Research article

Logarithmic type predictive estimators under simple random sampling

  • Received: 01 February 2022 Revised: 26 March 2022 Accepted: 13 April 2022 Published: 21 April 2022
  • MSC : 62D05

  • This study introduces a novel predictive estimation approach of the population mean based on logarithmic type estimators as predictor under simple random sampling. The bias and mean square error of the proffered predictive estimators are examined to the approximation of order one. The efficiency conditions are obtained and the performance of the proffered predictive estimators is examined regarding the contemporary predictive estimators existing till date. Further, a broad computational study is also administered utilizing few real and artificially rendered symmetric and asymmetric populations to exemplify the theoretical results.

    Citation: Shashi Bhushan, Anoop Kumar, Md Tanwir Akhtar, Showkat Ahmad Lone. Logarithmic type predictive estimators under simple random sampling[J]. AIMS Mathematics, 2022, 7(7): 11992-12010. doi: 10.3934/math.2022668

    Related Papers:

  • This study introduces a novel predictive estimation approach of the population mean based on logarithmic type estimators as predictor under simple random sampling. The bias and mean square error of the proffered predictive estimators are examined to the approximation of order one. The efficiency conditions are obtained and the performance of the proffered predictive estimators is examined regarding the contemporary predictive estimators existing till date. Further, a broad computational study is also administered utilizing few real and artificially rendered symmetric and asymmetric populations to exemplify the theoretical results.



    加载中


    [1] W. G. Cochran, The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce, J. Agr. Sci., 30 (1940), 262–275. http://dx.doi.org/10.1017/S0021859600048012 doi: 10.1017/S0021859600048012
    [2] D. S. Robson, Applications of multivariate polykays to the theory of unbiased ratio-type estimation, J. Am. Stat. Assoc., 52 (1957), 511–522. http://dx.doi.org/10.1080/01621459.1957.10501407 doi: 10.1080/01621459.1957.10501407
    [3] S. Bahl, R. K. Tuteja, Ratio and product type exponential estimators, J. Inform. Optim. Sci., 12 (1991), 159–164. https://doi.org/10.1080/02522667.1991.10699058 doi: 10.1080/02522667.1991.10699058
    [4] S. Bhushan, A. Kumar, S. Singh, S. Kumar, An improved class of estimators of population mean under simple random sampling, Philippine Statist., 70 (2021), 33–47.
    [5] M. Mahdizadeh, E. Zamanzade, Kernel-based estimation of $P(X>Y)$ in ranked set sampling, SORT Stat. Oper. Res. T., 1 (2016), 243–266.
    [6] M. Mahdizadeh, E. Zamanzade, Interval estimation of $P(X < Y)$ in ranked set sampling, Comput. Stat., 33 (2018), 1325–1348. https://doi.org/10.1007/s00180-018-0795-x doi: 10.1007/s00180-018-0795-x
    [7] E. Zamanzade, M. Mahdizadeh, Entropy estimation from ranked set samples with application to test of fit, Rev. Colomb. Estad., 40 (2017), 223–241. https://doi.org/10.15446/RCE.V40N2.58944 doi: 10.15446/RCE.V40N2.58944
    [8] M. Mahdizadeh, E. Zamanzade, Reliability estimation in multistage ranked set sampling, REVSTAT Stat. J., 15 (2017), 565–581.
    [9] M. Mahdizadeh, E. Zamanzade, Estimation of a symmetric distribution function in multistage ranked set sampling, Stat. Papers, 61 (2020), 851–867. https://doi.org/10.1007/s00362-017-0965-x doi: 10.1007/s00362-017-0965-x
    [10] S. Bhushan, A. Kumar, On optimal classes of estimators under ranked set sampling, Commun. Stat. Theor. M., 51 (2020), 2610–2639. https://doi.org/10.1080/03610926.2020.1777431 doi: 10.1080/03610926.2020.1777431
    [11] S. Bhushan, A. Kumar, Log type estimators of population mean under ranked set sampling, Predictive Analyt. Statist. Big Data: Concepts Model., 28 (2020), 47–74. https://doi.org/10.2174/9789811490491120010007 doi: 10.2174/9789811490491120010007
    [12] S. Bhushan, A. Kumar, An efficient class of estimators based on ranked set sampling, Life Cycle Reliab. Saf. Eng., 11 (2022), 39–48. https://doi.org/10.1007/s41872-021-00183-y doi: 10.1007/s41872-021-00183-y
    [13] D. Basu, An essay on the logical foundation of survey sampling, Part I, 1971.
    [14] S. K. Srivastava, Predictive estimation of finite population mean using product estimator, Metrika, 30 (1983), 93–99. https://doi.org/10.1007/BF02056907 doi: 10.1007/BF02056907
    [15] H. P. Singh, R. S. Solanki, A. K. Singh, Predictive estimation of finite population mean using exponential estimators, Statistika, 94 (2014), 41–53.
    [16] A. Singh, G. K. Vishwakarma, R. K. Gangele, Improved predictive estimators for finite population mean using Searls technique, J. Stat. Manage. Syst., 22 (2019), 1555–1571. https://doi.org/10.1080/09720510.2019.1630939 doi: 10.1080/09720510.2019.1630939
    [17] S. Bhushan, P. Jaiswal, S. Pandey, An improved predictive approach for estimation of population mean, IJRASET, 8 (2020), 251–256. https://doi.org/10.22214/ijraset.2020.31389 doi: 10.22214/ijraset.2020.31389
    [18] S. Bhushan, A. Kumar, Predictive estimation approach using difference and ratio type estimators in ranked set sampling, J. Comput. Appl. Math., 410 (2022), 114214. https://doi.org/10.1016/j.cam.2022.114214 doi: 10.1016/j.cam.2022.114214
    [19] S. Bhushan, R. Gupta, S. K. Pandey, Some log-type classes of estimators using auxiliary information, Int. J. Agric. Stat. Sci., 11 (2015), 487–491.
    [20] D. T. Searls, The utilization of a known coefficient of variation in the estimation procedure, J. Am. Stat. Assoc., 59 (1964), 1225–1226. https://doi.org/10.1080/01621459.1964.10480765 doi: 10.1080/01621459.1964.10480765
    [21] S. Bhushan, A. Kumar, Novel log type class of estimators under ranked set sampling, Sankhya B, 2021, 1–27. https://doi.org/10.1007/s13571-021-00265-y doi: 10.1007/s13571-021-00265-y
    [22] S. Singh, Advanced sampling theory with applications: How Michael selected Amy, Kluwer Academic Publishers, 2003.
    [23] M. N. Murthy, Sampling: Theory and methods, Statistical Publishing Society, 1967.
    [24] C. E. Sarndal, B. Swensson, J. Wretman, Model assisted survey sampling, Springer Science & Business Media, 2003.
    [25] C. Kadilar, H. Cingi, Ratio estimators in stratified random sampling, Biomed. J., 45 (2003), 218–225. https://doi.org/10.1002/bimj.200390007 doi: 10.1002/bimj.200390007
    [26] S. Singh, S. Horn, An alternative estimator for multi-character surveys, Metrika, 48 (1998), 99–107. https://doi.org/10.1007/PL00020899 doi: 10.1007/PL00020899
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1548) PDF downloads(92) Cited by(5)

Article outline

Figures and Tables

Figures(6)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog