This paper examined the features of an infection therapy for fractional-order quarry-hunter systems in order to control sickness. It focused especially on how illnesses and several populations combine to affect how well harvesting policies work. We created a new dynamic model full of such ideas by examining systems with fractional-order non-integer systems and introducing fractional-order systems that can remember in order to comprehend that specific system. These thresholds are essential for directing management strategies, according to research on the presence, uniqueness, and stability of solutions to these models. Additionally, we presented particular MATLAB-based numerical methods for fractional-order model. Through a series of numerical application experiments, we validated the method's efficacy and its value in guiding strategy modifications regarding harvesting rates in the face of epidemic infections. This demonstrates the necessity of using a fractional approach in ecosystem research in order to improve the methods used for resource management. This paper primarily focused on the unique insight brought into the quarry-hunter models with infectious diseases by the fractional-order dynamics in ecology. The results are meaningful especially since they can be utilized to come up with effective measures to control diseases and even promote the sustainability of ecological systems.
Citation: Devendra Kumar, Jogendra Singh, Dumitru Baleanu. Dynamical and computational analysis of a fractional predator-prey model with an infectious disease and harvesting policy[J]. AIMS Mathematics, 2024, 9(12): 36082-36101. doi: 10.3934/math.20241712
This paper examined the features of an infection therapy for fractional-order quarry-hunter systems in order to control sickness. It focused especially on how illnesses and several populations combine to affect how well harvesting policies work. We created a new dynamic model full of such ideas by examining systems with fractional-order non-integer systems and introducing fractional-order systems that can remember in order to comprehend that specific system. These thresholds are essential for directing management strategies, according to research on the presence, uniqueness, and stability of solutions to these models. Additionally, we presented particular MATLAB-based numerical methods for fractional-order model. Through a series of numerical application experiments, we validated the method's efficacy and its value in guiding strategy modifications regarding harvesting rates in the face of epidemic infections. This demonstrates the necessity of using a fractional approach in ecosystem research in order to improve the methods used for resource management. This paper primarily focused on the unique insight brought into the quarry-hunter models with infectious diseases by the fractional-order dynamics in ecology. The results are meaningful especially since they can be utilized to come up with effective measures to control diseases and even promote the sustainability of ecological systems.
[1] | A. J. Lotka, Elements of physical biology, Williams and Wilkins, 1925. |
[2] | V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, ICES J. Marine Sci., 3 (1928), 3–51. https://doi.org/10.1093/icesjms/3.1.3 doi: 10.1093/icesjms/3.1.3 |
[3] | J. D. Murray, Mathematical biology, Berlin, Heidelberg: Springer, 1989. https://doi.org/10.1007/978-3-662-08539-4 |
[4] | W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118 |
[5] | H. W. Hethcote, W. D. Wang, L. T. Han, Z. E. Ma, A predator-prey model with infected prey, Theor. Popul. Biol., 66 (2004), 259–268. https://doi.org/10.1016/j.tpb.2004.06.010 doi: 10.1016/j.tpb.2004.06.010 |
[6] | A. Johri, N. Trivedi, A. Sisodiya, B. Singh, S. Jain, Study of a prey-predator model with diseased prey, Int. J. Contemp. Math. Sci., 7 (2012), 489–498. |
[7] | M. S. S. Rahman, S. Chakravarty, A predator-prey model with disease in prey, Nonlinear Anal. Model. Control, 18 (2013), 191–209. https://doi.org/10.15388/NA.18.2.14022 doi: 10.15388/NA.18.2.14022 |
[8] | S. K. Nandi, P. K. Mondal, S. Jana, P. Haldar, T. K. Kar, Prey-predator model with two-stage infection in prey: concerning pest control, J. Nonlinear Dyn., 2015 (2015), 948728. https://doi.org/10.1155/2015/948728 doi: 10.1155/2015/948728 |
[9] | W. Mbava, J. Y. T. Mugisha, J. W. Gonsalves, Prey, predator and super-predator model with disease in the super-predator, Appl. Math. Comput., 297 (2017), 92–114. https://doi.org/10.1016/j.amc.2016.10.034 doi: 10.1016/j.amc.2016.10.034 |
[10] | W. B. Yang, Analysis on existence of bifurcation solutions for a predator-prey model with herd behavior, Appl. Math. Model., 53 (2018), 433–446. https://doi.org/10.1016/j.apm.2017.09.020 doi: 10.1016/j.apm.2017.09.020 |
[11] | J. Chattopadhyay, O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36 (1999), 747–766. https://doi.org/10.1016/S0362-546X(98)00126-6 doi: 10.1016/S0362-546X(98)00126-6 |
[12] | K. P. Das, J. Chattopadhyay, A mathematical study of a predator-prey model with disease circulating in both populations, Int. J. Biomath., 8 (2015), 1550015. https://doi.org/10.1142/S1793524515500151 doi: 10.1142/S1793524515500151 |
[13] | K. P. Dash, S. Gnanavel, R. Bhardwaj, R. Kumar, Allee effect in a harvested predator-prey model with disease in both populations, Nonlinear Stud., 29 (2022), 965. |
[14] | K. Q. Al-Jubouri, R. M. Hussien, N. M. G. Al-Saidi, The effect of harvesting policy on an eco-epidemiological model, AIP Conf. Proc., 2183 (2019), 070007. https://doi.org/10.1063/1.5136169 doi: 10.1063/1.5136169 |
[15] | J. P. Tripathi, K. P. Das, S. Bugalia, H. Choudhary, D. Kumar, J. Singh, Role of harvesting and Allee in a predator-prey model with disease in both populations, Nonlinear Stud., 28 (2021), 939. |
[16] | M. M. Khader, J. E. Macías-Díaz, K. M. Saad, W. M. Hamanah, Vieta-Lucas polynomials for the Brusselator system with the Rabotnov fractional-exponential kernel fractional derivative, Symmetry, 15 (2023), 1–10. https://doi.org/10.3390/sym15091619 doi: 10.3390/sym15091619 |
[17] | S. Al-Nassir, Dynamic analysis of a harvested fractional-order biological system with its discretization, Chaos Solitons Fract., 152 (2021), 111308. https://doi.org/10.1016/j.chaos.2021.111308 doi: 10.1016/j.chaos.2021.111308 |
[18] | M. Moustafa, M. H. Mohd, A. I. Ismail, F. A. Abdullah, Dynamical analysis of a fractional-order eco-epidemiological model with disease in prey population, Adv. Differ. Equ., 2020 (2020), 1–24. https://doi.org/10.1186/s13662-020-2522-5 doi: 10.1186/s13662-020-2522-5 |
[19] | R. Kaviya, P. Muthukumar, Correction to: Dynamical analysis and optimal harvesting of conformable fractional prey-predator system with predator immigration, Eur. Phys. J. Plus, 136 (2021), 606. https://doi.org/10.1140/epjp/s13360-021-01598-3 doi: 10.1140/epjp/s13360-021-01598-3 |
[20] | Y. K. Xie, Z. Wang, B. Meng, X. Huang, Dynamical analysis for a fractional-order prey-predator model with Holling Ⅲ type functional response and discontinuous harvest, Appl. Math. Lett., 106 (2020), 106342. https://doi.org/10.1016/j.aml.2020.106342 doi: 10.1016/j.aml.2020.106342 |
[21] | S. Djilali, B. Ghanbari, The influence of an infectious disease on a prey-predator model equipped with a fractional-order derivative, Adv. Differ. Equ., 2021 (2021), 1–16. https://doi.org/10.1186/s13662-020-03177-9 doi: 10.1186/s13662-020-03177-9 |
[22] | P. Ramesh, M. Sambath, M. H. Mohd, K. Balachandran, Stability analysis of the fractional-order prey-predator model with infection, Int. J. Model. Simul., 41 (2021), 434–450. https://doi.org/10.1080/02286203.2020.1783131 doi: 10.1080/02286203.2020.1783131 |
[23] | J. Alidousti, E. Ghafari, Dynamic behavior of a fractional order prey-predator model with group defense, Chaos Solitons Fract., 134 (2020), 109688. https://doi.org/10.1016/j.chaos.2020.109688 doi: 10.1016/j.chaos.2020.109688 |
[24] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[25] | K. B. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974. |
[26] | I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen, B. M. V. Jara, Matrix approach to discrete fractional calculus Ⅱ: partial fractional differential equations, J. Comput. Phys., 228 (2009), 3137–3153. https://doi.org/10.1016/j.jcp.2009.01.014 doi: 10.1016/j.jcp.2009.01.014 |
[27] | A. M. Wazwaz, A new algorithm for calculating adomian polynomials for nonlinear operators, Appl. Math. Comput., 111 (2000), 33–51. https://doi.org/10.1016/S0096-3003(99)00063-6 doi: 10.1016/S0096-3003(99)00063-6 |
[28] | S. Abbasbandy, A numerical solution of Blasius equation by Adomian's decomposition method and comparison with homotopy perturbation method, Chaos Solitons Fract., 31 (2007), 257–260. https://doi.org/10.1016/j.chaos.2005.10.071 doi: 10.1016/j.chaos.2005.10.071 |
[29] | S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992. |
[30] | S. Momani, Z. Odibat, V. S. Erturk, Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation, Phys. Lett. A, 370 (2007), 379–387. https://doi.org/10.1016/j.physleta.2007.05.083 doi: 10.1016/j.physleta.2007.05.083 |
[31] | J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3 |
[32] | A. Yildirim, Application of the homotopy perturbation method for the Fokker-Planck equation, Int. J. Numer. Methods Biomed. Eng., 26 (2010), 1144–1154. https://doi.org/10.1002/cnm.1200 doi: 10.1002/cnm.1200 |
[33] | J. H. He, Variational iteration method–a kind of non-linear analytical technique: some examples, Int. J. Non-Linear Mech., 34 (1999), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1 doi: 10.1016/S0020-7462(98)00048-1 |
[34] | Y. Khan, An effective modification of the Laplace decomposition method for nonlinear equations, Int. J. Nonlinear Sci. Numer. Simul., 10 (2009), 1373–1376. https://doi.org/10.1515/IJNSNS.2009.10.11-12.1373 doi: 10.1515/IJNSNS.2009.10.11-12.1373 |
[35] | Y. Khan, Q. B. Wu, Homotopy perturbation transform method for nonlinear equations using He's polynomials, Comput. Math. Appl., 61 (2011), 1963–1967. https://doi.org/10.1016/j.camwa.2010.08.022 doi: 10.1016/j.camwa.2010.08.022 |
[36] | D. Zhao, J. Singh, D. Kumar, S. Rathore, X. J. Yang, An efficient computational technique for local fractional heat conduction equations in fractal media, J. Nonlinear Sci. Appl., 10 (2017), 1478–1486. http://dx.doi.org/10.22436/jnsa.010.04.17 doi: 10.22436/jnsa.010.04.17 |
[37] | D. Kumar, J. Singh, D. Baleanu, A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear Dyn., 87 (2017), 511–517. https://doi.org/10.1007/s11071-016-3057-x doi: 10.1007/s11071-016-3057-x |
[38] | R. Garrappa, Numerical solution of fractional differential equations: a survey and a software tutorial, Mathematics, 6 (2018), 1–23. https://doi.org/10.3390/math6020016 doi: 10.3390/math6020016 |
[39] | K. Singh, R. Saxena, S. Kumar, Caputo-based fractional derivative in fractional Fourier transform domain, IEEE J. Emerging Sel. Top. Circuits Syst., 3 (2013), 330–337. https://doi.org/10.1109/JETCAS.2013.2272837 doi: 10.1109/JETCAS.2013.2272837 |
[40] | D. Baleanu, O. P. Agrawal, Fractional Hamilton formalism within Caputo's derivative, Czechoslovak J. Phys., 56 (2006), 1087–1092. https://doi.org/10.1007/s10582-006-0406-x doi: 10.1007/s10582-006-0406-x |
[41] | K. Shah, Z. A. Khan, A. Ali, R. Amin, H. Khan, A. Khan, Haar wavelet collocation approach for the solution of fractional order COVID-19 model using Caputo derivative, Alex. Eng. J., 59 (2020), 3221–3231. https://doi.org/10.1016/j.aej.2020.08.028 doi: 10.1016/j.aej.2020.08.028 |
[42] | M. N. Oqielat, A. El-Ajou, Z. Al-Zhour, R. Alkhasawneh, H. Alrabaiah, Series solutions for nonlinear time-fractional Schrödinger equations: comparisons between conformable and Caputo derivatives, Alex. Eng. J., 59 (2020), 2101–2114. https://doi.org/10.1016/j.aej.2020.01.023 doi: 10.1016/j.aej.2020.01.023 |
[43] | D. Mozyrska, D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative, Carpathian J. Math., 26 (2010), 210–221. |
[44] | I. Petráš, Fractional-order nonlinear systems: modeling, analysis and simulation, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18101-6 |
[45] | K. Baisad, S. Moonchai, Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-Ⅲ functional response, Adv. Differ. Equ., 2018 (2018), 1–20. https://doi.org/10.1186/s13662-018-1535-9 doi: 10.1186/s13662-018-1535-9 |
[46] | R. Soni, U. Chouhan, A dynamic effect of infectious disease on prey predator system and harvesting policy, Biosci. Biotech. Res. Commun., 11 (2018), 231–237. http://dx.doi.org/10.21786/bbrc/11.2/6 doi: 10.21786/bbrc/11.2/6 |
[47] | C. Vargas-De-Leon, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75–85. https://doi.org/10.1016/j.cnsns.2014.12.013 doi: 10.1016/j.cnsns.2014.12.013 |
[48] | M. Bandyopadhyay, J. Chattopadhyay, Ratio-dependent predator-prey model: effect of environmental fluctuation and stability, Nonlinearity, 18 (2005), 913. https://doi.org/10.1088/0951-7715/18/2/022 doi: 10.1088/0951-7715/18/2/022 |
[49] | A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871–1886. https://doi.org/10.1007/s11538-007-9196-y doi: 10.1007/s11538-007-9196-y |
[50] | R. Naresh, A. Tripathi, D. Sharma, Modelling and analysis of the spread of AIDS epidemic with immigration of HIV infectives, Math. Comput. Model., 49 (2009), 880–892. https://doi.org/10.1016/j.mcm.2008.09.013 doi: 10.1016/j.mcm.2008.09.013 |
[51] | E. Venturino, Epidemics in predator-prey models: disease in the predators, Math. Med. Biol., 19 (2002), 185–205. https://doi.org/10.1093/imammb/19.3.185 doi: 10.1093/imammb/19.3.185 |
[52] | R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039 |
[53] | A. M. Bate, F. M. Hilker, Complex dynamics in an eco-epidemiological model, Bull. Math. Biol., 75 (2013), 2059–2078. https://doi.org/10.1007/s11538-013-9880-z doi: 10.1007/s11538-013-9880-z |