),
we obtain the following operational relationship with the EMHFEP that result represented on the right
side as

µHKn(h1, h2, h3, · · · , hm; u; β):(
β −

(
h2
∂2

∂h2
1

+ h3
∂3

∂h3
1

+ · · · + hm
∂m

∂hm
1

))−µ
Kn(h1; u) =

µHKn(h1, h2, h3, · · · , hm; u; β). (4.1)

Corollary 4.2. The EMVHATFEP can be reduced to the extended multivariable Hermite-Euler
polynomials by setting λ = 1 and u = −1. Thus, by substituting λ = 1, u = −1 in the left side
of Eq (2.1), the following operational relationship is established with the resulting EMHEP in the right
side, represented as

µHKn(h1, h2, h3, · · · , hm; β):(
β −

(
h2
∂2

∂h2
1

+ h3
∂3

∂h3
1

+ · · · + hm
∂m

∂hm
1

))−µ
Kn(h1) =

µHKn(h1, h2, h3, · · · , hm; β). (4.2)

Corollary 4.3. By setting m = 2, the EMVHATFEP can be reduced to the extended 2-VHAFEP.
Consequently, m = 2 is substituted in the left side of Eq (2.1) to generate the operational
relationship that follows, with the resulting extended 2-VHAFEP being represented in the right side
as

µHKn(h1, h2; λ; u; β): (
β −

(
h2
∂2

∂h2
1

))−µ
Kn(h1; λ; u) =

µHKn(h1, h2; λ; u; β). (4.3)

Corollary 4.4. If λ = 1 and m = 2 are set, the EMVHATFEP can be reduced to the extended 2-
variable Hermite Frobenius-Euler polynomials. As a result, we create the operational relationship
shown below by changing λ = 1 and m = 2 in the left side of Eq (2.1) with the extended 2-variable
Hermite Frobenius-Euler polynomials that result represented in the right side as

µHKn(h1, h2; u; β):(
β −

(
h2
∂2

∂h2
1

))−µ
Kn(h1; u) =

µHKn(h1, h2; u; β). (4.4)

Corollary 4.5. If we set m = 2, h1 = 2h1, and h2 = −1, we may reduce the complexity of the
EMVHATFEP to the extended Hermite-Apostol type Frobenius-Euler polynomials. Thus, by inserting
m = 2, h1 = 2h1, and h2 = −1 into the left side of Eq (2.1), we create the subsequent operational
relationship and express the resulting EHAFEP in the right side as

µHKn(h1, h2; λ; u; β):(
β −

(
−
∂2

∂h2
1

))−µ
Kn(h1; λ; u) =

µHKn(h1, λ; u; β). (4.5)
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Corollary 4.6. By setting m = 2, λ = 1, h1 = 2h1, and h2 = −1, the EMVHATFEP can be reduced to
the extended Hermite Frobenius-Euler polynomials. Thus, by inserting m = 2, λ = 1, h1 = 2h1, and
h2 = −1 into the left side of Eq (2.1), we create the subsequent operational relationship and express
the resulting EHFEP in the right side as

µHKn(h1; u; β):(
β −

(
−
∂2

∂h2
1

))−µ
Kn(h1; u) =

µHKn(h1; u; β). (4.6)

Corollary 4.7. If λ = 1, the EMVHATFEP can be reduced to the extended multivariable Hermite
Frobenius-Euler polynomials. As a result, we create the generating expression that follows by using
λ = 1 in the left side of Eq (2.5), with the EMHFEP that arise represented in the right side as

µHKn(h1, h2, h3, · · · , hm; u; β):

(1 − u) exp(h1w)
(ew − u) (β − (h2w2 + h3w3 + · · · + hmwm))µ

=

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; u; β)
wn

n!
. (4.7)

Corollary 4.8. If λ = 1 and u = −1 are set, the EMVHATFEP can be reduced to the extended
multivariable Hermite-Euler polynomials. Thus, we create the generating expression that follows by
substituting λ = 1 and u = −1 in the left side of Eq (2.5), with the EMHEP that develop represented in
the right side as

µHKn(h1, h2, h3, · · · , hm; β):

(2) exp(h1w)
(ew + 1) (β − (h2w2 + h3w3 + · · · + hmwm))µ

=

∞∑
n=0

µHKn(h1, h2, h3, · · · , hm; β)
wn

n!
. (4.8)

Corollary 4.9. If m = 2, the EMVHATFEP can be reduced to the extended 2-VHAFEP. Thus, we create
the generating expression that follows by changing m = 2 in the left side of Eq (2.5), with the extended
2-VHAFEP that results represented in the right side as

µHKn(h1, h2; λ; u; β):

(1 − u) exp(h1w)
(λew − u) (β − (h2w2))µ

=

∞∑
n=0

µHKn(h1, h2; λ; u; β)
wn

n!
. (4.9)

Corollary 4.10. If λ = 1 and m = 2 are set, the EMVHATFEP can be reduced to the extended 2-
variable Hermite Frobenius-Euler polynomials. As a result, we create the generating expression that
follows by setting λ = 1 and m = 2 in the left side of Eq (2.5), with the extended 2-variable Hermite
Frobenius-Euler polynomials that result represented in the right side as

µHKn(h1, h2; u; β):

(1 − u) exp(h1w)
(ew − u) (β − (h2w2))µ

=

∞∑
n=0

µHKn(h1, h2; u; β)
wn

n!
. (4.10)

Corollary 4.11. If m = 2, h1 = 2h1, and h2 = −1 are specified, the EMVHATFEP can be reduced to the
extended Hermite-Apostol type Frobenius-Euler polynomials. As a result, we construct the generating
expression that follows by replacing m = 2, h1 = 2h1, and h2 = −1 in the left side of Eq (2.5), with the
extended 2-variable Hermite Frobenius-Euler polynomials that occur represented in the right side as

µHKn(h1, h2; λ; u; β):
(1 − u) exp(2h1w)

(λew − u) (β − (−w2))µ
=

∞∑
n=0

µHKn(h1; λ; u; β)
wn

n!
. (4.11)
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Corollary 4.12. By setting m = 2, λ = 1, h1 = 2h1, and h2 = −1, the EMVHATFEP can be reduced
to the extended Hermite Frobenius-Euler polynomials. Thus, by inserting m = 2, λ = 1, h1 = 2h1, and
h2 = −1 into the left side of Eq (2.5), we create the subsequent operational relationship and express
the resulting EHFEP on the right side as

µHKn(h1; u; β):

(1 − u) exp(2h1w)
(ew − u) (β − (−w2))µ

=

∞∑
n=0

µHKn(h1; u; β)
wn

n!
. (4.12)

5. Conclusions

Multivariable special polynomials play an indispensable role in mathematical analysis,
encompassing the examination of functions, limits, continuity, and calculus in multiple variables.
These polynomials serve as a versatile framework for expressing and scrutinizing multivariable
functions, allowing mathematicians to delve into their properties, encompassing characteristics like
differentiability, integrability, and convergence.

This study introduces and investigates the multivariable Hermite-Apostol type Frobenius-Euler
polynomials, employing the monomiality principle and operational techniques. Section 2 unfolds the
extended polynomials, which are derived via generating functions and operational definitions utilizing
fractional operators, resulting in the proof of several critical results. In Section 3, we delve into
the quasi-monomial properties of these polynomials, simultaneously establishing recurrence relations
and summation formulae. This research article significantly contributes to our comprehension of the
multivariable Hermite-Apostol type Frobenius-Euler polynomials and their prospective applications
within mathematical and scientific realms.

The multivariable Hermite Apostol type Frobenius-Euler polynomials provide a stable platform
for future inquiry, allowing for the analysis of numerous algebraic and analytical features, including
differential equations and orthogonality. These adaptable polynomials have several uses in the domains
of engineering, physics, statistical physics, quantum mechanics, and mathematical physics. The
robustness of this method is strengthened by the recurrence relations and the generating functions
that are established regarding such polynomials. This leads to fresh insights into the properties of these
polynomials and their possible uses in physics and related fields.

When it comes to developing new families of special functions and identifying characteristics
associated with both common and generalised special functions, operational procedures prove to be
extremely effective tools. Solving partial differential equation families, such the D’Alembert and
Heat forms, becomes simpler when these techniques are applied. When the concept of monomiality
is combined with the method presented in this article, a wide range of physical problems involving
various types of partial differential equations can be analysed.

In future research projects, the factorization method can be used to investigate families of
differential equations related to these polynomials. Integral equations could similarly be investigated
employing this method. Moreover, future studies might delve into extended forms of these polynomials
through the utilization of fractional operators.
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