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1. Introduction

The dynamics between hunters and their quarry are widely studied in the literature. The Lotka-
Volterra hunter-quarry system [1, 2] was initially presented to elucidate the demographic shifts of two
species hunters and their quarry, as they interact. Murray [3] updated the Lokta-Volterra model, and the
framework was based on the idea that, with a lack of hunters, the quarry population grows logistically.
Kermack and McKendrick [4] proposed a traditional SIR model which is the ancestor of the most
significant models for the spread of infectious diseases. Numerous epidemic models that involve
disease in quarry have been thoroughly explored in a variety of formats and settings over the past few
decades such as Hethcote et al. [5], Johri et al. [6], Rahman et al. [7], Nandi et al. [8], Mbava et al. [9]
and Yang [10]. In the early nineteenth century, an eco-epidemiological system comprising three
species emerged: healthy quarry (susceptible), infected quarry (infectious), and hunters, described by
Chattopadhyay and Arino [11] with the situation where the hunter mostly consumes diseased quarry.
Another scenario was also proposed by Das and Chattopadhyay [12] in which infectious disease affects
both species.The parasite is transmitted within both the quarry and hunter populations through both
direct and indirect means. In the other model by Nandi et al. [8], it is presumed that the victim species
is affected by a viral ailment, leading to the emergence of two categories: vulnerable individuals and
those in the early stages of infection, who are particularly vulnerable to predation by hunters.

In recent years, a computational structure to investigate how a disease affects quarry species
populations and harvesting in a hunter-hunted model has been examined by Dash et al. [13]. An eco-
epidemiological system consisting of two separate infectious diseases in the quarry population was
also proposed by Al-Jubouri et al. [14]. Tripathi et al. [15] looked at a four-species model to evaluate
the impact of harvesting and the Allee effect inside a sick eco-epidemiological system. The vulnerable
quarry, sick quarry, vulnerable hunter, and sick hunter are the four compartments in this paradigm.

Fractional aspects of various hunter-hunted models have been proposed by many researchers
such as Javidi and Nyamoradi [16], Al-Nassir et al. [17], Moustafa et al. [18], and Kaviya and
Muthukumar [19]. Xie et al. [20] introduced a non-integer order model for the hunter-hunted
relationship, incorporating a Holling III-type functional response and an intermittent harvesting
component. Djilali and Ghanbari [21] studied a non-integer order hunter-hunted system with sick
quarry in which a non-fatal contagious disease has emerged in the quarry population. The presence,
singularity, positivity, and limit of solutions are discussed by Ramesh et al. [22] in their research paper.
Alidousti and Ghafari [23] considered a non-integer order hunter-hunted model involving a quarry
species, two hunter species, and a collective defense capability. He integrated the interplays between
quarry and hunter species by utilizing the Monod-Haldane function along with a Holling-IV functional
reaction.

The foundational literature for fractional calculus is found in the books by Miller and Ross [24],
Oldham and Spanier [25], and Podlubny et al. [26]. The propensity of fractional-order systems to
approach conventional integer-order systems is among the factors contributing to the growing attention
toward fractional differential equations (FDEs). However, the nonlocal quality of fractional derivative
operators is what appeals to people the most. Numerous approximate mathematical methods have
been devised in recent years to figure out the solutions of FDEs, such as the Adomian decomposition
method (ADM) by Wazwaz [27] and Abbasband [28], homotopy analysis method (HAM) by Liao [29],
generalized differential transform method (GDTM) by Momani et al. [30], homotopy perturbation
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method (HPM) by He [31] and Yildirim [32], variational iteration technique by He [33], modified
Laplace decomposition by Khan [34], homotopy perturbation transform method (HPTM) by Khan and
Wu [35], homotopy sumudu perturbation transform technique by Hao et al. [36], and q-homotopy
analysis transform method (q-HATM) by Kumar et al. [37].

The conventional frameworks for describing the interactions between predators and prey, which
include the Lotka-Volterra model, have been sufficient for the analysis of such interactions
within species populations over time. On the contrary, these models, especially with regard to pest
management and harvesting regimes, seem unable to deal with memory, non-locality, and other factors
that are characteristic of real-life settings. Therefore, models based on fractional calculus have become
an essential option, as they help in explaining complex phenomena in systems where certain activities
vary with time such as diseases and human operations like fishing. For instance, Al-Nassir et al. [17]
examined the fractional-order biological systems under harvest and their dynamic performance toward
the harvest showing the scope of fractional calculus in ecology models. Similarly, Xie et al. [20] were
concerned with the dynamics of the harvested fractional-order predator-prey systems and also the two
species prey-predator models without harvest and showed the practical side of the model in real life. In
a similar way, Moustafa et al. [18] worked on eco-epidemiological approaches and provided examples
where diseases and mortality were integrated into predator-prey dynamics.

This study builds on these efforts to propose the implementation of fractional-order models in
analyzing how disease dynamics and harvesting affect predator-prey interactions, thus offering new
perspectives regarding population management and ecosystem stability. In general, our model contains
several important details: This class of model implies that in the absence of predation the susceptible-
sized prey population increases logistically, but this growth is curtailed due to the spread of a disease.
Infected prey do not die or breed but assist the disease by infecting healthy prey. In this study, a
collection of robust MATLAB scripts, specially designed for addressing three categories of fractional-
order problems, is introduced. These scripts are put forth by Garrappa [38], who has authored a
concise guide on numerically solving FDEs and has delved into various intricate issues associated with
the effective utilization of techniques, including handling the persistent memory term and tackling
equations through implicit methods, among others.

The fundamental organization of this paper is as follows: In Section 2, we delve into foundational
concepts. The fractional problem model is examined within Section 3. Section 4 encompasses the
demonstration of the analysis concerning existence, uniqueness, and stability. Section 5 contains
instances of development and the application of numerical solutions in model simulations. Finally,
in Section 6, we present concluding remarks.

2. Definition and preliminaries

Let us commence with an exposition of the Caputo derivative with fractional order ρ and the
Riemann-Liouville (RL) integral, respectively.

C
0 Dρθg(θ) =

1
Γ (k − ρ)

∫ θ

0
(θ − ϱ)k−ρ−1 gk(ϱ)dϱ, k − 1 < ρ ≤ k, k ∈ z+,

C
0 Iρθg(θ) =

1
Γ (ρ)

∫ θ

0
(θ − ϱ)ρ−1 g(ϱ)dϱ, 0 < ρ ≤ 1.

(2.1)
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Scientists and engineers have made extensive use of the Caputo operator to model memory-
dependent behavior in the mathematical formulation such as Singh et al. [39], Baleanu and
Agrawal [40], Shah et al. [41], Moa’ath et al. [42], and Mozyrska and Torres [43]. We are spurred
on to employ this innovative strategy of non-negative calculus owing to the outstanding usability and
effectiveness of the Caputo fractional operator in the realms of science and technology.
Theorem 2.1. In the fractional-order system [44, 45]

C
0 Dρθg(θ) = g(θ, X(θ)), X(θ0) = X0, (2.2)

where J(X∗) stands for the system’s derivative matrix of Eq (2.2) determined at steady state point X∗:

(1) The steady state point X∗ is locally asymptotically stable if and only if all the eigenvalues λi,
i = 1, 2, ..., n, of J(X∗) satisfy | arg(λi)| >

ρπ

2 .
(2) The equilibrium point X∗ is stable if all the eigenvalues λi, i = 1, 2, ..., n, of J(X∗) satisfy
| arg(λi)| ≥

ρπ

2 and eigenvalues with | arg(λi)| =
ρπ

2 have the same geometric and algebraic
multiplicity.

(3) The equilibrium point X∗ is unstable if and only if there exist eigenvalues λi for some i = 1, 2, ..., n
of J(X∗) that satisfy | arg(λi)| <

ρπ

2 .

3. Mathematical formulation of the non-integer-order quarry-hunter model

Since vaccination strategies have proven ineffective, Soni and Chouhan [46] delved into the complex
consequences of the hunter-hunted model within the epidemiological system. The model’s distinctive
characteristics are defined by

dx(θ)
dθ
= −px(θ) + qx(θ)y(θ) − rx(θ)z(θ)(1 − ϕ),

dy(θ)
dθ
= hy(θ) − ux(θ)y(θ) − vy(θ)z(θ)(1 − ϕ),

dz(θ)
dθ
= hz(θ) − ux(θ)z(θ) + vy(θ)z(θ)(1 − ϕ) − wz(θ),

(3.1)

where x, y, and z symbolize the quantities of vulnerable hunters, vulnerable quarry, and contaminated
quarry, respectively. The other parameters are defined in Table 1.

Table 1. Parameter descriptions.

Parameter Description
p Amount of healthy, vulnerable hunters dying naturally
q Amount of interactions among robust, vulnerable hunters and vulnerable quarry
r Amount of interactions among an infected quarry and a robust, vulnerable hunter
u Amount of interactions among robust, vulnerable hunters with infected quarry

and vulnerable quarry
v Amount of encounters among diseased and robust susceptible quarry
w Extraction (harvesting) rate of afflicted quarry
h Individual offspring rate of vulnerable quarry (per unit of time) and

contaminated quarry
ϕ Fraction of newborns who received vaccinations in succession
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Equation (3.1) in our study represents a traditional model in the eco-epidemiological literature,
encapsulating the dynamics between predators and their prey, which may include infectious diseases
affecting one or both species. These models stem from the foundational work by Lotka and Volterra
in the early 20th century, who pioneered the use of differential equations to describe biological
interactions. Subsequent developments by Kermack and McKendrick introduced disease dynamics
into these models, paving the way for a rich body of research that integrates epidemiological aspects
into predator-prey interactions.

While classical models have provided significant insights, they inherently assume that responses
within the system are instantaneous and often ignore the historical or memory effects that are crucial
in natural populations. Typically, these models use integer-order derivatives which assume a local
interaction within the system. Such assumptions simplify the complex interactions and can lead
to inaccuracies when predicting the behavior of more complex ecological systems. Additionally,
traditional models often fail to capture the non-linear and anomalous behaviors that are characteristic
of many ecological processes, thereby limiting their application in predicting realistic ecological
scenarios.

The model comprised of fundamental presumptions that we established when creating it, including:

• The proportional birth rate of vulnerable quarry and contaminated quarry remains consistent.
• Hunters eventually die as a result of the disease’s tremendous weakness.
• When a hunter becomes infected, its demise may be predicted. Hence, we will only take into

account susceptible hunters, the fact that infectious illness spreads through contact among the
population of quarry, and the rate of infection matches the combined count of infected and
vulnerable quarry.
• The hunter does not differentiate between vulnerable and ailing members of the quarry

community.
• Through the consumption of sick quarry, the hunter contracts the illness.
• The pace of hunter contagion correlates with the multiplication of infected quarry and vulnerable

hunters.
• Quarry that has been infected cannot recover.

The aim of this work is a presentation of Eq (3.2), which takes on the concept of fractional
calculus and incorporates it into the eco-epidemiological model of the predator-prey interaction. The
Caputo derivative and the Riemann-Liouville integral are most preferable thanks to their respected
attributes and the efficiency with which they represent physical systems. The advantage of the Caputo
derivative is that it is applicable in the context of initial value problems because one can readily impose
initial conditions in the form of standard derivatives rather than complicated definitions. Thus, the
Caputo derivative is practical and effective in real applications. Other types of derivatives such as the
conformable and the beta-fractional derivatives have their own merits but the Caputo derivative seems
to be more straightforward. Bearing this in mind, let us speak about the Caputo derivative elevation
which helps make researchers’ claims more relevant and allows us to draw necessary conclusions based
on the available research, which is why this concept is very important for studies related to fractional-
order dynamics.

Finnaly, incorporating fractional calculus allows us to minimize the shortcomings of most classic
approaches that leave wide gaps into our eco-epidemiological model. It is this innovation that shows
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a turn from the ordinary methods of modeling. It aids in the understanding of the spread of diseases,
stability of populations, and management of resources in the ecosystem.

Thus, we would like to now go into the fractional part of the model using the Caputo derivative:
C
0D

ρ
θ x(θ) = −px(θ) + qx(θ)r(θ) − rx(θ)z(θ)(1 − ϕ),

C
0D

ρ
θy(θ) = hy(θ) − ux(θ)y(θ) − vy(θ)z(θ)(1 − ϕ),

C
0D

ρ
θz(θ) = hz(θ) − ux(θ)z(θ) + vy(θ)z(θ)(1 − ϕ) − wz(θ).

(3.2)

4. Existence, uniqueness and stability analysis

4.1. Existence and uniqueness analysis

Using fixed-point theory, we will investigate whether there exists a distinctive solution to the
mathematical model we are studying. Applying the Caputo fractional integral operator on either side
of the equation yields

x(θ) = x(0) +
1
Γ(ρ)

∫ θ

0
(θ − ω)ρ−1(−px(θ) + qx(θ)y(θ) − rx(θ)z(θ)(1 − ϕ))dω,

y(θ) = y(0) +
1
Γ(ρ)

∫ θ

0
(θ − ω)ρ−1(hy(θ) − ux(θ)y(θ) − vy(θ)z(θ)(1 − ϕ))dω,

z(θ) = z(0) +
1
Γ(ρ)

∫ θ

0
(θ − ω)ρ−1(hz(θ) − ux(θ)z(θ) + vy(θ)z(θ)(1 − ϕ) − wz(θ)))dω.

(4.1)

To make this simpler, we set the above equations to

K1(θ, x) = −px(θ) + qx(θ)y(θ) − rx(θ)z(θ)(1 − ϕ),
K2(θ, y) = hy(θ) − ux(θ)y(θ) − vy(θ)z(θ)(1 − ϕ),
K3(θ, z) = hz(θ) − ux(θ)z(θ) + vy(θ)z(θ)(1 − ϕ) − wz(θ).

(4.2)

Initially, we demonstrate that the kernels K1(θ, x), K2(θ, y), and K3(θ, z) adhere to the Lipschitz
criterion.
Theorem 4.1. Kernels K1(θ, x),K2(θ, y), and K3(θ, z) adhere to the Lipschitz criterion furthermore
contractions if 0 ≤ η1, η2, η3 < 1, where η1 = p + qλ + rµ(1 − ϕ), η2 = h + uα + vµ(1 − ϕ), η3 =

h + uα + vλ(1 − ϕ) + w, ||x|| ≤ α, ||y|| ≤ λ, and ||z|| ≤ µ.
Proof. Let us get started with demonstrating that kernels K1(θ, x) and K2(θ, x) meet the Lipschitz
requirement. We hypothesize that x and x∗ are two controlled functions in order to illustrate it. The
result listed below is easily attainable.

||K1(θ, x) − K1(θ, x∗)|| = ||{−px(θ) + qx(θ)y(θ) − rx(θ)z(θ)(1 − ϕ)}
− {−px∗(θ) + qx∗(θ)y(θ) − rx∗(θ)z(θ)(1 − ϕ)}||

= || − p(x(θ) − x∗(θ)) + qy(θ)(x(θ) − x∗(θ)) − rz(θ)(1 − ϕ)(x(θ) − x∗(θ))||
≤ (p||x(θ) − x∗(θ)|| + qy(θ)||x(θ) − x∗(θ)|| + rz(θ)(1 − ϕ)||x(θ) − x∗(θ)||).

(4.3)

Employing the norm property in the above equation, we have

||K1(θ, x) − K1(θ, x∗)|| ≤ {p + qλ + rµ(1 − ϕ)}||x(θ) − x∗(θ)||. (4.4)
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Taking (p + qλ + rµ(1 − ϕ)) = η1, we have

||K1(θ, x) − K1(θ, x∗)|| ≤ η1||x(θ) − x∗(θ)||. (4.5)

As a result, kernal K1 meets the Lipschitz criterion. Additionally, if 0 ≤ η1 < 1, it is a contraction.
Similar results can be obtained as shown below:

||K2(θ, y) − K2(θ, y∗)|| ≤ η2||y(θ) − y∗(θ)||, (4.6)

||K3(θ, z) − K3(θ, z∗)|| ≤ η3||z(θ) − z∗(θ)||. (4.7)

It demonstrates thatK2 andK3 meet the Lipschitz condition, and if 0 ≤ η2 < 1 and 0 ≤ η3 < 1, then
they likewise experience a contraction.

Using 1
Γ(ρ) = σ(ρ) and the notions from Eq (4.2), Eq (4.1) is conveyed as

x(θ) = x(0) + σ(ρ)
∫ θ

0
(θ − ω)ρ−1K1(ω, x)dω, (4.8)

y(θ) = y(0) + σ(ρ)
∫ θ

0
(θ − ω)ρ−1K2(ω, y)dω, (4.9)

z(θ) = z(0) + σ(ρ)
∫ θ

0
(θ − ω)ρ−1K3(ω, z)dω. (4.10)

The recursive formula of the above equation is

xn(θ) = σ(ρ)
∫ θ

0
(θ − ω)ρ−1K1(ω, xn−1)dω,

yn(θ) = σ(ρ)
∫ θ

0
(θ − ω)ρ−1K2(ω, yn−1)dω,

zn(θ) = σ(ρ)
∫ θ

0
(θ − ω)ρ−1K3(ω, zn−1)dω.

(4.11)

The initial conditions are listed below:

x0(θ) = x(0), y0(θ) = y(0), z0(θ) = z(0). (4.12)

The difference formula is then presented as follows:

Pn(θ) = xn(θ) − xn−1(θ), Qn(θ) = yn(θ) − yn−1(θ), Rn(θ) = zn(θ) − zn−1(θ), (4.13)

Pn(θ) = σ(ρ)
∫ θ

0
(θ − ω)ρ−1(K1(ω, xn−1) − K1(ω, xn−2))dω,

Qn(θ) = σ(ρ)
∫ θ

0
(θ − ω)ρ−1(K2(ω, yn−1) − K2(ω, yn−2))dω,

Rn(θ) = σ(ρ)
∫ θ

0
(θ − ω)ρ−1(K3(ω, zn−1) − K3(ω, zn−2))dω.

(4.14)
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The conclusion that can be made is that

xn(θ) =
n∑

i=0

Pi(θ), yn(θ) =
n∑

i=0

Qi(θ), zn(θ) =
n∑

i=0

Ri(θ). (4.15)

The following premises are made:

x−1(0) = x(0), y−1(0) = y(0), z−1(0) = z(0). (4.16)

We have an easy deduction of the following conclusions:

||Pn(θ)|| ≤ σ(ρ)η1

∫ θ

0
(θ − ω)ρ−1||Pn−1(θ)||dω,

||Qn(θ)|| ≤ σ(ρ)η2

∫ θ

0
(θ − ω)ρ−1||Qn−1(θ)||dω,

||Rn(θ)|| ≤ σ(ρ)η3

∫ θ

0
(θ − ω)ρ−1||Rn−1(t)||dω.

(4.17)

Now, using Eq (4.17), we show that the fractional model’s solution actually exists.
Theorem 4.2. A solution exists for the mathematical system with a fractional order given by (3.2) if
for θ0, we have (

σ(ρ)η1
θρ

ρ

)
< 1.

Proof. We assume that the functions x(θ) and y(θ) are bounded. The following findings can be derived
by applying the recursive technique in conjunction with Eq (4.17):

||Pn(θ)|| ≤ ||x(0)||
(
σ(ρ)η1

θρ

ρ

)n

,

||Qn(θ)|| ≤ ||y(0)||
(
σ(ρ)η2

θρ

ρ

)n

,

||Rn(θ)|| ≤ ||z(0)||
(
σ(ρ)η3

θρ

ρ

)n

.

(4.18)

As a result, all of the three functions described in Eq (4.14) exist and are continuous. The expression
represented in Eq (4.11) must then be confirmed to be the fractional model’s solution.We have

x(θ) − x(0) = xn(θ) − αn(θ),
y(θ) − y(0) = yn(θ) − βn(θ),
z(θ) − z(0) = zn(θ) − γn(θ),

(4.19)

and one obtains

||αn(θ)|| ≤
(
σ(ρ)θρ

ρ

)n+1

ηn+1
1 α. (4.20)
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Take θ = θ0, and we have

||αn(θ)|| ≤
(
σ(ρ)θρ0
ρ

)n+1

ηn+1
1 α. (4.21)

Taking the limit n→ ∞, Eq (4.21) results in

||αn(θ)|| → 0. (4.22)

Following the same kind of process, we see that

||βn(θ)|| → 0, ||γn(θ)|| → 0. (4.23)

This demonstrates that the fractional model under study given by (3.2) has a solution.
Theorem 4.3. There is just one solution to the fractional-order mathematical model given in Eq (3.2) if(

1 −
σ(ρ)θρη1

ρ

)
> 0. (4.24)

Proof. We assume the presence of additional solutions x∗(θ) and y∗(θ) to Eq (3.2) to assess the
singularity of the fractional model outcome.

Clearly, it becomes evident that

x(θ) − x∗(θ) = σ(ρ)
∫ θ

0
(θ − ω)ρ−1(K1(ω, x) − K1(ω, x∗))dω. (4.25)

Using the norm-using characteristic of Eq (4.25), we possess

||x(θ) − x∗(θ)||
(
1 −
σ(ρ)θρη1

ρ

)
≤ 0. (4.26)

If the conclusion in Eq (4.24 ) is accurate, then we may deduce from Eq (4.28) that

||x(θ) − x∗(θ)|| = 0 =⇒ x(θ) = x∗(θ). (4.27)

Using an equivalent process, we have

y(θ) = y∗(θ), z(θ) = z∗(θ). (4.28)

As a result, a mathematical model of Eq (3.2) of arbitrary order has a unique solution.

4.2. Equilibria and stability analysis

4.2.1. Local stability analysis

To evaluate the steady-state points of the system of Eq (3.2), we assume

C
0D

ρ
θ x(θ) = 0, C

0D
ρ
θy(θ) = 0, C

0D
ρ
θz(θ) = 0. (4.29)
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That is

−px(θ) + qx(θ)y(θ) − rx(θ)z(θ)(1 − ϕ) = 0,
hy(θ) − ux(θ)y(θ) − vy(θ)z(θ)(1 − ϕ) = 0,

hz(θ) − ux(θ)z(θ) + vy(θ)z(θ)(1 − ϕ) − wz(θ) = 0.
(4.30)

The steady-state points are

E0 = (x0, y0, z0) = (0, 0, 0),

E1 = (x1, y1, z1) =
(
h − w

u
, 0,

−p
r(1 − ϕ)

)
,

E2 = (x2, y2, z2) =
(
0,

w − h
v(1 − ϕ)

,
h

v(1 − ϕ)

)
,

E3 = (x3, y3, z3) =
(
h
u
,

p
q
, 0

)
,

E4 = (x4, y4, z4) =
(
h + vy4 − w

u
,

vp + rw
vq + rv(1 − ϕ)

,
−p + qy4

r(1 − ϕ)

)
.

(4.31)

Theorem 4.4. The equilibrium point E0 of the system of Eq (3.2) is unstable.
Proof. Given below is the Jacobian matrix for the system of equations investigated at steady-state
point E0.

J(E0) =


−p 0 0
0 h 0
0 0 h − w

 .
Hence, the eigenvalues of J(E0) are λ1 = −p, λ2 = h, and λ3 = h − w. Since λ1 is negative, then
| arg(λ1)| = π > ρπ2 and | arg(λ2)| = | arg(λ3)| = 0 < ρπ2 , and according to Theorem 2.1, E0 is unstable.

Theorem 4.5. The steady-state point E1 of the system of Eq (3.2) is unstable.
Proof. Given below is the Jacobian matrix for the system of equations investigated at steady-state
point E1.

J(E1) =


0 q(h−w)

u
−r(1−ϕ)(h−w)

u
0 w + vp

r 0
pu

r(1−ϕ)
−vp

r 0

 .
Hence, the eigenvalues of J(E1) are λ1 =

nr+mp
r , λ2 =

√
p(w − h), and λ3 = −

√
p(w − h). Since λ1 is

positive, then | arg(λ1)| = 0 < ρπ

2 . If w > h, then λ2 > 0 and λ3 < 0. This implies | arg(λ2)| = 0 < ρπ

2
and | arg(λ3)| = π > ρπ2 . According to Theorem 2.1, E1 is unstable. If w < h, then λ2 and λ3 are purely
imaginary. It implies | arg(λ2)| = | arg(λ3)| = π2 >

ρπ

2 . According to Theorem 2.1, E1 is unstable.

Theorem 4.6. The steady-state point E2 of the system of Eq (3.2) is asymptotically stable if h < w and
(pvϕ + qw + rhϕ < pv + qh + rh).
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Proof. Given below is the Jacobian matrix for the system of equations investigated at steady-state
point E2.

J(E2) =


−p + q(w−h)

v(1−ϕ) −
rh
v 0 0

u(h−w)
v(1−ϕ) 0 −w + h
−uh

v(1−ϕ) h 0

 .
Hence, the eigenvalues of J(E1) are λ1 = (−pv+pvϕ+qw−qh−rh+rhϕ

v(1−ϕ) ), λ2 =
√

h(h − w), and λ3 =

−
√

h(h − w). If h < w, then λ2 and λ3 are purely imaginary. This implies | arg(λ2)| = | arg(λ3)| = π2 >
ρπ

2 .
If pvϕ + qw + rhϕ < pv + qh + rh, then λ1 is negative. This implies | arg(λ1)| = π > ρπ

2 . All three
eigenvalues satisfy | arg(λi)| >

ρπ

2 , i = 1, 2, 3. Hence, by Theorem 2.1, E2 is asymptotically stable for
the given condition.

Theorem 4.7. The steady-state point E3 of the system of Eq (3.2) is asymptotically stable if pv <
qw + pvϕ.
Proof. Given below is the Jacobian matrix for the system of equations investigated at steady-state
point E3.

J(E3) =


0 qh

u
c(ϕ−1)h

u
−pu

q 0 pv(ϕ−1)
q

0 0 pv(1−ϕ)−qw
q

 .
Hence, the eigenvalues of J(E3) are λ1 = −(qn−pv+pvϕ

q ), λ2 = i
√

ph, and λ3 = −i
√

ph. Since λ2 and λ3

are purely imaginary, this implies | arg(λ2)| = | arg(λ3)| = π
2 >

ρπ

2 . If pv < qw + pvϕ, then λ1 < 0, so
| arg(λ1)| = π > ρπ2 , and hence, E3 is asymptotically stable for given condition.

Let us discuss about the regional stability of the system of Eq (3.2) in the vicinity of the non-zero
steady-state point E4. Given below is the Jacobian matrix for the system of equations evaluated at
equilibrium point E4.

J(E4) =


−p + qy∗ − rz∗(1 − ϕ) qx∗ −r(1 − ϕ)x∗

−uy∗ h − ux∗ − vz∗(1 − ϕ) −vy∗(1 − ϕ)
−uz∗ v(1 − ϕ)z∗ h − ux∗ + vy∗(1 − ϕ) − w

 ,
where x∗, y∗, and z∗ are provided by

x∗ =
h + vy∗ − w

u
, y∗ =

vp + rw
vq + rv(1 − ϕ)

, z∗ =
−p + qy∗

u(1 − ϕ)
. (4.32)

The characteristic equation for the Jacobian matrix J(E4) is provided by

ϱ3 + a1ϱ
2 + a2ϱ + a3 = 0, (4.33)

where

a1 = p − qy∗ + rz∗(1 − ϕ) − 2h + 2ux∗ + vz∗(1 − ϕ) + w − vy∗(1 − ϕ), (4.34)
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a2 = (−p + qy∗ − rz∗(1 − ϕ))(2h − 2ux∗ − vz∗(1 − ϕ) + vy∗(1 − ϕ) − w)
+ (h − ux∗ − vz∗(1 − ϕ))(h − ux∗ + vy∗(1 − ϕ) − w + qux∗y∗ − r(1 − ϕ)x∗uz∗),

(4.35)

a3 = (h − ux∗ − vz∗(1 − ϕ))((p − qy∗ + rz∗(1 − ϕ))(h − ux∗ + vy∗(1 − ϕ) − w) + r(1 − ϕ)x∗uz∗)
− qux∗y∗(h − ux∗ + vy∗(1 − ϕ) − w) − quvx∗z∗(1 − ϕ) − rv(1 − ϕ)2x∗y∗uz∗.

(4.36)

E4 is asymptotically stable, according to the Routh-Hurwitz conditions, whenever and only if a1 >

0, a3 > 0, and a1a2 > a3.

4.2.2. Global stability analysis

Theorem 4.8. The steady-state point (x∗, y∗, z∗) given by (4.32) is globally asymptotically stable.
Proof. Examine the subsequent nonlinear Lyapunov function for the model

L(x(θ), y(θ), z(θ)) = A1

(
x(θ) − x∗ − x∗ ln

x(θ)
x∗

)
+ A2

(
y(θ) − y∗ − y∗ ln

y(θ)
y∗

)
+ A3

(
z(θ) − z∗ − z∗ ln

z(θ)
z∗

)
,

(4.37)

C
0D

ρ
θL(x(θ), y(θ), z(θ)) = A1.

C
0D

ρ
θ

(
x(θ) − x∗ − x∗ ln

x(θ)
x∗

)
+ A2.

C
0D

ρ
θ

(
y(θ) − y∗ − y∗ ln

y(θ)
y∗

)
+ A3.

C
0D

ρ
θ

(
z(θ) − z∗ − z∗ ln

z(θ)
z∗

)
.

(4.38)

Using the result from [47],

C
0D

ρ
θ

(
x(θ) − x∗ − x∗ ln

x(θ)
x∗

)
≤

(
1 −

x∗

x(θ)

)
.C0D

ρ
θ x(θ),

C
0D

ρ
θ

(
y(θ) − y∗ − y∗ ln

y(θ)
y∗

)
≤

(
1 −

y∗

y(θ)

)
.C0D

ρ
θy(θ),

C
0D

ρ
θ

(
z(θ) − z∗ − z∗ ln

z(θ)
z∗

)
≤

(
1 −

z∗

z(θ)

)
.C0D

ρ
θz(θ),

C
0D

ρ
θL(x, y, z) ≤ A1

(
1 −

x∗

x(θ)

)
.C0D

ρ
θ x(θ) + A2

(
1 −

y∗

y(θ)

)
.C0D

ρ
θy(θ) + A3

(
1 −

z∗

z(θ)

)
.C0D

ρ
t z(θ). (4.39)

Using the substitution from the system of Eq (3.2),

C
0D

ρ
θL(x, y, z) ≤ A1

(
1 −

x∗

x(θ)

)
(−px(θ) + qx(θ)y(θ) − rx(θ)z(θ)(1 − ϕ))

+ A2

(
1 −

y∗

y(θ)

)
(hy(θ) − ux(θ)y(θ) − vy(θ)z(θ)(1 − ϕ))

+ A3

(
1 −

z∗

z(θ)

)
(hz(θ) − ux(θ)z(θ) + vy(θ)z(θ)(1 − ϕ) − wz(θ)) ,

(4.40)

C
0D

ρ
θL(x, y, z) ≤ A1(x(θ) − x∗) (−p + qy(θ) − rz(θ)(1 − ϕ))

+ A2(y(θ) − y∗) (h − ux(θ) − vz(θ)(1 − ϕ))

+ A3(z(θ) − z∗) (h − ux(θ) + vy(θ)(1 − ϕ) − w) .
(4.41)
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Applying the relationships at the steady state, we have

−p = −qy∗ + rz∗(1 − ϕ),
h = ux∗ + vz∗(1 − ϕ),

h − w = ux∗ − vy∗(1 − ϕ),
(4.42)

C
0D

ρ
θL(x, y, z) ≤ A1(x(θ) − x∗) (−r(1 − ϕ)(z(θ) − z∗) + q(y(θ) − y∗))

+ A2(y(θ) − y∗) (−u(x(θ) − x∗) − v(1 − ϕ)(z(θ) − z∗))

+ A3(z(θ) − z∗) (−u(x(θ) − x∗) + v(1 − ϕ)(y(θ) − y∗)) ,
(4.43)

C
0D

ρ
θL(x, y, z) ≤ −

[
A1r(1 − ϕ) + A3u)

]
(x(θ) − x∗)(z(θ) − z∗)

+ (A1q − A2u)(x(θ) − x∗)(y(θ) − y∗)
+ (−A2v(1 − ϕ) + A3v(1 − ϕ))(y(θ) − y∗)(z(θ) − z∗).

(4.44)

Taking A1 =
u
q A2 and A2 = A3, we can deduce that C

0D
ρ
θL(x, y, z) ≤ 0. Consequently, the steady state

point (x∗, y∗, z∗) given by (4.32) is globally asymptotically stable.

5. Development and application of the numerical solutions in the model simulations

In this section, we will delve into the utilization of a numerical procedure to obtain an approximate
solution to the problem. Let us examine the following equation for this purpose:

C
0 DρθA(θ) = S(θ,A(θ)). (5.1)

The integral operator can be used to write

A(θ) −A(0) =
1
Γ(ρ)

∫ θ

0
(θ − ω)ρ−1S(θ,A(θ)) dω. (5.2)

Taking θ = θn = nh1, we can rewrite the above equation as

A(θn) = A(0) +
1
Γ(ρ)

n−1∑
i=0

∫ θi+1

θi

(θn − ω)ρ−1S(θ,A(θ)) dω. (5.3)

Now, using linear interpolation of S(θ,A(θ)), one obtains

S(θ,A(θ)) ≈ S(θi+1,Ai+1) +
θ − θi+1

h1
(S(θi+1,Ai+1) − S(θi,Ai)), θ ∈ [θi, θi+1]. (5.4)

When Eq (5.4) is substituted for Eq (5.3), the problem’s approximate solution will appear as

An = A0 +
hρ1

Γ(ρ + 2)

ηnS(θ0,A0) +
n∑

i=1

θn−iS(θi,Ai)

 , (5.5)

where

ηn =
(n − 1)ρ+1 − nρ(n − ρ − 1)

Γ(ρ + 2)
, (5.6)
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θ j =

{
1, if j = 0,
( j − 1)ρ+1 − 2 jρ+1 + ( j + 1)ρ+1, if j = 1, 2, ..., n − 1.

}
(5.7)

The problem will be substantially solved using the above-described numerical technique in a
recursive manner as

xn = x0 +
hρ1

Γ(ρ + 2)

ηn(−px0 + qx0y0 − rx0z0(1 − ϕ)) +
n∑

i=1

θn−i(−pxi + qxiyi − rxizi(1 − ϕ)))

 , (5.8)

yn = y0 +
hρ1

Γ(ρ + 2)

ηn(hy0 − ux0y0 − vy0z0(1 − ϕ)) +
n∑

i=1

θn−i(hyi − uxiyi − vyizi(1 − ϕ))

 , (5.9)

zn = z0 +
hρ1

Γ(ρ + 2)

ηn(hz0 − ux0z0 + vy0z0(1 − ϕ) − wz0) +
n∑

i=1

θn−i(hzi − uxizi + vyizi(1 − ϕ) − wzi)

 .
(5.10)

To get computational experiments for addressing the fractional-order model of Eq (3.2), in this
section, we will apply the estimated technique expounded in Eq (5.10).

In the computational experiments, the parameter values have been set as p = 1.0, q = 1.5, r =
0.1, h = 0.5, u = 1.5, v = 0.1, w = 0.1, and ϕ = 0.91, with the commencing state (x0, y0, z0) =
(0.8, 1.7, 0.75) and step size h1 = 1.0 × 10−2.

The results obtained from Figures 1–3 help to fully understand the interplay between the
dynamics of multilayer fractional-order quarry-hunter systems, the effects of diseases, and different
harvesting strategies. These figures validate the theoretical models, as they demonstrate how relations
involving fractional calculus, which is well known for its ability to describe the dynamics of systems
with memory and non-locality, can been used to explain more complicated, biological systems
(Figures 1–3). One of the more interesting results from these simulations concerns when certain
harvesting rates (over or under) within the system are crossed or approached, where even small changes
in these harvesting rates produce dramatic non-linear effects on the ecosystem. In particular, one of
the insets in Figure 2 demonstrates how predator numbers crash after reaching a critical harvesting
level, illustrating how fragile the systems that allow for any harvesting are. This finding is important
for the development of successful management policies and illustrates the tension between ecological
resilience and anthropogenic stress. In addition, the increase in the prevalence of diseases does not
lead to the expected demise of prey populations. In fact, Figure 3 shows, instead of these populations
stabilizing, that disease and population control are regulated in a rather complex density-dependent
manner. Such results create a paradox for models of ecological systems that can hardly be found in
any models, since such intricate systems are usually ignored in wildlife management, particularly the
control of wildlife diseases. These results contribute to the understanding of ecology as a science but
are also important for ecology as a practice, that is in policymaking and management. The fractional-
order holos model is capable of predicting bifurcation points and nonlinear dynamics, which is why as
recommended to decision-makers to incorporate the effects of their choices on the stability of ecology,
and thus it becomes clear that more advanced models should be employed in ecological studies and
management.
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Figure 1. Influence of ρ on the response behaviour of minimal harvesting affecting the
population of the robust hunter, vulnerable quarry, and sick quarry.

Figure 2. Influence of ρ on the response behaviour of low harvesting (w = 0.3) on the
population of the robust hunter, vulnerable quarry and, sick quarry.
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Figure 3. Influence of ρ on the response behaviour of low harvesting (w = 0.7) on the
population of the robust hunter, vulnerable quarry ,and sick quarry.

The study we have conducted is an improvement on the use of fractional-order calculus in predator-
prey dynamics and ecological modeling in general. The models that exist are very limited in their
scope of ecological systems. For instance, Bandyopadhyay and Chattopadhyay [48] addressed the
ratio-dependent class of functional responses in fluctuating environments; however, we are able to
integrate memory-driven behavior, which is better at forecasting ecological stability. Moreover, the
nonlinear models in the disease framework developed by Korobeinikov et al. [49] have been extended
to historical data on disease prevalence for efficient control of the diseases. Other than that, our results
are also consistent with those of Naresh et al. [50] and Venturino et al. [51], introducing a degree of
complexity that is rich in detail and accounts for the effects and interactions over considerable periods
of time and thus greatly adding to the conventional approaches for ecological modeling. The role of
fractional dynamics in biological tissues has also been touched by Magin [52], but the present work
goes further in using this principle in natural ecological models. In addition, Bate and Hilker [53] dealt
with the effects of such interactions in co-epidemic models but our consideration of such an approach
through fractional calculus allows such interactions to be understood differently as their effects on the
present state evolve with interaction history.

6. Conclusions

In conclusion, this research paper has highlighted the dynamic impact of infectious diseases on
fractional-order quarry-hunter systems and harvesting policies. Incorporating fractional calculus has
enabled a deeper understanding of the dynamics, stability, and numerical solutions of these models.
The review of existing literature has identified various scenarios where infectious diseases affect
quarry-hunter dynamics. The investigation into the dynamics and stability of the proposed model has
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revealed valuable insights into the system’s prolonged behavior. The presentation of numerical solution
approaches, including specialized MATLAB routines, has facilitated practical implementation. This
research contributes to our understanding of ecological dynamics, disease control, and the management
of quarry-hunter populations. The findings have implications for ecologists, mathematicians, and
policymakers, providing valuable insights for analyzing and mitigating the impact of infectious
diseases on quarry-hunter relationships in real-world ecosystems.

Author contributions

Devendra Kumar and Jogendra Singh: Software, Formal analysis, Writing–review and editing;
Devendra Kumar: Supervision; Devendra Kumar and Dumitru Baleanu: Project administration;
Devendra Kumar, Jogendra Singh and Dumitru Baleanu: Conceptualization, Methodology, Validation,
Writing–original draft. All authors have read and agreed to the published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The authors declare no conflicts of interest in this manuscript.

References

1. A. J. Lotka, Elements of physical biology, Williams and Wilkins, 1925.

2. V. Volterra, Variations and fluctuations of the number of individuals in animal species living
together, ICES J. Marine Sci., 3 (1928), 3–51. https://doi.org/10.1093/icesjms/3.1.3

3. J. D. Murray, Mathematical biology, Berlin, Heidelberg: Springer, 1989.
https://doi.org/10.1007/978-3-662-08539-4

4. W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc.
R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118

5. H. W. Hethcote, W. D. Wang, L. T. Han, Z. E. Ma, A predator-prey model with infected prey,
Theor. Popul. Biol., 66 (2004), 259–268. https://doi.org/10.1016/j.tpb.2004.06.010

6. A. Johri, N. Trivedi, A. Sisodiya, B. Singh, S. Jain, Study of a prey-predator model with diseased
prey, Int. J. Contemp. Math. Sci., 7 (2012), 489–498.

7. M. S. S. Rahman, S. Chakravarty, A predator-prey model with disease in prey, Nonlinear Anal.
Model. Control, 18 (2013), 191–209. https://doi.org/10.15388/NA.18.2.14022

8. S. K. Nandi, P. K. Mondal, S. Jana, P. Haldar, T. K. Kar, Prey-predator model with two-
stage infection in prey: concerning pest control, J. Nonlinear Dyn., 2015 (2015), 948728.
https://doi.org/10.1155/2015/948728

AIMS Mathematics Volume 9, Issue 12, 36082–36101.

https://dx.doi.org/https://doi.org/10.1093/icesjms/3.1.3
https://dx.doi.org/https://doi.org/10.1007/978-3-662-08539-4
https://dx.doi.org/https://doi.org/10.1098/rspa.1927.0118
https://dx.doi.org/https://doi.org/10.1016/j.tpb.2004.06.010
https://dx.doi.org/ https://doi.org/10.15388/NA.18.2.14022
https://dx.doi.org/https://doi.org/10.1155/2015/948728


36099

9. W. Mbava, J. Y. T. Mugisha, J. W. Gonsalves, Prey, predator and super-predator
model with disease in the super-predator, Appl. Math. Comput., 297 (2017), 92–114.
https://doi.org/10.1016/j.amc.2016.10.034

10. W. B. Yang, Analysis on existence of bifurcation solutions for a predator-prey model with herd
behavior, Appl. Math. Model., 53 (2018), 433–446. https://doi.org/10.1016/j.apm.2017.09.020

11. J. Chattopadhyay, O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36
(1999), 747–766. https://doi.org/10.1016/S0362-546X(98)00126-6

12. K. P. Das, J. Chattopadhyay, A mathematical study of a predator-prey model
with disease circulating in both populations, Int. J. Biomath., 8 (2015), 1550015.
https://doi.org/10.1142/S1793524515500151

13. K. P. Dash, S. Gnanavel, R. Bhardwaj, R. Kumar, Allee effect in a harvested predator-prey model
with disease in both populations, Nonlinear Stud., 29 (2022), 965.

14. K. Q. Al-Jubouri, R. M. Hussien, N. M. G. Al-Saidi, The effect of harvesting policy on an eco-
epidemiological model, AIP Conf. Proc., 2183 (2019), 070007. https://doi.org/10.1063/1.5136169

15. J. P. Tripathi, K. P. Das, S. Bugalia, H. Choudhary, D. Kumar, J. Singh, Role of harvesting and
Allee in a predator-prey model with disease in both populations, Nonlinear Stud., 28 (2021), 939.

16. M. M. Khader, J. E. Macı́as-Dı́az, K. M. Saad, W. M. Hamanah, Vieta-Lucas polynomials
for the Brusselator system with the Rabotnov fractional-exponential kernel fractional derivative,
Symmetry, 15 (2023), 1–10. https://doi.org/10.3390/sym15091619

17. S. Al-Nassir, Dynamic analysis of a harvested fractional-order biological
system with its discretization, Chaos Solitons Fract., 152 (2021), 111308.
https://doi.org/10.1016/j.chaos.2021.111308

18. M. Moustafa, M. H. Mohd, A. I. Ismail, F. A. Abdullah, Dynamical analysis of a fractional-order
eco-epidemiological model with disease in prey population, Adv. Differ. Equ., 2020 (2020), 1–24.
https://doi.org/10.1186/s13662-020-2522-5

19. R. Kaviya, P. Muthukumar, Correction to: Dynamical analysis and optimal harvesting of
conformable fractional prey-predator system with predator immigration, Eur. Phys. J. Plus, 136
(2021), 606. https://doi.org/10.1140/epjp/s13360-021-01598-3

20. Y. K. Xie, Z. Wang, B. Meng, X. Huang, Dynamical analysis for a fractional-order prey-predator
model with Holling III type functional response and discontinuous harvest, Appl. Math. Lett., 106
(2020), 106342. https://doi.org/10.1016/j.aml.2020.106342

21. S. Djilali, B. Ghanbari, The influence of an infectious disease on a prey-predator
model equipped with a fractional-order derivative, Adv. Differ. Equ., 2021 (2021), 1–16.
https://doi.org/10.1186/s13662-020-03177-9

22. P. Ramesh, M. Sambath, M. H. Mohd, K. Balachandran, Stability analysis of the fractional-
order prey-predator model with infection, Int. J. Model. Simul., 41 (2021), 434–450.
https://doi.org/10.1080/02286203.2020.1783131

23. J. Alidousti, E. Ghafari, Dynamic behavior of a fractional order prey-predator model with group
defense, Chaos Solitons Fract., 134 (2020), 109688. https://doi.org/10.1016/j.chaos.2020.109688

AIMS Mathematics Volume 9, Issue 12, 36082–36101.

https://dx.doi.org/https://doi.org/10.1016/j.amc.2016.10.034
https://dx.doi.org/https://doi.org/10.1016/j.apm.2017.09.020
https://dx.doi.org/https://doi.org/10.1016/S0362-546X(98)00126-6
https://dx.doi.org/https://doi.org/10.1142/S1793524515500151
https://dx.doi.org/https://doi.org/10.1063/1.5136169
https://dx.doi.org/https://doi.org/10.3390/sym15091619
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111308
https://dx.doi.org/https://doi.org/10.1186/s13662-020-2522-5
https://dx.doi.org/https://doi.org/10.1140/epjp/s13360-021-01598-3
https://dx.doi.org/https://doi.org/10.1016/j.aml.2020.106342
https://dx.doi.org/https://doi.org/10.1186/s13662-020-03177-9
https://dx.doi.org/https://doi.org/10.1080/02286203.2020.1783131
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.109688


36100

24. K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential
equations, New York: Wiley, 1993.

25. K. B. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and
integration to arbitrary order, Elsevier, 1974.

26. I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen, B. M. V. Jara, Matrix approach to discrete
fractional calculus II: partial fractional differential equations, J. Comput. Phys., 228 (2009),
3137–3153. https://doi.org/10.1016/j.jcp.2009.01.014

27. A. M. Wazwaz, A new algorithm for calculating adomian polynomials for nonlinear operators,
Appl. Math. Comput., 111 (2000), 33–51. https://doi.org/10.1016/S0096-3003(99)00063-6

28. S. Abbasbandy, A numerical solution of Blasius equation by Adomian’s decomposition method
and comparison with homotopy perturbation method, Chaos Solitons Fract., 31 (2007), 257–260.
https://doi.org/10.1016/j.chaos.2005.10.071

29. S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D.
Thesis, Shanghai Jiao Tong University, 1992.

30. S. Momani, Z. Odibat, V. S. Erturk, Generalized differential transform method for solving
a space- and time-fractional diffusion-wave equation, Phys. Lett. A, 370 (2007), 379–387.
https://doi.org/10.1016/j.physleta.2007.05.083

31. J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999),
257–262. https://doi.org/10.1016/S0045-7825(99)00018-3

32. A. Yildirim, Application of the homotopy perturbation method for the Fokker-Planck equation, Int.
J. Numer. Methods Biomed. Eng., 26 (2010), 1144–1154. https://doi.org/10.1002/cnm.1200

33. J. H. He, Variational iteration method–a kind of non-linear analytical technique: some examples,
Int. J. Non-Linear Mech., 34 (1999), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1

34. Y. Khan, An effective modification of the Laplace decomposition method for
nonlinear equations, Int. J. Nonlinear Sci. Numer. Simul., 10 (2009), 1373–1376.
https://doi.org/10.1515/IJNSNS.2009.10.11-12.1373

35. Y. Khan, Q. B. Wu, Homotopy perturbation transform method for nonlinear
equations using He’s polynomials, Comput. Math. Appl., 61 (2011), 1963–1967.
https://doi.org/10.1016/j.camwa.2010.08.022

36. D. Zhao, J. Singh, D. Kumar, S. Rathore, X. J. Yang, An efficient computational technique for
local fractional heat conduction equations in fractal media, J. Nonlinear Sci. Appl., 10 (2017),
1478–1486. http://dx.doi.org/10.22436/jnsa.010.04.17

37. D. Kumar, J. Singh, D. Baleanu, A hybrid computational approach for Klein-Gordon equations on
Cantor sets, Nonlinear Dyn., 87 (2017), 511–517. https://doi.org/10.1007/s11071-016-3057-x

38. R. Garrappa, Numerical solution of fractional differential equations: a survey and a software
tutorial, Mathematics, 6 (2018), 1–23. https://doi.org/10.3390/math6020016

39. K. Singh, R. Saxena, S. Kumar, Caputo-based fractional derivative in fractional Fourier
transform domain, IEEE J. Emerging Sel. Top. Circuits Syst., 3 (2013), 330–337.
https://doi.org/10.1109/JETCAS.2013.2272837

AIMS Mathematics Volume 9, Issue 12, 36082–36101.

https://dx.doi.org/https://doi.org/10.1016/j.jcp.2009.01.014
https://dx.doi.org/https://doi.org/10.1016/S0096-3003(99)00063-6
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2005.10.071
https://dx.doi.org/https://doi.org/10.1016/j.physleta.2007.05.083
https://dx.doi.org/https://doi.org/10.1016/S0045-7825(99)00018-3
https://dx.doi.org/https://doi.org/10.1002/cnm.1200
https://dx.doi.org/https://doi.org/10.1016/S0020-7462(98)00048-1
https://dx.doi.org/https://doi.org/10.1515/IJNSNS.2009.10.11-12.1373
https://dx.doi.org/https://doi.org/10.1016/j.camwa.2010.08.022
https://dx.doi.org/http://dx.doi.org/10.22436/jnsa.010.04.17
https://dx.doi.org/https://doi.org/10.1007/s11071-016-3057-x
https://dx.doi.org/https://doi.org/10.3390/math6020016
https://dx.doi.org/https://doi.org/10.1109/JETCAS.2013.2272837


36101

40. D. Baleanu, O. P. Agrawal, Fractional Hamilton formalism within Caputo’s derivative,
Czechoslovak J. Phys., 56 (2006), 1087–1092. https://doi.org/10.1007/s10582-006-0406-x

41. K. Shah, Z. A. Khan, A. Ali, R. Amin, H. Khan, A. Khan, Haar wavelet collocation approach for
the solution of fractional order COVID-19 model using Caputo derivative, Alex. Eng. J., 59 (2020),
3221–3231. https://doi.org/10.1016/j.aej.2020.08.028

42. M. N. Oqielat, A. El-Ajou, Z. Al-Zhour, R. Alkhasawneh, H. Alrabaiah, Series solutions for
nonlinear time-fractional Schrödinger equations: comparisons between conformable and Caputo
derivatives, Alex. Eng. J., 59 (2020), 2101–2114. https://doi.org/10.1016/j.aej.2020.01.023

43. D. Mozyrska, D. F. M. Torres, Minimal modified energy control for fractional linear control
systems with the Caputo derivative, Carpathian J. Math., 26 (2010), 210–221.
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