Citation: Ling Zhu. Completely monotonic integer degrees for a class of special functions[J]. AIMS Mathematics, 2020, 5(4): 3456-3471. doi: 10.3934/math.2020224
[1] | A.G. Ibrahim, A.A. Elmandouh . Existence and stability of solutions of ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628 |
[2] | Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357 |
[3] | Rajesh Dhayal, Muslim Malik, Syed Abbas . Solvability and optimal controls of non-instantaneous impulsive stochastic neutral integro-differential equation driven by fractional Brownian motion. AIMS Mathematics, 2019, 4(3): 663-683. doi: 10.3934/math.2019.3.663 |
[4] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[5] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[6] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses. AIMS Mathematics, 2021, 6(5): 4474-4491. doi: 10.3934/math.2021265 |
[7] | Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477 |
[8] | Omar Kahouli, Saleh Albadran, Zied Elleuch, Yassine Bouteraa, Abdellatif Ben Makhlouf . Stability results for neutral fractional stochastic differential equations. AIMS Mathematics, 2024, 9(2): 3253-3263. doi: 10.3934/math.2024158 |
[9] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536 |
[10] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
Fractional differential equations (FDEs) are an effective mathematical tool to model and analyze many real life problems; it has been used by researchers and scientists to get better results than the integer order differential equations. Fractional order differential equations offer a superior framework for capturing the intricate dynamics of real-world phenomena compared to their integer-order counterparts. This superiority stems from the unique ability of fractional integrals and derivatives to account for the inherent hereditary and memory characteristics present in diverse processes and materials. By harnessing these fractional operators, models can more accurately depict the nuanced behaviors observed in nature, thereby enhancing our understanding and predictive capabilities across a wide range of disciplines and applications. Many fractional derivatives, including Caputo derivative, Atangana-Baleanu derivative, Coimbra derivative, and Riemann-Liouville (R-L) derivative, are frequently used to examine FDEs and fractional order stochastic differential equations (SDEs). In a similar vein, the Hilfer fractional derivative (HFD), which was just recently used to do so, was developed by Hilfer [21], which is a generalized version of R-L and Caputo derivatives. In actuality, fractional derivative and integrals indicate greater accuracy than integral models and also depict broader physical applications in seepage, flow in porous media, nanotechnology, fluid dynamics and traffic models [6,7,12,22,24,28,31].
SDEs are the natural extension of deterministic systems. SDEs with impulses arise from many mathematical models of physical phenomena in different scientific fields for example, technology, physics, biology, economics, etc. They are important from the viewpoint of applications since they incorporate randomness into the mathematical description of the phenomena and provide a more accurate description of it. Certainly, in various fields like economics, bioengineering, chemistry, medicine, and biology, we often encounter situations where things change suddenly at specific points in time [5,23,29,32]. These abrupt changes can be explained by what we call "impulsive effects." These impulsive effects are like sudden pushes that happen at certain moments and have a big impact on the system, being studied. These pushes play a crucial role in understanding and modeling how things change in the aforementioned diverse fields. For the mathematical models of such phenomena, finding their solution is a challenging task. As a result, Boundani et al. [8,9] presented some specific conditions that help us to determine whether certain mathematical equations, involving randomness, can have solutions. These equations involve functional differential equations and a type of random behavior, called fractional Brownian motion.
In [20], Hernandez and O'Regan introduced non-instantaneous (NI) impulses. Many researchers have utilized these impulses and studied the corresponding dynamical systems [3,4,27,36,39]. To better understand NI impulses, we can think about human blood sugar levels. When they have too much or too little, glucose they get insulin medication through the bloodstream, in fact it doesn't work instantly but takes some time to be absorbed [37]. This gradual effect is like NI, where the impact lasts for a while in many real situations. Sudden changes don't explain things well. For instance, in the treatment of diseases with medication, we need to describe how things change over time more smoothly. That's where NI impulsive differential equations come in handy. They help us to model these gradual changes, like how drugs affect the body in pharmacotherapy.
Among the qualitative behaviors of different physical systems, different types of stabilities are the essential ones. One of these types of stabilities is Ulam-Hyers (UH) and Ulam-Hyers-Rassias (UHR) stability [11,16,26,30,33].
In the literature, most of the results related to fractional stochastic differential equations (FSDEs) are given over infinite dimensional spaces [1,2,13,18,19,25,32,35,38], and very few have looked at similar results in finite spaces. There is no prior work on the specific topic of non-integers order impulses in finite-dimensional equations to the problem of fractional neutral SDEs including both noises. In FSDEs incorporating both retarded and advanced arguments, a significant characteristic emerges: The rate of change of the system at the present moment is influenced not only by its past history but also by its anticipated future states. This feature underscores the intricate interplay between past, present, and future dynamics, where the system's behavior is shaped by a combination of its memory effects and anticipatory responses.
In the current manuscript, we investigate the following ψ-Hilfer fractional stochastic equation (HFSE):
Dγ,βψ(ε)[Γ(ε)−h(ε,Γ(ε))]=AΓ(ε)+Δ(ε,Γ(ε),Dγ,βψ(ε)Γ(ε))+∫ε0g(s,Γ(s),Dγ,βψ(ε)Γ(ε))dB(s)+∫ε0λ(s,Γ(s),Dγ,βψ(ε)Γ(ε))dBH(s),ε ∈(sk,εk+1]⊂J′:=(0,b],k=0,1,2,…,m,Γ(ε)=hk(ε,Γ(ε)),ε∈(εk,sk],k=1,2,…,m,I1−v0+Γ(ε)/ε=0=Γ0,v=γ+β−γβ,Γ(ε)=ϕ(ε),ε∈[0−r,0],Γ(ε)=φ(ε),ε∈[b,b+h], | (1.1) |
where Dγ,βψ(ε) is the ψ– Hilfer FD of order 0<γ<1 and of type 0<β≤1. Let J:=[0,b], b>0. The state vector Γ∈Rn, A∈Rn×n and nonlinear functions h : J×Rn⟶Rn, Δ:J×Rn⟶Rn, g:J×Rn⟶Rn×n, λ:J×Rn⟶Rn×n, and hk:J×Rn⟶Rn are measurable and bounded functions. Also, Γ0 is F0 measurable Rn-valued stochastic variable and B is an n-dimensional Wiener process.
Based on the value of H, the following kinds of the fractional Brownian motion (fBm) process exist:
(1) if H=12, then the process is a Brownian motion or a Wiener process exists;
(2) if H>12, then the increment of the process is positively correlated;
(3) if H<12, then the increment of the process is negatively correlated.
The contributions of this paper are described as below:
● Nonlinear ψ-HFSE is considered in Rn.
● The existence and uniqueness results are established by using the standard Banach contraction principle.
● The weaker sufficient conditions are derived by using the generalized Schaefer FPT for the system with measure of non-compactness (MNC).
● UHR stability results are derived for ψ-HFSE with NI impulse.
● An example is provided for the theoretical results.
This paper is structured as follows: In Section 2, we present a number of lemmas and some fundamental definitions for fractional calculus. Section 3 derives the solution representation of ψ-Hilfer fractional SDEs with NI impulses. To demonstrate the key results, the generalized Schaefer's and contraction mapping principles are used in Section 4. In Section 5, UHR stability of a ψ-HFSE is discussed. Example is demonstrated for the validity of theoretical results in Section 6.
Notations:
● (Ω,F,P) represents the complete probability space along a probability measure P on Ω.
● B(ε) and BH(ε) denote, respectively, the n-dimensional Brownian motion and fBm with Hurst index 12<H<1.
● {Fε|ε∈J} represents the filtration generated by {B(ε):0≤s≤ε}.
● L2(Ω,Fε,P,Rn) : = L2(Ω,Rn) is the space of all Fε-measurable square integrable random variables with values in Rn.
Let Jk = (εk,εk+1], k=1,2,…,m be such that impulse times satisfy 0 = ε0 = s0<ε1<s1<ε2<⋯<εm≤sm<εm+1 = b. Let C(J,L2(Ω,Rn)) denote Cn(J) and be the Banach space of all continuous maps from J into L2(Ω,Rn) of Fε-adapted square integrable functions Γ(ε) and for its norm supE||Γ(ε)||2<∞.
Define the space
Y=PCvn(J)=PCvn(J,L2(Ω,Rn))={Γ:J→L2(Ω,Rn),Γ/Jk∈Cn(Jk,L2(Ω,Rn)), |
and there exist Γ(ε−k) and Γ(ε+k) with Γ(εk)=Γ(ε−k), k=1,…,m, endowed with the norm
||Γ||2Y=maxk=0,1,…,msupε∈Jk{E||(ε−εk)(1−v)Γ(ε)||}}. |
Clearly, Y is a Banach space.
Lemma 2.1. [39] Let p≥2 and f∈Lp(J,Rn×n) such that E|∫b0f(s)dB(s)|p<∞, then
E|∫b0f(s)dB(s)|p≤(p(p−1)2)p2bp−22E∫b0|f(s)|pds. |
Lemma 2.2. [10] Let φ:J→L02 satisfy ∫b0||φ(s)||2L02ds<∞, then we get
E||∫ε0φ(s)dBH(s)||2≤2Hε2H−1∫ε0E||φ(s)||2L02ds. |
Definition 2.1. [17] The generalized ψ-Hilfer FD of order 0<γ<1 and of type 0≤β≤1 is represented by
Dγ,βψ(t)f(t)=Iβ(n−γ)ψ(t)(1ψ′(t).ddt)mI1−β(n−γ)ψ(t)f(t). |
Definition 2.2. [10] Let z be a bounded linear operator. The two parameter Mittage-Leffler (M-L) function is defined by
Mγ,β(z)=∞∑r=0zrΓ(rγ+β),γ,β>0,z∈C. |
One of the interesting properties of the M-L function, related with their Laplace integral, is given by
∫∞0e−sεεβ−1Mγ,β(±aεγ)dε=sγ−β(sγI∓a). |
That is
L{εβ−1Mγ,β(±aεγ)}(s)=sγ−β(sγI∓a). |
Lemma 2.3. [17] For γ∈(n−1,n], β∈[0,1], the following Laplace formula for the ψ-Hilfer derivative is valid:
Lψ{0Dγ,βψ(t)f(t)}=sγLψ{f(t)}−m−1∑n=0sm(1−v)+γβ−n−1(0I(1−v)(m−β)−nψ(t)f)(0). |
Corollary 2.1. [17] If f is a function whose classical Laplace transform is F(s), then the generalized Laplace transform of the function f∘ψ=f(ψ(t)) is also F(s):
L{F(s)}=F(s)⇒L{f(ψ(ε))}=F(s). |
Example 2.1. [17]
(a)Lψ{(ψ(ε)μ)}=Γ(μ+1)sμ+1,fors>0.(b)Lψ{ea(ψ(ε))}=1s−a,fors>a.(c)Lψ{Mμ(A(ψ(ε))μ)}=sμ−1sμ−A.(d)Lψ{(ψ(ε))μ−1Mμ,μ(A(ψ(ε))μ)}=1sμ−A,forRe(μ)>0and |Asμ|<1. |
Example 2.2. Assume that Re(μ)>0 and |Asμ|<1. If Mγμ,v denotes the Prabhakar function, then we have
Lψ{(ψ(ε))v−1Mγμ,v(A(ψ(ε))μ)}=L{ψ(ε)v−1Mγμ,v(A(ψ(ε)μ))}=sμγ−v(sμ−A)γ. |
Consider the linear deterministic system, which is represented in the following form:
Dγ,βψ(ε)[Γ(ε)−h(ε,Γ(ε))]=AΓ(ε)+Δ(ε,Γ(ε)),I1−v0+Γ(ε)/ε=0=Γ0,v=γ+β−γβ. |
By the Laplace transformation, we get
sγˆΓ(s)−ˆh(s)−s−β(1−γ)(Γ(0)−h(ε,0))=AˆΓ(s)+ˆΔ(s),(sγI−A)(ˆΓ(s))=s−β(1−γ)(Γ(0)−h(ε,0))+ˆh(s)+ˆΔ(s),ˆΓ(s)=s−β(1−γ)(sγI−A)[Γ(0)−h(ε,0)]+1(sγI−A)ˆh(s)+1(sγI−A)ˆΔ(s), |
where I is the identity matrix.
Γ(s)=Lψ−1s−β(1−γ)(sγI−A)[Γ(0)−h(ε,0)]+Lψ−11(sγI−A)ˆh(s)+Lψ−11(sγI−A)ˆΔ(s). |
Substituting the LψT of the M-L function, one can obtain that
Γ(ε)=ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds. |
Therefore, the solution of (1.1) is given as follows:
Γ(ε)={Γ(ε)=ϕ(ε),ε∈[0−r,0],Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(ε)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(ε)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ((η,γ(η))),Dγ,βψ(ε)Γ(ε)dBH)ds,εϵ(sk,εk+1],Γ(ε)=ϕ(ε),ε∈[b,b+h]. |
Definition 3.1. [40] The set S is called a quasi-equicontinuous in T if, for ε > 0, there exists a δ > 0, such that if Γ∈S,K∈N,τ1,τ2∈TK⋂T, and |τ2−τ1|<δ, then |Γ(τ2)−Γ(τ1)|<ε.
Lemma 3.1. [34] The set S⊂PC(J,Rn) is relatively compact if
(i) S is uniformly bounded, i.e., ||Γ||PCk for each Γ∈S and some k>0;
(ii) S is quasi-equicontinous in T.
Definition 3.2. [14] An operator T : Z→Z is said to be χ-condensing of any bounded set B of Z with χ-condensing(B) > 0, χ(T(B))<χ(B), where
χ(B)=inf{k>0,B is covered by a finite number of sets of diameter ≤k} |
is Kuratowskii MNC of a bounded set B of Z.
Now, we state the generalized Schaefer's type FPT with χ-condensing operators.
Theorem 3.1. [15] Let T : Z→Z be an operator and Z be a separable Banach space satisfying
(A1) T is χ-condensing and continuous.
(A2) The set S = {Γ∈Z:Γ=δT(Γ) for some 0<δ<1} is bounded, then T has a fixed point.
For convenience, define the following:
M1=supξ∈J||Mγ,v(A(ψ(ε))γ)||2;M2=supξ∈J||Mγ,γ(A(b−ψ(ε))γ)||2. |
To derive the existence result, we imposed the following assumptions:
(H1) The functions Δ,h,g,λ, and hk k=1,2,…,m are Lipschitz continuous.
(1) E||h(ε,u1)−h(ε,u2)||2 ≤Mh||u1−u2||2Y;
(2) E||Δ(ε,u1,v1)−Δ(ε,u2,v2)||2 ≤Mf1||u1−u2||2Y+Mf2||v1−v2||2Y;
(3) E||g((ε,u1,v1))−g((ε,u2,v2))||2 ≤Mg1||u1−u2||2Y+Mg2||v1−v2||2Y;
(4) E||λ(ε,u1,v1)−λ(ε,u2,v2)||2 ≤Mλ1||u1−u2||2Y+Mλ2||v1−v2||2Y;
(5) E|hk(ε,u1)−hk(ε,v1)||2 ≤Mhk||u1−v1||2Y,
and hk∈C((εk,sk],L2(Ω,Rn)), where Mh,Mf,Mg,Mλ, and Mhk are positive constants, u1,u2,v1,v2∈Rn, and ε∈Tk.
(H2) There exist lh, mh,nh∈Y with l∗h=supξ∈Jlf(ε), m∗h=supξ∈Jmh(ε), and n∗h=supξ∈J nh(ε) such that
E||h(ε,u1,v1)||2≤lh(ε)+mh(ε)||u1||2+nh(ε)||v1||2 for ε∈T,u1,v1∈Rn. |
(H3) There exist lf, mf,nf∈Y with l∗f=supξ∈Jlf(ε), m∗f=supξ∈Jmf(ε), and n∗f=supξ∈Jnf(ε) such that
E||Δ(ε,u1,v1)||2≤lf(ε)+mf(ε)||u1||2+nf(ε)||v1||2 for ε∈T,u1,v1∈Rn. |
(H4) There exist lg, mg∈Y with l∗g=supξ∈Jlg(ε), m∗g=supξ∈Jmg(ε), and n∗g=supξ∈Jng(ε) such that
E||g(ε,u1,v1)||2≤lg(ε)+mg(ε)||u1||2+ng(ε)||v1||2 for ε∈T,u1,v1∈Rn. |
(H5) There exist lλ, mh,nh∈Y with l∗λ=supξ∈Jlλ(ε), m∗λ=supξ∈Jmλ(ε), and n∗λ=supξ∈Jnλ(ε) such that
E||λ(ε,u1,u2||2≤lλ(ε)+mλ(ε)||u1||2+nλ(ε)||v1||2 for ε∈T,u1,v1∈Rn. |
(H6) There exist Mhk>0, for all u∈Rn, such that
E||hk(ε,u)||2≤Mhk(1+||u||2Y). |
To prove the existence and uniqueness of solution first, we need to transform the problem (1.1) into a fixed point problem and define an operator H : Y→Y by
HΓ(ε)={Γ(ε)=ϕ(ε),ε∈[0−r,0],Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γ(η)),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ(η)),Dγ,βψ(ε)Γ(β)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γ(η)),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ((η,γ(η))),Dγ,βψ(ε)Γ(β)dBH)ds, εϵ(sk,εk+1],Γ(ε)=φ(ε),ε∈[b,b+h]. |
Let x:[0−r,b+h]→R be a function defined by
x(ε)={Γ(ε)=ϕ(ε),ifε∈[0−r,0],0,ifε∈(0,b],Γ(ε)=φ(ε),ifε∈[b,b+h]. |
For each z∈C([0,b],R) with z(0)=0, we denote by u the function defined by
u(ε)={Γ(ε)=ϕ(ε),ifε∈[0−r,0],z(ε),ifε∈(0,b],Γ(ε)=φ(ε),ifε∈[b,b+h]. |
Let us set Γ(ε)=z(ε)+x(ε) such that yε=zε+xε for each ε∈(0,b], where
Γ(ε)={Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γs)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γη),Dγ,βψ(ε)ΓβdBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γs)ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ((η,γη)),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1]. |
z(ε)={Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1]. |
Let Φ:Y→Y be an operator given by
Φz(ε)={0,ε∈[0−r,0],Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(s)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1],0,ε∈[b,b+h]. |
To show that the operator H has a fixed point, for this it is sufficient to show that the operator Φ has a fixed point and this fixed point will correspond to a solution of problem (1.1).
Theorem 4.1. Assume that the Hypothesis (H1) holds, then the solution (1.1) has a unique solution of the problem (1.1), provided
L0=max{L1,Lk,L∗k}<1,k=1,2,…,m, | (4.1) |
where
L1=3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+2Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+2Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11−(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)],Lk=Mhk,L∗k=4[bv−1M1Mhk+M2(b)2γγ2{(Mh+Mf1+bMg1+2Hb2HMλ1)+(Mf2+bMg2+2Hb2HMλ2)×||A||+Mh+Mf1+bMg1+2Hb2HMλ11−(Mf2+bMg2+2Hb2HMλ2)}]. |
Proof. Consider the operator Φ : Y→Y defined by
Φz(ε)={0,ε∈[0−r,0],Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(s)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1],0,ε∈[b,b+h]. | (4.2) |
As Δ, h, g, λ, hk are all continuous, we have to prove that Φ is a contraction.
Case 1. For z, y∈Y and for ε∈[0,ε1], we have
E||(Φz)(ε)−(Φy)(ε)||2≤3{(M2ψ(ε)2γγ2Mh||z(ϵ)−y(ε)||2+M2ψ(ε)2γγ2Mf1||z(ϵ)−y(ε)||2+M2ψ(ε)2γ+1γ2Mg1||z(ϵ)−y(ε)||2+M2ψ(ε)2γ+1γ22Hψ(ε)2H−1Mλ1||z(ϵ)−y(ε)||2)+(M2ψ(ε)2γγ2Mf2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2+M2ψ(ε)2γ+1γ2Mg2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2+M2ψ(ε)2γ+1γ22Hψ(ε)2H−1Mλ2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2)}. |
This implies
||(Φz)(ε)−(Φy)(ε)||2Y≤3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+2Hb2HMλ1)×||z(ϵ)−y(ε)||2Y+3M2ψ(ε)2γγ2(Mf2+ψ(ε1)Mg2+2Hb2HMλ2)×||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2],||(Φz)(ε)−(Φy)(ε)||2Y≤3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11−(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)]||z(ε)−y(ε)||2. |
Thus we take
L1=3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11−(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)]. |
So, we get
||(Φz)(ε)−(Φy)(ε)||2Y≤L1||z(ε)−y(ε)||2Y. |
Case 2. For ε∈(εk,sk], k=1,2,…,m, we have
E||(Φz)(ε)−(Φy)(ε)||2Y≤E||hk(ε,z(ε))−hk(ε,y(ε))||2,||(Φz)(ε)−(Φy)(ε)||2Y≤Mhk||z(ε)−y(ε)||2Y. |
Take Lk:=Mhk and therefore,
||(Φz)(ε)−(Φy)(ε)||2Y≤Lk||z(ε)−y(ε)||2Y. |
Case 3. For z,y∈Y and for ε∈(sk,εk+1], we have
E||(Φz)(ε)−(Φy)(ε)||2≤4{(ψ(ε)−sk)v−1M1Mhk||z(ε)−y(ε)||2+(M2(ψ(ε)−sk)2γγ2Mh||z(ϵ)−y(ε)||2+M2(ψ(ε)−sk)2γγ2Mf1||z(ϵ)−y(ε)||2+M2(ψ(ε)−sk)2γγ2Mg1||z(ϵ)−y(ε)||2+M2(ψ(ε)−sk)2γγ22Hψ(ε)2H−1Mλ1||z(ϵ)−y(ε)||2)+(M2(ψ(ε)−sk)2γγ2Mf2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2+M2(ψ(ε)−sk)2γγ2Mg2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2+M2(ψ(ε)−sk)2γγ22Hψ(ε)2H−1Mλ2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2)}.||(Φz)(ε)−(Φy)(ε)||2≤4{(ψ(ε)k+1−sk)v−1M1Mhk+(M2(ψ(ε)−sk)2γγ2×[Mh+Mf1+(ψ(εk+1)−sk)Mg1+2Hψ(ε)2HMλ1]×||z(ε)−y(ε)||2)+(M2(ψ(ε)−sk)2γγ2×[Mf2+(ψ(εk+1)−sk)Mg2+2Hψ(ε)2HMλ2]×||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2)}. |
Thus,
||(Φz)(ε)−(Φy)(ε)||2≤4{bv−1M1Mhk+M2(b)2γγ2{Mh+Mf1+bMg1+2Hb2HMλ1+(Mf2+bMg2+2Hb2HMλ2)}×||A||+Mh+Mf1+bMg1+2Hb2HMλ11−(Mf2+bMg2+2Hb2HMλ2)}||z(ε)−y(ε)||2:=L∗k||z(ε)−y(ε)||2Y. |
From the above three cases, we obtain that ||(Φz)(ε)−(Φy)(ε)||2 ≤ L0||z(ε)−y(ε)||2Y as per (4.1), Φ is contraction, and, thus, (1.1) has a unique fixed point z, which is a solution to problem (1.1).
Remark 4.1. Banach contraction principle provides not only the existence results, but also uniqueness is assured. Also, the nonlinear functions could satisfy only Lipschitz conditions to prove existence and uniqueness results, even though conditions are stronger.
Remark 4.2. It is to be noted that the assumption L0<1 in Theorem 4.1 shows a restrictive smallness on Lipschitz constants for the nonlinear functions h, g, Δ, and λ when compared with the periods of time, while the impulses are active or vice-versa. In order to relax such a kind of smallness, the generalized Schaefer's FPT is introduced.
Theorem 4.2. Assume that (H2)−(H5) hold, then the nonlinear operator Φ:Y→Y has a fixed point, which is a solution of problem (1.1)
Proof. Since Φ is well defined, we will present the proof by the following four steps.
First, we prove that Φ is completely continuous (CC), that is, T is continuous, maps bounded sets into bounded sets, and maps bounded sets into quasi-equicontinuous sets.
Step 1. To prove Φ is continuous.
Since h, g, Δ,λ, and hK are all continuous, then it is clear that the operator Φ is continuous on J.
Step 2. To prove Φ maps bounded sets in Y.
In fact, it is sufficient to show that for any r>0, there exists an η>0 such that for each z∈Br={z∈Y:||z||2Y≤z}.
Case 1. For ε∈[0,ε1],z∈Y
||(Φz)(ε)||2Y≤4{ψ(ε1)ν−1M1||Γ0−h(ε,0)||2Y+M2ψ(ε1)2γγ2||h(ε,zs+xs),Dγ,βψ(ε)Γ(s)||+M2ψ(ε1)2γγ2||Δ(ε,zs+xs,Dγ,βψ(ε)Γ(s))||+M2ψ(ε1)2γ+1γ2||g(ε,zη+xη,Dγ,βψ(ε)Γ(s))||+2Hψ(ε)2H−1M2ψ(ε1)2γ+1γ2||λ(ε,zη+xη,Dγ,βψ(ε)Γ(s))||}. |
Using (H2)−(H4) and Lemmas 2.1 and 2.2, one can enumerate
||(Φz)(ε)||2Y≤4{M1||Γ0−h(ε,0)||2Y+M2ψ(ε1)2γγ2(lh(ε)+mh(ε)||zs+xs||2Y)+M2ψ(ε1)2γγ2(lf(ε)+mf(ε)||zs+xs||2Y+nf(ε)||Dγ,βψ(ε)Γ(s)||2Y)+M2ψ(ε1)2γ+1γ2(lg(ε)+mg(ε)||zη−xη||2Y+ng||Dγ,βψ(ε)Γ(s)||2)+2Hψ(ε)2H−1M2ψ(ε1)2γ+1γ2(lλ(ε)+mλ(ε)||zη+xη||2Y+||Dγ,βψ(ε)Γ(s)||2)}≤4{M1||Γ0−h(ε,0)||2Y+M2ψ(ε1)2γγ2(l∗h)+M2ψ(ε1)2γγ2(l∗f)+M2ψ(ε1)2γ+1γ2(l∗g)+M22Hψ(ε1)2Hγ2(l∗λ)}+4{M2ψ(ε1)2γγ2(m∗h)+M2ψ(ε1)2γγ2(m∗f)+M2ψ(ε1)2γ+1γ2(m∗g)+M22Hψ(ε1)2Hγ2(m∗λ)}||z||+4{M2ψ(ε1)2γγ2n∗f+M2ψ(ε1)2γ+1γ2n∗g+M2ψ(ε1)2γ+1γ2n∗λ}||Dγ,βψ(ε)Γ(s)||2≤4{M1||Γ0−h(ε,0)||2+M2ψ(ε1)2γγ2(l∗h+l∗f+ψ(ε)l∗g+2Hψ(ε)2Hl∗λ)}+4{M1||Γ0−h(ε,0)||2+M2ψ(ε1)2γγ2(m∗h+m∗f+ψ(ε)m∗g+2Hψ(ε)2Hm∗λ)+(l∗h+l∗f+ψ(ε)l∗g+ψ(ε)l∗λ+(m∗h+m∗f+ψ(ε)m∗g+ψ(ε)m∗λ)1−(n∗f+ψ(ε)n∗g+ψ(ε)m∗λ)}z:=η0. |
Case 2. For ε∈(εk,sk], k = 1, 2, …, m,
||(Φz)(ε)||2≤E||hk(ε,zs+xs)||2≤Mhk(1+||z||2)≤ψ(ε)1−vMhk(1+||z||2)≤maxψ(ε)1−vMhk(1+z):=ηk, k=1,2,3…,m. |
Case 3. For ε∈(sk,εk+1], k=1,2,…,m, Γ∈Y, we have
E||(Φz)(ε)||2≤4{E||(ψ(ε)k+1−sk)v−1Mγ,v(A(sk)γ)hk(sk,Γ(sk))||2+E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds||2+E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs,Dγ,βψ(ε)Γ(s))ds||2+E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη,Dγ,βψ(ε)Γ(s))dB(η))ds||2+E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ((η,zη+xη,Dγ,βψ(ε)Γ(s))dBH)ds||2}. |
Thus
E||(ΦΓ)(ε)||2≤4{(ψ(ε)v−1M1Mhk(1+||Γ(sk)||2Y))+M2(ψ(ε)k+1−sk)2γγ2[l∗h+l∗f+(ψ(ε)k+1−sk)l∗g+2H(ψ(ε)k+1−sk)2Hl∗λ]}+4{(ψ(ε)v−1M1Mhk(1+||Γ(sk)||2Y))+M2(ψ(ε)k+1−sk)2γγ2[m∗h+m∗f+(ψ(ε)k+1−sk)m∗g+2H(ψ(ε)k+1−sk)2Hl∗λ]}+4{M2ψ(ε1)2γγ2n∗f+M2ψ(ε1)2γ+1γ2n∗g+M2ψ(ε1)2γ+1γ2n∗λ}||Dγ,βψ(ε)Γ(s)||2≤4{bv−1M1Mhk+M2b2γγ2[l∗h+l∗f+bl∗g+2Hb2Hl∗λ]}+4{bv−1M1Mhk+M2b2γγ2[m∗h+m∗f+bm∗g+2Hb2Hm∗λ]+[l∗h+l∗f+bl∗g+bl∗λ+(m∗h+m∗f+bm∗g+bm∗λ)1−4(n∗f)+bn∗g+bm∗λ]}z:=ηb. |
Let η = {η0,ηk,ηb}, k=1,2,…,m, then {ψ1−v(Φz)(ε):z∈B} is a bounded set in Y, i.e., ||Φz||2Y ≤η.
Step 3. Φ is a quasi-equicontinous set in Y.
Case 1. Let τ1, τ2 ∈[0,ε1] with 0≤τ1≤τ2≤ε1. One could establish the following estimate:
||(Φz)(τ2)−(Φz)(τ1)||2=sup{E||τ1−v2(ΦΓ)(τ2)−τ1−v1(ΦΓ)(τ1)||2}≤8{E||Mγ,v(Aτγ2)||Γ0−h(ε,0)||−Mγ,v(Aτγ1)||Γ0−h(ε,0)||||2+τ2∫τ20||τ1−v2(τ2−s)γ−1Mγ,γ(A(τ2−s)γ)−τ1−v1(τ1−s)γ−1Mγ,γ(A(τ1−s)γ)||2(l∗h+m∗hE||zs+xs||2+n∗h||Dγ,βψ(ε)Γ(s)||2)ds+(τ2−τ1)∫τ20τ2(1−v)2(τ2−s)2γ−2||Mγ,γ(A(τ2−s)γ)||2(l∗h+m∗hE||zs+xs||2+n∗h||Dγ,βψ(ε)Γ(s)||2)ds+τ2∫τ20||τ1−v2(τ2−s)γ−1Mγ,γ(A(τ2−s)γ)−τ1−v1(τ1−s)γ−1Mγ,γ(A(τ1−s)γ)||2(l∗f+m∗fE||zs+xs||2+n∗f||Dγ,βψ(ε)Γ(s)||2)ds+(τ2−τ1)∫τ20τ2(1−v)2(τ2−s)2γ−2||Mγ,γ(A(τ2−s)γ)||2(l∗f+m∗fE||zs+xs||2+n∗f||Dγ,βψ(ε)Γ(s)||2)ds+τ2∫τ20||τ1−v2(τ2−s)γ−1Mγ,γ(A(τ2−s)γ)−τ1−v1(τ1−s)γ−1Mγ,γ(A(τ1−s)γ)||2(l∗g+m∗gE||zη+xη||2+n∗g||Dγ,βψ(ε)Γ(s)||2)ds+(τ2−τ1)∫τ20τ2(1−v)2(τ2−s)2γ−2||Mγ,γ(A(τ2−s)γ)||2(l∗g+m∗gE||zs+xs||2+n∗g||Dγ,βψ(ε)Γ(s)||2)ds+2Hτ2H−12∫τ20||τ1−v2(τ2−s)γ−1Mγ,γ(A(τ2−s)γ)−τ1−v1(τ1−s)γ−1Mγ,γ(A(τ1−s)γ)||2(l∗λ+m∗λE||zs+xs||2+n∗λ||Dγ,βψ(ε)Γ(s)||2)ds+2H(τ2−τ1)2H−1∫τ20τ2(1−v)2(τ2−s)2γ−2||Mγ,γ(A(τ2−s)γ)||2×(l∗λ+m∗λE||zs+xs||2+n∗λ||Dγ,βψ(ε)Γ(s)||2)ds}. |
We conclude that as τ2−τ1→0 with ε sufficiently small, the right hand side of the above inequality tends to zero independently of z∈Br. Furthermore, the similar results are true for εk<τ1<τ2≤sk and sk<τ1<τ2≤εk+1 for k=1,2,…,m. It proves the equicontinuous of Φ on Y. Thus, for τ1,τ2∈[0,b]⋂(εk,εk+1], k=1,2,…,m, whenever B is a bounded set of Y as in Step 2, let z∈Br, then
||(Φz)(τ1)−(Φy)(τ2)||2Y≤M(r)(τ2−τ1). |
Thus, Φ is quasi-equicontinuous, then Φ(z) is relatively compact by Lemma 3.1, which implies that Φ(z) is CC.
Step 4. Φ has a Prior bound.
It remains to estimate that the set ∏(Φ)={z∈Y:z=ΘΦz,0<Θ<1} is bounded.
Let z∈Π(Φ), then z=ΘΦ(z) for some Θ∈(0,1), by following the proof of Step 2 that ||z||Y≤η. This proves that the set Π(Φ) is bounded. Hence, by Theorem 3.1, Φ has a fixed point, which is the required solution on J.
Here, we derive the UHR stability for (1.1). Let ω>0, ϕ≥0, and ζ∈PC(J,Rn) be nondecreasing. Consider the following inequalities.
E||Dγ,βψ(ε)[˜Γ(ε)−h(ε,˜Γ(ε))]−A˜Γ(ε)−Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))−∫ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)−∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)||≤ωζ(ε),ε ∈(sk,εk+1],k=0,1,2,…,m,E||Γ(ε)−hk(ε,Γ(ε))||2≤ωϕ,ε∈(εk,sk],k=1,2,…,m,E||I1−v0+Γ(ε)−Γ0||2≤ωϕ,Γ(ε)=ϕ(ε),ε∈[0−r,0],Γ(ε)=φ(ε),ε∈[b,b+h]. |
Define a vector space as χ:
χ=PC(J,Rn)∩C((sk,tk+1],Rn). |
Definition 5.1. System (1.1) is UHR stable with respect to (ζ,ϕ) if there exists C(M,L,P,ζ)>0 such that for each solution ˜Γ∈χ of the inequality (5.1), there exists solution Γ∈PC(J,Rn) of (1.1) with
E||˜Γ(ε)−Γ(ε)||2≤C(M,L,p,ζ)ω(ζ(ε)+ϕ),ε∈J. |
Remark 5.1. A function ˜Γ∈χ is a solution of (5.1) ⇔ there is Q∈⋂Ki=0 ((sk,εk+1],Rn] and q∈⋂Ki=0((εk,sk],Rn) such that:
(1) E||Q(ε)||2≤ωζ(ε),ε∈⋂Ki=0(sk,εk+1];E||q(ε)||2≤ωϕ,ε∈⋂Ki=0(tk,sk];
(2) Dγ,βψ(ε)[˜Γ(ε)−h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)˜Γ(s)))+∫ε0g(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dB(s) +∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dBH(s)+Q(ε),ε ∈(sk,εk+1],k=0,1,2,…,m,
(3) ˜Γ(ε)=hk(ε,˜Γ(ε))+q(ε),ε∈(εk,sk],k=0,1,2,…,m.
By Remark 5.1, we have
Dγ,βψ(ε)[˜˜Γ(ε)−h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)˜Γ(s)))+∫ε0g(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dB(s)+∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dBH(s)+Q(ε),ε ∈(sk,εk+1],k=0,1,2,…,m,˜Γ(ε)=hk(ε,˜Γ(ε))+q(ε),ε∈(εk,sk],k=0,1,2,…,m,I1−v0+˜Γ(ε)/ε=0=Γ0. |
Lemma 5.1. Let β∈[0,1], γ∈(0,1). If a function ˜Γ∈χ is a solution of (5.1) then we have:
(i)E||˜Γ(ε)−ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2≤ψ2γ(ε)γ2M2ω∫ε0ζ(s)ds,ε∈[0,ε1]. |
(ii)E||(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,˜Γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2≤b2γγ2M2ω∫εskζ(s)ds, ε∈(sk,εk+1],k=1,2,…,m. |
By Remark 5.1, we have:
Case 1. For ε∈[0,ε1], we have
Dγ,βψ(ε)[˜Γ(ε)−h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))+∫ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)+∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)+Q(ε). |
Thus
˜Γ(ε)=ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds. |
From above, we obtain
E||˜Γ(ε)−ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2≤E||∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds||2≤ψ2γ(ε)γ2M2ω∫ε0ζ(s)ds. |
Case 2. For ε∈(εk,sk], we have
E||˜Γ(ε)−hk(ε,˜Γ(ε))||2≤ωϕ. |
Case 3. For ε∈(sk,εk+1], we get
Dγ,βψ(ε)[˜Γ(ε)−h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))+∫ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)+∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)+Q(ε),then,˜Γ(ε)=(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds,+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds. |
Thus
E||˜Γ(ε)−(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,˜Γ(sk))−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ((η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2≤E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds||2≤(ψ(ε)−sk)2γγ2M2ω∫ε0ζ(s)ds≤b2γγ2M2ε∫ε0ζ(s)ds. |
In order to prove stability, we assume the following assumptions:
(H7) There exist positive constants Mk(k=1,2,…,m) such that
E||hk(ε,Γ(ε))−hk(ε,z(ε))||2≤m∑k=1MkE||Γ(ε)−z(ε)||2Y∀ε∈(εk,sk]. |
(H8) Let ζ∈C(J,Rn) be a nondecreasing function if there exists cζ>0 such that ∫ε0ζ(s)ds<cζζ(ε), ∀ ε∈J.
Lemma 5.2. Let P0=P∪0 where p=1,2,…,m, and the following inequality holds
Γ(ε)≤a(ε)+∫ε0b(s)Γ(s)ds+Σ0<εk<εαkΓ(εˉk),ε≥0, |
where Γ,a,b∈PC(R+,R+), a is nondecreasing and b(ε)>0, αk>0, k∈P. For ε∈R+,
Γ(ε)≤a(ε)(1+α)Ke(∫ε0b(s)ds),ε∈(εK,εK+1],K∈P0, |
where α=supK∈P{αK} and ε0=0.
Theorem 5.1. If the assumptions (H1),(H7), and (H8) are satisfied, then (1.1) is UHR stable with respect to (ζ,ϕ).
Proof. Let ˜Γ∈χ be a solution of inequality (5.1) and Γ be the unique solution of (1.1).
Case 1. For ε∈[0,ε1], we have:
E||˜Γ(ε)−ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2=E||∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds||2≤ψ2γ(ε)γ2M2ε∫ε0ψ(s)ds≤ψ2γ(ε)γ2M2ωcζζ(ε)≤b2γγ2M2ωcζζ(ε)≤cpcζζ(ε), |
where cp=b2γγ2M2.
Case 2. For ε∈(εk,sk], we have
E||˜Γ(ε)−hk(ε,˜Γ(ε))||2≤ωϕ. |
Case 3. For ε∈(sk,εk+1], we have
E||˜Γ(ε)−(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,Γ(sk))−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ((η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2=E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds||2≤(ψ(ε)−sk)2γγ2M2ω∫ε0ζ(s)ds≤b2γγ2M2ωcζζ(ε)≤cpcζζ(ε). |
Hence, for ε∈[0,ε1], we have:
E||Γ(ε)−˜Γ(ε)||2≤ψ(ε)2γγ2M2[ωcζζ(ε)+((Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+2Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11−(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2))||Γ(s)−˜Γ(s)||2]≤b2γγ2M2[ωcζζ(ε)+((Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11−(Mf2+bMg2+2Hb2HMλ2))||Γ(s)−˜Γ(s)||2]. | (5.1) |
For ε∈(εk,sk], we get
E||Γ(ε)−˜Γ(ε)||2=E||Γ(ε)−hk(sk,˜Γ(sk))||2=E||Γ(ε)−hk(sk,Γ(sk))+hk(sk,Γ(sk))−hk(sk,˜Γ(sk))||2≤2{E||Γ(ε)−hk(sk,Γ(sk))||2+E||hk(sk,Γ(sk))−hk(sk,˜Γ(sk))||2}≤2{ωϕ+Σki=0Mk||Γ(ε)−˜Γ(ε)||2}. | (5.2) |
For ε∈(sk,εk+1], k = 1, 2, …, m,
E||Γ(ε)−˜Γ(ε)||2≤5b2γγ2M2[ωcζζ(ε)+((Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11−(Mf2+bMg2+Hb2HMλ2))||Γ(s)−˜Γ(s)||2].+5bv−1M1Σki=1Mk||Γ(s)−~Γ(s)||2. | (5.3) |
Combining (5.2)–(5.4), one can get an inequality of the form given in Lemma 5.2. For ε∈J, since ε∈(εk,εk+1], K∈P0, we have
E||Γ(ε)−˜Γ(ε)||2≤5{cpωcζζ(ε)+bv−1M1Σki=1Mk||Γ(ε)−˜Γ(ε)||2+cp[(Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11−(Mf2+bMg2+Hb2HMλ2)]||Γ(s)−˜Γ(s)||2+5bv−1M1Σki=1Mk||Γ(s)−~Γ(s)||2}+2ωϕ≤5cpωcζ(ζ(ε)+ϕ)(1+M)ke∫ε0Lds, |
where
M=sup{bv−1M1Mk},L=cp[(Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11−(Mf2+bMg2+Hb2HMλ2)]. |
Thus,
E||Γ(ε)−˜Γ(ε)||2≤5C(M,L,p,ζ)ω(ζ(ε)+ϕ),∀ε∈J, |
where C(M,L,p,ζ) is a constant depending on M,L,p,ζ. Hence, (1.1) is UHR stable w.r.t (ζ,ϕ).
Consider the following nonlinear ψ-HFSE with NI impulses driven by both noises. This type of fractional SDE can be applied in pharmacotherapy.
D12,34ψ(ε)Γ1(ε)=Γ2(ε)+15(Γ1(ε)1+Γ21(ε)+Γ22(ε))+15(Γ1(ε)1+Γ21(ε)+Γ22(ε),Dγ,βψ(ε)Γ(s)) |
+Γ1(ε)e−ψ(ε)3β1(ε),Dγ,βψ(ε)Γ(s)+Γ1(ε)e−2ψ(ε)5βH1(ε),Dγ,βψ(ε)Γ(s), |
D12,34ψ(ε)Γ2(ε)=Γ1(ε)+15(Γ2(ε)1+Γ21(ε)+Γ22(ε))+15(Γ2(ε)1+Γ21(ε)+Γ22(ε),Dγ,βψ(ε)Γ(s)) |
+Γ2(ε)e−ψ(ε)3β2(ε),Dγ,βψ(ε)Γ(s)+Γ2(ε)e−2ψ(ε)3βH2(ε),Dγ,βψ(ε)Γ(s), |
ε∈(sk,εk+1],k=0,1,…,m, |
Γ(ε)=14Γ(ε,εk),ε(0.9,sk),k=1,2,…,m, |
Γ(0)=Γ0,ψ(ε)=sin(ε), |
where Γ∈R2, Γ∈12, β=34, 0<ε0<s0<ε1<⋯<sm=1 are prefixed numbers, J=[0,1]. Here
A=(0110),Δ(ε,Γ(ε))=(Γ1(ε)5(1+Γ21(ε)+Γ22(ε))00Γ2(ε)5(1+Γ21(ε)+Γ22(ε))), |
h(ε,Γ(ε))=(Γ1(ε)5(1+Γ21(ε)+Γ22(ε))00Γ2(ε)5(1+Γ21(ε)+Γ22(ε))), |
g(ε,Γ(ε))=(Γ1(ε)e−ψ(ε)300Γ2(ε)e−ψ(ε)3),λ(ε,Γ(ε))=(Γ1(ε)e−2ψ(ε)500εΓ2(ε)e−ψ(ε)5). |
Calculate the M-L function by using [12]. We have
Mγ,ν(Aψ(ε)γ)=(S1S2−S3S4), |
where
S1=S4=∞∑j=0(−1)jb2jγΓ(1+2jγ)=−0.3377, |
S2=−S3=∞∑j=0(−1)jb(2j+1)γΓ(1+(2j+1)γ)=−1.666. |
Also calculate
Mγ,ν(A(b−s)γ)=(P1P2−P3P4), |
where
P1=P4=∞∑j=0(−1)j(b−s)2jγΓ(2jγ+γ)=−0.7477, |
P2=−P3=∞∑j=0(−1)j(b−s)(2j+1)γΓ[(2j+1)γ]=−0.4203. |
Therefore, we need to check the hypotheses of nonlinear functions:
E||h(ε,u1)−h(ε,u2)||2≤130||u1−u2||2, |
E||Δ(ε,u1,v1)−Δ(ε,u2,v2)||2≤125||u1−u2||2+135||v1−v2||2, |
E||g(ε,u1,v1)−g(ε,u2,v2)||2≤19e−2||u1−u2||2+110e−3||v1−v2||2, |
E||λ(ε,u1,v1−λ(ε,u2,v2)||2≤125e−4ψ(ε)||u1−u2||2+120e−5ψ(ε)||v1−v2||2, |
E||hk(ε,u)−hk(ε,v||2≤116||u−v||2,k=1,2,…,m. |
We get M1=0.0862, M2=0.3824, Mhk=0.065, and γ=0.5. Hence we have L=max{L0,Lk,Lk∗}=0.52<1. Also,
E||Γ(ε)−˜Γ(ε)||2≤5C(M,L,p,ζ)ε(ζ(ε)+ϕ),∀ε∈J,≤0.218. |
In this example, all the conditions stated in Theorems 4.1 and 5.1 are satisfied, so the example has a unique solution and is also UHR stable.
With the help of Schaefer's FPT and the Banach contraction principles, we obtained the existence and uniqueness results for HSFEs with retarded and advanced arguments, selected the non-instantaneous impulses with both multiplicative and fractional noises, and obtained the UHR stability for HSFEs. UHR stability gives bounds between the exact and approximation solution, which is why this theory is very important in the numerical analysis as well as in approximation theory. We are hoping that our findings will have a great importance in the mentioned theories. Finally, a case study is provided to demonstrate the efficacy of the suggested outcomes. In the future, we can use the findings to investigate the controllability of HSFEs.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by Anhui Province Natural Science Research Foundation (2023AH051810).
The authors declare no conflicts of interest.
[1] | I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space, 2020 (2020), 3075390. |
[2] | M. Adil Khan, S. Begum, Y. Khurshid, et al. Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., 2018 (2018), 70. |
[3] | M. Adil Khan, Y.-M. Chu, A. Kashuri, et al. Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations, J. Funct. Space, 2018 (2018), 6928130. |
[4] | M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 162. |
[5] | M. Adil Khan, A. Iqbal, M. Suleman, et al. Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl., 2018 (2018), 161. |
[6] | M. Adil Khan, Y. Khurshid, T.-S. Du, et al. Generalization of Hermite-Hadamard type inequalities via conformable fractional integrals, J. Funct. Space, 2018 (2018), 5357463. |
[7] |
M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Difference Equ., 2020 (2020), 99. doi: 10.1186/s13662-020-02559-3
![]() |
[8] | M. Adil Khan, S.-H. Wu, H. Ullah, et al. Discrete majorization type inequalities for convex functions on rectangles, J. Inequal. Appl., 2019 (2019), 16. |
[9] |
M. Adil Khan, S. Zaheer Ullah, Y. M. Chu, The concept of coordinate strongly convex functions and related inequalities, RACSAM, 113 (2019), 2235-2251. doi: 10.1007/s13398-018-0615-8
![]() |
[10] |
H. Alzer, On some inequalities for the gamma and psi functions, Math. Comput., 66 (1997), 373-389. doi: 10.1090/S0025-5718-97-00807-7
![]() |
[11] | Y.-M. Chu, M. Adil Khan, T. Ali, et al. Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 93. |
[12] |
Y.-M. Chu, Y.-F. Qiu, M.-K. Wang, Hölder mean inequalities for the complete elliptic integrals, Integ. Transf. Spec. Funct., 23 (2012), 521-527. doi: 10.1080/10652469.2011.609482
![]() |
[13] |
Y.-M. Chu, M.-K. Wang, S.-L. Qiu, Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci., 122 (2012), 41-51. doi: 10.1007/s12044-012-0062-y
![]() |
[14] |
Y.-M. Chu, M.-K. Wang, S.-L. Qiu, et al. Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., 63 (2012), 1177-1184. doi: 10.1016/j.camwa.2011.12.038
![]() |
[15] |
Y.-M. Chu, G.-D. Wang, X.-H. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., 284 (2011), 653-663. doi: 10.1002/mana.200810197
![]() |
[16] |
Y.-M. Chu, W.-F. Xia, X.-H. Zhang, The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivariate Anal., 105 (2012), 412-421. doi: 10.1016/j.jmva.2011.08.004
![]() |
[17] | B.-N. Guo, F. Qi, A completely monotonic function involving the tri-gamma function and with degree one, Math. Comput., 218 (2012), 9890-9897. |
[18] |
F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Z., 9 (1921), 74-109. doi: 10.1007/BF01378337
![]() |
[19] |
X.-H. He, W.-M. Qian, H.-Z. Xu, et al. Sharp power mean bounds for two Sándor-Yang means, RACSAM, 113 (2019), 2627-2638. doi: 10.1007/s13398-019-00643-2
![]() |
[20] | X.-M. Hu, J.-F. Tian, Y.-M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 8. |
[21] |
T.-R. Huang, B.-W. Han, X.-Y. Ma, et al. Optimal bounds for the generalized Euler-Mascheroni constant, J. Inequal. Appl., 2018 (2018), 118. doi: 10.2478/dema-2014-0012
![]() |
[22] | T.-R. Huang, S.-Y. Tan, X.-Y. Ma, et al. Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl., 2018 (2018), 239. |
[23] | A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space, 2020 (2020), 9845407. |
[24] |
S. Khan, M. Adil Khan, Y.-M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Methods Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066
![]() |
[25] | Y. Khurshid, M. Adil Khan, Y.-M. Chu, Conformable integral inequalities of the Hermite-Hadamard type in terms of GG- and GA-convexities, J. Funct. Space, 2019 (2019), 6926107. |
[26] | Y. Khurshid, M. Adil Khan, Y.-M. Chu, et al. HermiteH-adamard-Fejér inequalities for conformable fractional integrals via preinvex functions, J. Funct. Space, 2019 (2019), 3146210. |
[27] |
S. Koumandos, H. L. Pedersen, Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function, J. Math. Anal. Appl., 355 (2009), 33-40. doi: 10.1016/j.jmaa.2009.01.042
![]() |
[28] |
M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 317. doi: 10.1186/s13660-019-2272-7
![]() |
[29] |
F. Qi, A.-Q. Liu, Completely monotonic degrees for a difference between the logarithmic and psi functions, J. Comput. Appl. Math., 361 (2019), 366-371. doi: 10.1016/j.cam.2019.05.001
![]() |
[30] | W.-M. Qian, Z.-Y. He, Y.-M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 57. |
[31] | W.-M. Qian, Z.-Y. He, H.-W. Zhang, et al. Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 168. |
[32] | W.-M. Qian, H.-Z. Xu, Y.-M. Chu, Improvements of bounds for the Sándor-Yang means, J. Inequal. Appl., 2019 (2019), 73. |
[33] | W.-M. Qian, Y.-Y. Yang, H.-W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 287. |
[34] |
W.-M. Qian, X.-H. Zhang, Y.-M. Chu, Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means, J. Math. Inequal., 11 (2017), 121-127. doi: 10.7153/jmi-11-11
![]() |
[35] |
W.-M. Qian, W. Zhang, Y.-M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. doi: 10.18514/MMN.2019.2334
![]() |
[36] |
S.-L. Qiu, X.-Y. Ma, Y.-M. Chu, Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl., 474 (2019), 1306-1337. doi: 10.1016/j.jmaa.2019.02.018
![]() |
[37] |
S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Difference Equ., 2020 (2020), 40. doi: 10.1186/s13662-020-2516-3
![]() |
[38] | S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Difference Equ., 2020 (2020), 125. |
[39] |
S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629-2645. doi: 10.3934/math.2020171
![]() |
[40] | Y.-Q. Song, M. Adil Khan, S. Zaheer Ullah, et al. Integral inequalities involving strongly convex functions, J. Funct. Spaces, 2018 (2018), 6595921. |
[41] | M.-K. Wang, Y.-M. Chu, Landen inequalities for a class of hypergeometric functions with applications, Math. Inequal. Appl., 21 (2018), 521-537. |
[42] | M.-K. Wang, H.-H. Chu, Y.-M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 123388. |
[43] |
M.-K. Wang, Y.-M. Chu, S.-L. Qiu, el al. Bounds for the perimeter of an ellipse, J. Approx. Theory, 164 (2012), 928-937. doi: 10.1016/j.jat.2012.03.011
![]() |
[44] | M.-K. Wang, Y.-M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617. |
[45] |
M.-K. Wang, Y.-M. Chu, W. Zhang, Precise estimates for the solution of Ramanujan's generalized modular equation, Ramanujan J., 49 (2019), 653-668. doi: 10.1007/s11139-018-0130-8
![]() |
[46] |
M.-K. Wang, Z.-Y. He, Y.-M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Methods Funct. Theory, 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
![]() |
[47] |
M.-K. Wang, M.-Y. Hong, Y.-F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21. doi: 10.7153/jmi-2020-14-01
![]() |
[48] |
M.-K. Wang, Y.-M. Li, Y.-M. Chu, Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J., 46 (2018), 189-200. doi: 10.1007/s11139-017-9888-3
![]() |
[49] |
B. Wang, C.-L. Luo, S.-H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 7. doi: 10.1007/s13398-019-00734-0
![]() |
[50] | J.-L. Wang, W.-M. Qian, Z.-Y. He, et al. On approximating the Toader mean by other bivariate means, J. Funct. Spaces, 2019 (2019), 6082413. |
[51] | M.-K. Wang, S.-L. Qiu, Y.-M. Chu, Infinite series formula for Hübner upper bound function with applications to Hersch-Pfluger distortion function, Math. Inequal. Appl., 21 (2018), 629-648. |
[52] |
M.-K. Wang, S.-L. Qiu, Y.-M. Chu, et al. Generalized Hersch-Pfluger distortion function and complete elliptic integrals, J. Math. Anal. Appl., 385 (2012), 221-229. doi: 10.1016/j.jmaa.2011.06.039
![]() |
[53] |
M.-K. Wang, W. Zhang, Y.-M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39 (2019), 1440-1450. doi: 10.1007/s10473-019-0520-z
![]() |
[54] |
D. V. Widder, Necessary and sufficient conditions for the representation of a function as a Laplace integral, Trans. Amer. Math. Soc., 33 (1931), 851-892. doi: 10.1090/S0002-9947-1931-1501621-6
![]() |
[55] | S.-H. Wu, Y.-M. Chu, Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters, J. Inequal. Appl., 2019 (2019), 57. |
[56] | H.-Z. Xu, Y.-M. Chu, W.-M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 127. |
[57] |
Z.-H. Yang, Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function, J. Math. Anal. Appl., 441 (2016), 549-564. doi: 10.1016/j.jmaa.2016.04.029
![]() |
[58] | Z.-H. Yang, Y.-M. Chu, W. Zhang, High accuracy asymptotic bounds for the complete elliptic integral of the second kind, Appl. Math. Comput., 348 (2019), 552-564. |
[59] | Z.-H. Yang, W.-M. Qian, Y.-M. Chu, Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl., 21 (2018), 1185-1199. |
[60] | Z.-H. Yang, W.-M. Qian, Y.-M. Chu, et al. On approximating the error function, Math. Inequal. Appl., 21 (2018), 469-479. |
[61] |
Z.-H. Yang, W.-M. Qian, Y.-M. Chu, et al. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., 462 (2018), 1714-1726. doi: 10.1016/j.jmaa.2018.03.005
![]() |
[62] | Z.-H. Yang, W.-M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[63] | S. Zaheer Ullah, M. Adil Khan, Y.-M. Chu, Majorization theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019), 58. |
[64] | S. Zaheer Ullah, M. Adil Khan, Y.-M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 291. |
[65] | S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Spaces, 2019 (2019), 9487823. |
[66] | T.-H. Zhao, Y.-M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 896483. |
[67] | T.-H. Zhao, L. Shi, Y.-M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 2020 (114), 96. |
[68] | T.-H. Zhao, M.-K. Wang, W. Zhang, et al. Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 251. |
[69] | T.-H. Zhao, B.-C. Zhou, M.-K. Wang, et al. On approximating the quasi-arithmetic mean, J. Inequal. Appl., 2019 (2019), 42. |
[70] | L. Zhu, A class of strongly completely monotonic functions related to gamma function, J. Comput. Appl. Math., 367 (2020), 112469. |
1. | Hamza Khalil, Akbar Zada, Sana Ben Moussa, Ioan-Lucian Popa, Afef Kallekh, Qualitative Analysis of Impulsive Stochastic Hilfer Fractional Differential Equation, 2024, 23, 1575-5460, 10.1007/s12346-024-01149-y | |
2. | Hamza Khalil, Akbar Zada, Mohamed Rhaima, Ioan-Lucian Popa, Existence and Stability of Neutral Stochastic Impulsive and Delayed Integro-Differential System via Resolvent Operator, 2024, 8, 2504-3110, 659, 10.3390/fractalfract8110659 | |
3. |
Wei Zhang, Jinbo Ni,
Some New Results on Itô–Doob Hadamard Fractional Stochastic Pantograph Equations in Lp Spaces,
2024,
23,
1575-5460,
10.1007/s12346-024-01190-x
|