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(−1)n fn(x). This paper introduced the concept of completely monotonic integer degree and discussed
the ones for the functions (−1)m R(m)

n (x), then demonstrated the correctness of the existing conjectures
by using a elementary simple method. Finally, we propose some operational conjectures which involve
the completely monotonic integer degrees for the functions (−1)m R(m)

n (x) for m = 0, 1, 2, · · · .
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1. Introduction

It is well known that the convexity [1–6,8,9,11,15,16,40,55,63,64], monotonicity [7,12–14,41–53]
and complete monotonicity [58, 59, 61, 62] have widely applications in many branches of pure and
applied mathematics [19, 24, 28, 32, 35, 38, 65]. In particular, many important inequalities [20, 25, 30,
33, 37, 39, 69] can be discovered by use of the convexity, monotonicity and complete monotonicity.
The concept of complete monotonicity can be traced back to 1920s [18]. Recently, the complete
monotonicity has attracted the attention of many researchers [23, 34, 56, 67] due to it has become an
important tool to study geometric function theory [26, 31, 36], its definition can be simply stated as
follows.

Definition 1.1. Let I ⊆ R be an interval. Then a real-valued function f : I 7→ R is said to be completely
monotonic on I if f has derivatives of all orders on I and satisfies

(−1)n f (n)(x) ≥ 0 (1.1)

for all x ∈ I and n = 0, 1, 2, · · · .

If I = (0,∞), then a necessary and sufficient condition for the complete monotonicity can be found
in the literature [54]: the real-valued function f : (0,∞) 7→ R is completely monotonic on (0,∞) if and

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020224


3457

only if

f (x) =

∫ ∞

0
e−xtdα (t) (1.2)

is a Laplace transform, where α (t) is non-decreasing and such that the integral of (1.2) converges for
0 < x < ∞.

In 1997, Alzer [10] studied a class of completely monotonic functions involving the classical Euler
gamma function [21, 22, 60, 66, 68] and obtained the following result.

Theorem 1.1. Let n ≥ 0 be an integer, κ(x) and fn (x) be defined on (0,∞) by

κ(x) = ln Γ (x) −
(
x −

1
2

)
ln x + x −

1
2

ln (2π) (1.3)

and

fn (x) =


κ(x) −

∑n
k=1

B2k
2k(2k−1)x2k−1 , n ≥ 1,

κ(x), n = 0,
(1.4)

where Bn denotes the Bernoulli number. Then both the functions x 7→ f2n (x) and x 7→ − f2n+1 (x) are
strictly completely monotonic on (0,∞).

In 2009, Koumandos and Pedersen [27] first introduced the concept of completely monotonic
functions of order r. In 2012, Guo and Qi [17] proposed the concept of completely monotonic degree
of nonnegative functions on (0,∞). Since the completely monotonic degrees of many functions are
integers, in this paper we introduce the concept of the completely monotonic integer degree as
follows.

Definition 1.2. Let f (x) be a completely monotonic function on (0,∞) and denote f (∞) = limx→∞ f (x).
If there is a most non-negative integer k (≤ ∞) such that the function xk[ f (x) − f (∞)] is completely
monotonic on (0,∞), then k is called the completely monotonic integer degree of f (x) and denoted as
degx

cmi
[
f (x)

]
= k.

Recently, Qi and Liu [29] gave a number of conjectures about the completely monotonic degrees of
these fairly broad classes of functions. Based on thirty six figures of the completely monotonic degrees,
the following conjectures for the functions (−1)m R(m)

n (x) = (−1)m [
(−1)n fn(x)

](m)
= (−1)m+n f (m)

n (x) are
shown in [29]:

(i) If m = 0, then

degx
cmi [Rn(x)] =


0, if n = 0
1, if n = 1

2 (n − 1) , if n ≥ 2
; (1.5)

(ii) If m = 1, then

degx
cmi

[
−R′n(x)

]
=


1, if n = 0
2, if n = 1

2n − 1, if n ≥ 2
; (1.6)

(iii) If m ≥ 1, then

degx
cmi

[
(−1)m R(m)

n (x)
]

=


m − 1, if n = 0

m, if n = 1
m + 2 (n − 1) , if n ≥ 2

. (1.7)
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In this paper, we get the complete monotonicity of lower-order derivative and lower-scalar
functions (−1)m R(m)

n (x) and their completely monotonic integer degrees using the Definition 1.2 and a
common sense in Laplace transform that the original function has the one-to-one correspondence with
the image function, and demonstrated the correctness of the existing conjectures by using a
elementary simple method. The negative conclusion to the second clause of (1.7) is given. Finally, we
propose some operational conjectures which involve the completely monotonic integer degrees for the
functions (−1)m R(m)

n (x) for m = 0, 1, 2, · · · .

2. Lemmas

In order to prove our main results, we need several lemmas and a corollary which we present in this
section.
Lemma 2.1. If the function xn f (x) (n ≥ 1) is completely monotonic on (0,∞), so is the function
xn−1 f (x).

Proof. Since the function 1/x is completely monotonic on (0,∞), we have xn−1 f (x) = (1/x)
[
xn f (x)

]
is

completely monotonic on (0,∞) too. �

Corollary 2.1. Let α (t) ≥ 0 be given in (1.2). Then the functions xi−1 f (x) for i = n, n − 1, · · · , 2, 1 are
completely monotonic on (0,∞) if the function xn f (x) (n ∈ N) is completely monotonic on (0,∞).

The above Corollary 2.1 is a theoretical cornerstone to find the completely monotonic integer degree
of a function f (x). According to this theory and Definition 1.2, we only need to find a nonnegative
integer k such that xk f (x) is completely monotonic on (0,∞) and xk+1 f (x) is not, then degx

cmi
[
f (x)

]
= k.

The following lemma comes from Yang [57]:
Lemma 2.2. Let fn (x) be defined as (1.4). Then fn (x) can be written as

fn (x) =
1
4

∫ ∞

0
pn

( t
2

)
e−xtdt, (2.1)

where

pn (t) =
coth t

t
−

n∑
k=0

22kB2k

(2k)!
t2k−2. (2.2)

Lemma 2.3. Let m, r ≥ 0, n ≥ 1, fn (x) and pn (t) be defined as (2.1) and (2.2). Then

xr (−1)m R(m)
n (x) = xr (−1)m+n f (m)

n (x) =
1
4

∫ ∞

0

[
(−1)n tm pn

( t
2

)](r)
e−xtdt. (2.3)

Proof. It follows from (2.1) that

x (−1)m R(m)
n (x) = x (−1)m+n f (m)

n (x) = x (−1)m+n 1
4

∫ ∞

0
(−t)m pn

( t
2

)
e−xtdt

= x (−1)n 1
4

∫ ∞

0
tm pn

( t
2

)
e−xtdt = (−1)n−1 1

4

∫ ∞

0
tm pn

( t
2

)
de−xt

= (−1)n−1 1
4

{[
tm pn

( t
2

)
e−xt

]∞
t=0
−

∫ ∞

0

[
tm pn

( t
2

)]′
e−xtdt

}
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= (−1)n 1
4

∫ ∞

0

[
tm pn

( t
2

)]′
e−xtdt.

Repeat above process. Then we come to the conclusion that

xr (−1)m R(m)
n (x) = (−1)n 1

4

∫ ∞

0

[
tm pn

( t
2

)](r)
e−xtdt,

which completes the proof of Lemma 2.3. �

3. Complete monotonicity of the functions Rn(x) and their completely monotonic integer degrees

In recent paper [70] the reslut degx
cmi [R1(x)] = degx

cmi
[
− f1 (x)

]
= 1 was proved. In this section, we

mainly discuss degx
cmi [R2(x)] and degx

cmi [R3(x)]. Then discuss whether the most general conclusion
exists about degx

cmi [Rn(x)].

Theorem 3.1. The function x3R2(x) is not completely monotonic on (0,∞), and

degx
cmi [R2(x)] = degx

cmi
[
f2 (x)

]
= 2.

Proof. Note that the function x2R2(x) is completely monotonic on (0,∞) due to

x2R2(x) =
1
4

∫ ∞

0
p(2)

2

( t
2

)
e−xtdt,

p2 (t) =
coth t

t
+

1
45

t2 −
1
t2 −

1
3
,

p′2 (t) =
2
45

t −
1

t sinh2 t
+

2
t3 −

1
t2

cosh t
sinh t

,

p′′2 (t) =
45A(t) + 180t2B(t) + t4C(t)

90t4 sinh3 t
> 0,

where

A(t) = t cosh 3t − 3 sinh 3t + 9 sinh t − t cosh t

=

∞∑
n=5

2 (n − 4)
(
32n − 1

)
(2n + 1)!

t2n+1 > 0,

B(t) = t cosh t + sinh t > 0,
C(t) = sinh 3t − 3 sinh t > 0.

So degx
cmi [R2(x)] ≥ 2.

On the other hand, we can prove that the function x3 f2 (x) = x3R2(x) is not completely monotonic
on (0,∞). By (2.3) we have

x3 f2 (x) =
1
4

∫ ∞

0
p(3)

2

( t
2

)
e−xtdt,

then by (1.2), we can complete the staged argument since we can verify

p(3)
2

( t
2

)
> 0⇐⇒ p(3)

2 (t) > 0
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is not true for all t > 0 due to

p′′′2 (t) =
2

t sinh2 t
−

2
t3 sinh2 t

+
4
t3 +

24
t5 −

6
t

cosh2 t
sinh4 t

−
4
t3

cosh2 t
sinh2 t

−
2
t2

cosh3 t
sinh3 t

+
2
t2

cosh t
sinh t

−
4
t2

cosh t
sinh3 t

−
6
t4

cosh t
sinh t

with p′′′2 (10) = −0.000 36 · · · . �

Theorem 3.2. The function x4R3(x) is completely monotonic on (0,∞), and

degx
cmi [R3(x)] = degx

cmi
[
− f3 (x)

]
= 4.

Proof. By (2.3) we obtain that

x4R3(x) =

∫ ∞

0

[
−p(4)

3

( t
2

)]
e−xtdt.

From (2.2) we clearly see that

p3 (t) =
coth t

t
−

1
t2 +

1
45

t2 −
2

945
t4 −

1
3
,

p(4)
3 (t) =: −

1
630

H(t)
t6 sinh5 t

,

or
−p(4)

3 (t) =
1

630
H(t)

t6 sinh5 t
,

where

H(t) =
(
2t6 + 4725

)
sinh 5t − 945t cosh 5t −

(
1260t5 + 3780t3 − 2835t

)
cosh 3t

−
(
10t6 + 2520t4 + 3780t2 + 23 625

)
sinh 3t −

(
13 860t5 − 3780t3 + 1890t

)
cosh t

+
(
20t6 − 7560t4 + 11 340t2 + 47 250

)
sinh t

: =

∞∑
n=5

hn

(2n + 3)!
t2n+3

with

hn =
2

125

[
64n6 + 96n5 − 80n4 − 120n3 + 16n2 − 2953 101n + 32 484 375

]
52n

−
10
27

[
64n6 + 96n5 + 5968n4 + 105 720n3 + 393 136n2 + 400 515n + 1760 535

]
32n

+20
[
64n6 + 96n5 − 11 168n4 − 9696n3 + 9592n2 + 13 191n + 7749

]
> 0

for all n ≥ 5. So x4R3(x) is completely monotonic on (0,∞), which implies degx
cmi [R3(x)] ≥ 4.
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Then we shall prove x5R3(x) = −x5 f3 (x) is not completely monotonic on (0,∞). Since

x5R3(x) =

∫ ∞

0

[
−p(5)

3

( t
2

)]
e−xtdt,

and
−p(5)

3 (t) =
1
4

K(t)
t7 sinh6 t

,

where

K(t) = 540 cosh 4t − 1350 cosh 2t − 90 cosh 6t − 240t2 cosh 2t + 60t2 cosh 4t

+80t4 cosh 2t + 40t4 cosh 4t + 208t6 cosh 2t + 8t6 cosh 4t − 120t3 sinh 2t

+60t3 sinh 4t + 200t5 sinh 2t + 20t5 sinh 4t + 75t sinh 2t − 60t sinh 4t

+15t sinh 6t + 180t2 − 120t4 + 264t6 + 900.

We find K(5) ≈ −2. 631 5 × 1013 < 0, which means −p(5)
3 (5) < 0. So the function x5R3(x) = −x5 f3 (x)

is not completely monotonic on (0,∞).
In a word, degx

cmi [R3(x)] = degx
cmi

[
− f3 (x)

]
= 4. �

Remark 3.1. So far, we have the results about the completely monotonic integer degrees of such
functions, that is, degx

cmi [R1(x)] = 1 and degx
cmi [Rn(x)] = 2 (n − 1) for n = 2, 3, and find that the

existing conclusions support the conjecture (1.5).

4. Complete monotonicity of the functions −R′n(x) ( 1 ≤ n ≤ 3) and their completely monotonic
integer degrees

In this section, we shall calculate the completely monotonic degrees of the functions (−1)m R(m)
n (x),

where m = 1 and 1 ≤ n ≤ 3.

Theorem 4.1 The function −x2R′1(x) = x2 f ′1(x) is completely monotonic on (0,∞), and

degx
cmi

[
(−1)1 R′1(x)

]
= 2.

Proof. By the integral representation (2.3) we obtain

x2 f ′1 (x) =
1
4

∫ ∞

0

[
−tp1

( t
2

)]′′
e−xtdt.

So we complete the proof of result that x2 f ′1(x) is completely monotonic on (0,∞) when proving[
−tp1

( t
2

)]′′
> 0⇐⇒

[
tp1

( t
2

)]′′
< 0⇐⇒

[
tp1 (t)

]′′ < 0.

In fact,

tp1 (t) = t
(
coth t

t
−

1
t2 −

1
3

)
=

cosh t
sinh t

−
1
3

t −
1
t
,
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[
tp1 (t)

]′
=

1
t2 −

cosh2 t
sinh2 t

+
2
3
,

[
tp1 (t)

]′′
=

2
sinh3 t

cosh t −
(
sinh t

t

)3 < 0.

Then we have degx
cmi

[
(−1)1 R′1(x)] ≥ 2.

Here −x3R′1(x) = x3 f ′1(x) is not completely monotonic on (0,∞). By (2.2) and (2.3) we have

x3 f ′1 (x) =
1
4

∫ ∞

0

[
−tp1

( t
2

)]′′′
e−xtdt,

and [
−tp1 (t)

]′′′
= 2

3t4 cosh2 t − t4 sinh2 t − 3 sinh4 t
t4 sinh4 t

with
[
−tp1 (t)

]′′′
|t=2 ≈ −3. 623 7 × 10−2 < 0. �

Theorem 4.2. The function −x3R′2(x) is completely monotonic on (0,∞), and

degx
cmi

[
−R′2(x)

]
= degx

cmi
[
− f ′2(x)

]
= 3.

Proof. First, we can prove that the function −x3R′2(x) is completely monotonic on (0,∞). Using the
integral representation (2.3) we obtain

−x3 f ′2 (x) =
1
4

∫ ∞

0

[
tp2

( t
2

)](3)
e−xtdt,

and complete the proof of the staged argument when proving[
tp2

( t
2

)](3)
> 0⇐⇒

[
tp2 (t)

](3) > 0.

In fact,

p2 (t) =
coth t

t
+

1
45

t2 −
1
t2 −

1
3
,

L(t) : = tp2 (t) =
cosh t
sinh t

−
1
3

t −
1
t

+
1

45
t3,

L′′′(t) =
−180 cosh 2t + 45 cosh 4t − 124t4 cosh 2t + t4 cosh 4t − 237t4 + 135

60t4 sinh4 t

=
1

60t4 sinh4 t

 ∞∑
n=3

22n+2bn

(2n + 4)!
t2n+4

 > 0,

where

bn = 22n
(
4n4 + 20n3 + 35n2 + 25n + 2886

)
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−4
(
775n + 1085n2 + 620n3 + 124n4 + 366

)
> 0

for all n ≥ 3.
On the other hand, by (2.3) we obtain

x4 (−1)1 R′2(x) = −x4 f ′2 (x) =
1
4

∫ ∞

0

[
tp2

( t
2

)](4)
e−xtdt,

and

L(4)(t) =
[
tp2 (t)

](4)
= 16

cosh t
sinh t

− 40
cosh3 t
sinh3 t

+ 24
cosh5 t

sinh5 t
−

24
t5

is not positive on (0,∞) due to L(4)(10) ≈ −2. 399 3×10−4 < 0, we have that −x4R′2(x) is not completely
monotonic on (0,∞). �

Theorem 4.3. The function −x5R′3(x) is completely monotonic on (0,∞), and

degx
cmi

[
−R′3(x)

]
= degx

cmi
[
f ′3(x)

]
= 5.

Proof. We shall prove that −x5R′3(x) = x5 f ′3(x) is completely monotonic on (0,∞) and −x6R′3(x) =

x6 f3(x) is not. By (2.2) and (2.3) we obtain

xr f ′3(x) =
1
4

∫ ∞

0

[
−tp3

( t
2

)](r)
e−xtdt, r ≥ 0.

and

p3 (t) =
coth t

t
−

1
t2 +

1
45

t2 −
2

945
t4 −

1
3
,

M(t) : = tp3 (t) =
cosh t
sinh t

−
1
3

t −
1
t

+
1

45
t3 −

2
945

t5,

M(5)(t) = −
1

252
p(t)

t6 sinh6 t
,

we have

[−M(t)](5) =
1

252
p(t)

t6 sinh6 t
,

[−M(t)](6) =
1
4

q(t)
t7 sinh7 t

,

where

p(t) = −14 175 cosh 2t + 5670 cosh 4t − 945 cosh 6t + 13 134t6 cosh 2t

+492t6 cosh 4t + 2t6 cosh 6t + 16 612t6 + 9450,
q(t) = 945 sinh 3t − 315 sinh 5t + 45 sinh 7t − 1575 sinh t − 456t7 cosh 3t

−8t7 cosh 5t − 2416t7 cosh t.
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Since

p(t) =

∞∑
n=4

2 · 62n + 492 · 42n + 13 134 · 22n

(2n)!
t2n+6

−

∞∑
n=4

945 · 62n+6 − 5670 · 42n+6 + 14 175 · 22n+6

(2n + 6)!
t2n+6

> 0,
q(0.1) ≈ −2.9625 × 10−5 < 0,

we obtain the expected conclusions. �

Remark 4.1. The experimental results show that the conjecture (1.6) may be true.

5. Complete monotonicity of the functions R′′n (x) ( 1 ≤ n ≤ 3) and their completely monotonic
integer degrees

Theorem 5.1. The function x3R′′1 (x) is completely monotonic on (0,∞), and

degx
cmi

[
R′′1 (x)

]
= degx

cmi
[
− f ′′1 (x)

]
= 3. (5.1)

Proof. By (2.2) and (2.3) we obtain

x3R′′1 (x) = −x3 f ′′1 (x) =
1
4

∫ ∞

0

[
−t2 p1

( t
2

)]′′′
e−xtdt,

and
t2 p1 (t) = t

cosh t
sinh t

−
1
3

t2 − 1,

[
−t2 p1 (t)

]′′′
=

2
3 sinh4 t

 ∞∑
n=2

3 (n − 1) 22n+1

(2n + 1)!
t2n+1

 > 0.

So x3R′′1 (x) is completely monotonic on (0,∞).
But x4R′′1 (x) is not completely monotonic on (0,∞) due to

x4R′′1 (x) =
1
4

∫ ∞

0

[
−t2 p1

( t
2

)](4)
e−xtdt,

and [
−t2 p1 (t)

](4)
=

1
sinh5 t

(4 sinh 3t + 12 sinh t − 22t cosh t − 2t cosh 3t)

with
[
−t2 p1 (t)

](4)
|t=10 ≈ −5. 276 6 × 10−7 < 0.

So
degx

cmi
[
R′′1 (x)

]
= degx

cmi
[
− f ′′1 (x)

]
= 3.

�
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Remark 5.1. Here, we actually give a negative answer to the second paragraph of conjecture (1.7).

Theorem 5.2. The function x4R′′2 (x) is completely monotonic on (0,∞), and

degx
cmi

[
R′′2 (x)

]
= degx

cmi
[
f ′′2 (x)

]
= 4.

Proof. By (2.2) and (2.3) we

x4 f ′′2 (x) =
1
4

∫ ∞

0

[
t2 p2

( t
2

)](4)
e−xtdt,

and

t2 p2 (t) =
1

45
t4 −

1
3

t2 + t
cosh t
sinh t

− 1,[
t2 p2 (t)

](4)
=

1
30

(−125 sinh 3t + sinh 5t − 350 sinh t + 660t cosh t + 60t cosh 3t)

sinh5 t

=
1

30 sinh5 t

 ∞∑
n=3

5
(
52n + (24n − 63) 32n + 264n + 62

)
(2n + 1)!

t2n+1


> 0.

Since

x5 f ′′2 (x) =
1
4

∫ ∞

0

[
t2 p2

( t
2

)](5)
e−xtdt,

and [
t2 p2 (t)

](5)
=

50 sinh 2t − 66t + 5 sinh 4t − 52t cosh 2t − 2t cosh 4t

sinh6 t

with
[
t2 p2 (t)

](5)
|t=10 ≈ −9. 893 5 × 10−7 < 0, we have that x5 f ′′2 (x) is not completely monotonic on

(0,∞). So
degx

cmi
[
R′′2 (x)

]
= 4.

�

Theorem 5.3. The function x6R′′3 (x) is completely monotonic on (0,∞), and

degx
cmi

[
R′′3 (x)

]
= degx

cmi
[
− f ′′3 (x)

]
= 6.

Proof. By the integral representation (2.3) we obtain

−x6 f ′′3 (x) =
1
4

∫ ∞

0

[
−t2 p3

( t
2

)](6)
e−xtdt,

−x7 f ′′3 (x) =
1
4

∫ ∞

0

[
−t2 p3

( t
2

)](7)
e−xtdt.

It follows from (2.2) that

p3 (t) =
coth t

t
−

1
t2 +

1
45

t2 −
2

945
t4 −

1
3
,
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N(t) : = t2 p3 (t) =
1

45
t4 −

1
3

t2 −
2

945
t6 + t

cosh t
sinh t

− 1,

−N(6)(t) =
1
42

r(t)
sinh7 t

,

−N(7)(t) =

(
2416t − 1715 sinh 2t − 392 sinh 4t − 7 sinh 6t

+2382t cosh 2t + 240t cosh 4t + 2t cosh 6t

)
sinh8 t

,

where

r(t) = 6321 sinh 3t + 245 sinh 5t + sinh 7t + 10 045 sinh t − 25 368t cosh t

−4788t cosh 3t − 84t cosh 5t

=

∞∑
n=4

cn

(2n + 1)!
t2n+1

with
cn = 7 · 72n − (168n − 1141) 52n − (9576n − 14 175) 32n − (50 736n + 15 323) .

Since ci > 0 for i = 4, 5, 6, 7, and

cn+1 − 49cn = (4032n − 31 584) 52n + (383 040n − 653 184) 32n

+2435 328n + 684 768 > 0

for all n ≥ 8. So cn > 0 for all n ≥ 4. Then r(t) > 0 and −N(6)(t) > 0 for all t > 0. So x6R′′3 (x) is
completely monotonic on (0,∞).

In view of −N(7)(1.5) ≈ −0.57982 < 0, we get x7R′′3 (x) is not completely monotonic on (0,∞). The
proof of this theorem is complete. �

Remark 5.2. The experimental results show that the conjecture (1.7) may be true for n,m ≥ 2.

6. Conjectures for the completely monotonic integer degrees of the functions (−1)m R(m)
n (x)

In this way, the first two paragraphs for conjectures (1.5) and (1.6) have been confirmed, leaving
the following conjectures to be confirmed:

degx
cmi [Rn(x)] = 2 (n − 1) , n ≥ 4; (6.1)

degx
cmi

[
−R′n(x)

]
= 2n − 1, n ≥ 4; (6.2)

and for m ≥ 1,

degx
cmi

[
(−1)m R(m)

n (x)
]

=


m, if n = 0

m + 1, if n = 1
m + 2 (n − 1) , if n ≥ 2

, (6.3)

where the first formula and second formula in (6.3) are two new conjectures which are different from
the original ones.

By the relationship (2.3) we propose the following operational conjectures.
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Conjecture 6.1. Let n ≥ 4, and pn (t) be defined as (2.2). Then[
(−1)n pn (t)

](2n−2) > 0 (6.4)

holds for all t ∈ (0,∞) and [
(−1)n pn (t)

](2n−1) > 0 (6.5)

is not true for all t ∈ (0,∞).

Conjecture 6.2. Let n ≥ 4, and pn (t) be defined as (2.2). Then

(−1)n [
tpn (t)

](2n−1) > 0 (6.6)

holds for all t ∈ (0,∞) and
(−1)n [

tpn (t)
](2n) > 0 (6.7)

is not true for all t ∈ (0,∞).

Conjecture 6.3. Let m ≥ 1, and pn (t) be defined as (2.2). Then[
tm p0 (t)

](m) > 0, (6.8)

[
−tm p1 (t)

](m+1) > 0 (6.9)

hold for all t ∈ (0,∞), and [
tm p0 (t)

](m+1) > 0, (6.10)[
−tm p1 (t)

](m+2) > 0 (6.11)

are not true for all t ∈ (0,∞).

Conjecture 6.4. Let m ≥ 1, n ≥ 2, and pn (t) be defined as (2.2). Then

(−1)n [
tm pn (t)

](m+2n−2) > 0 (6.12)

holds for all t ∈ (0,∞) and
(−1)n [

tm pn (t)
](m+2n−1) > 0 (6.13)

is not true for all t ∈ (0,∞).
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1. I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct.
Space, 2020 (2020), 3075390.

2. M. Adil Khan, S. Begum, Y. Khurshid, et al. Ostrowski type inequalities involving conformable
fractional integrals, J. Inequal. Appl., 2018 (2018), 70.

3. M. Adil Khan, Y.-M. Chu, A. Kashuri, et al. Conformable fractional integrals versions of Hermite-
Hadamard inequalities and their generalizations, J. Funct. Space, 2018 (2018), 6928130.

4. M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen’s inequality for s-convex function
with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 162.

5. M. Adil Khan, A. Iqbal, M. Suleman, et al. Hermite-Hadamard type inequalities for fractional
integrals via Green’s function, J. Inequal. Appl., 2018 (2018), 161.

6. M. Adil Khan, Y. Khurshid, T.-S. Du, et al. Generalization of Hermite-Hadamard type inequalities
via conformable fractional integrals, J. Funct. Space, 2018 (2018), 5357463.

7. M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by
means of a Green function, Adv. Difference Equ., 2020 (2020), 99.

8. M. Adil Khan, S.-H. Wu, H. Ullah, et al. Discrete majorization type inequalities for convex
functions on rectangles, J. Inequal. Appl., 2019 (2019), 16.

9. M. Adil Khan, S. Zaheer Ullah, Y. M. Chu, The concept of coordinate strongly convex functions
and related inequalities, RACSAM, 113 (2019), 2235–2251.

10. H. Alzer, On some inequalities for the gamma and psi functions, Math. Comput., 66 (1997), 373–
389.

11. Y.-M. Chu, M. Adil Khan, T. Ali, et al. Inequalities for α-fractional differentiable functions, J.
Inequal. Appl., 2017 (2017), 93.
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