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Abstract: Hermitian linear complementary dual (LCD) codes are a class of linear codes that intersect
with their Hermitian dual trivially. Each Hermitian LCD code can give an entanglement-assisted
quantum error-correcting code (EAQECC) with maximal entanglement. Methods of constructing
Hermitian LCD codes from known codes were developed, and seven new Hermitian LCD codes with
parameters [119, 4, 88]4, [123, 4, 91]4, [124, 4, 92]4, [136, 4, 101]4, [140, 4, 104]4, [188, 4, 140]4 and
[212, 4, 158]4 were constructed. Seven families of Hermitian LCD codes and their related EAQECCs
were derived from these codes. These new EAQECCs have better parameters than those known in the
literature.
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1. Introduction

Linear complementary dual (LCD) codes were introduced by Massey in 1992 [1], and it was shown
that LCD codes provide an optimum linear coding solution for the two-user binary adder channel. In
2016, Carlet and Guilley [2] investigated an interesting application of binary LCD codes against side-
channel and fault injection attacks and presented several constructions of LCD codes. A Hermitian
LCD code is also called zero radical code in [3], and each [n, k, d]4 quaternary Hermitian LCD code
gives a maximal entanglement-assisted quantum code with parameter [[n, k, d; n − k]]2 [3, 4]. Carlet
et al. [5] proved that any q-ary (q > 3) linear code is equivalent to an LCD code, and any q2-ary (q > 2)
linear code is equivalent to a q2-ary Hermitian LCD code. Following these work, people pay much
attention on investigating binary LCD codes and quaternary Hermitian LCD codes [6–10].

Entanglement-assisted stabilizer formalism was devised by Brun et al. in [11]. It has been proven
that Hermitian LCD codes were used to construct maximal entanglement assisted quantum
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error-correcting codes (EAQECCs) by [3, 4]. According to [3, 4], an [n, k, d]4 quaternary Hermitian
LCD code gives a maximal entanglement-assisted quantum code with parameter [[n, k, d; n − k]]2.
Hence, it is important to study optimal quaternary Hermitian LCD codes for constructing
[[n, k, d; n − k]]2 EAQECCs. An [n, k, d]4 Hermitian LCD code is optimal if it has the largest distance
for a given n, k. Parameters of quaternary optimal [n, k, d]4 Hermitian LCD codes with k ≤ 3 are
determined by [3, 6, 7]. There are some articles devoted to constructing [n, k, d]4 Hermitian LCD
codes with small n and k ≥ 4 [8–10]. In [3], for each t with 4 ≤ t ≤ 88, a [t, 4, dt]4 Hermitian LCD
code with relatively large dt was constructed. For n = 85s + t with s ≥ 1 and 4 ≤ t ≤ 84, [n, 4, d]4

Hermitian LCD codes are constructed by juxtaposing some simplex codes and [t, 4, dt]4 Hermitian
LCD codes. In this paper, we will develop some methods for constructing new Hermitian LCD codes
from known optimal codes and manage to improve some results on Hermitian LCD codes of [3], and
then construct new maximal entanglement EAQECCs. All parameters of codes in this paper are
calculated by Magma [12].

This paper is organized as follows. In section two, we propose some definitions and fundamental
results on Hermitian LCD codes, self-orthogonal codes and entanglement-assisted codes. In section
three, we provide two methods to construct Hermitian LCD codes and some examples. Finally, in
section four, we conclude this paper.

2. Preliminaries

In this section, we prepare some definitions, notations and basic results used in this paper.
Let F4 =

{
0, 1, ω, ω2

}
be the Galois field with four elements, where ω2 = 1 + ω,ω3 = 1. The

n-dimensional space over F4 is denoted as Fn
4 . The Hamming weight wt(x) of a vector x ∈ Fn

4 is the
number of nonzero components of x. The distance d(x, y) between x, y ∈ Fn

4 (x , y) is wt(x − y).
A quaternary [n, k]4 code C is a k-dimensional vector subspace of Fn

4 , C = [n, k, d]4 if the minimum
distance of two differerent codewords x, y ∈ C is d. A k × n matrix G is a generator matrix of C if its
rows form a basis for C [13].

The conjugation of x ∈ F4 is defined by x̄ = x2. Let u = (u1, u2 · · · un) and v = (v1, v2 · · · vn) be
vectors of Fn

4; their Hermitian inner product is

(u, v)h =

n∑
i=1

ui · vi =

n∑
i=1

ui · v2
i .

If C is a linear code over F4, then its Hermitian dual code is

C⊥h = {u ∈ Fn
4 | (u, v)h = 0,∀v ∈ C}.

If C ⊆ C⊥h , then C is called a Hermitian self-orthogonal code, and if C ∩ C⊥h = {0}, then C is called
a Hermitian LCD code. C is a Hermitian self-orthogonal code if and only if GG† = 0, and C is a
Hermitian LCD code if and only if k = rank(GG†), where G is a generator matrix of C and G† is the
conjugate transpose of G.

If G is a generator matrix of C = [n, k]4 and G = [Ik | A], where Ik is the k × k identity matrix, C
is called a system code. We say that two [n, k]4 codes C1 and C2 are equivalent, provided there is a
monomial matrix M and an automorphism σ of the field F4 such that C2 = σ(C1M). Each [n, k]4 is
equivalent to a system code [13].
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A code is called optimal when its minimum distance is maximal for a given length and dimension,
or when its length is minimal for the given dimension and minimum distance [14]. Let nq(k, d) be the
smallest value of n, for which there exists an [n, k, d]q code. A lower bound on nq(k, d) is the Griesmer
bound given by nq(k, d) >

∑k−1
i=0 dd/q

ie. For C = [n, k, d]4, if n4(k, d) =
∑k−1

i=0 dd/4
ie, C is an optimal

linear code. If n4(k, d) =
∑k−1

i=0 dd/4
ie + 1, C is a near-optimal linear code.

We will use two lemmas to construct Hermitian LCD codes from known codes.

Lemma 1. Suppose G1 = Gk×n1 generates an [n1, k, d1] Hermitian self-orthogonal code C1, and G2 =

Gk×n2 generates an [n2, k, d2] code C2.
(1) If C2 is a Hermitian LCD code, then there is an [n1 + n2, k, d1 + d2] Hermitian LCD code.
(2) If C2 is a Hermitian self-orthogonal code, then there is an [n1 + n2, k, d1 + d2] Hermitian self-

orthogonal code and an [n1 + n2 − k, k, d1 + d2 − k] Hermitian LCD code.

Proof. Let G3 = [G1 | G2], then G3 generates an [n1 + n2, k, d1 + d2] code C3 according to [15], and

G3G
†

3 = G1G
†

1 + G2G
†

2 = G2G
†

2

according to C1 is a Hermitian self-orthogonal code.
(1) If C2 is a Hermitian LCD code, then rank(G3G

†

3) = rank(G2G
†

2) = k, hence, (1) holds.
(2) If C2 is a Hermitian self-orthogonal code, then G3G

†

3 = 0 and G3 generates an [n1 +n2, k, d1 +d2]
Hermitian self-orthogonal code. This code is equivalent to a Hermitian self-orthogonal code with
generator matrix G′3 = [Ik | A]. Deleting the first k-columns of G′3 = [Ik | A], one can obtain a
k× (n1 + n2 − k) matrix A. From G′3(G′3)† = 0, we know AA† = Ik, hence, A generates a Hermitian LCD
code with parameters [n1 + n2 − k, k, d1 + d2 − k] according to [13]. �

Lemma 2. Suppose C1 = [n1, k, d1] is a Hermitian self-orthogonal code and it has a codeword of
largest weight wmax(wmax > 1). If there is an [n2, k − 1, d2] Hermitian LCD code C2, then there is an
[n1 + n2 − 1, k, d] Hermitian LCD code, where d ≥ min{d1 + d2 − 1,wmax − 1}.

Proof. Let α be a codeword in C1 with weight wmax and its first nonzero coordinate is 1, i.e., α =

(0, · · · , 0, 1, xk+1, · · · , xn1), where 1 is the j-th coordinate. Therefore, we can choose a generator matrix
G1 of C1 such that

G1 =

(
M(k−1)×n1

a

)
,

where M is a matrix whose j-th column is zero vector. Delet the j-th column of G1 and denote the
obtained matrix as G′1. Since C1 is a Hermitian self-orthogonal code, one can deduce that

G′1(G′1)† =

(
0(k−1)×(k−1) 0T

(k−1)
0(k−1) 1

)
.

Let G2 be a generator matrix of C2 and G′2 =

(
G2

0

)
. Construct G3 = [G1 | G′2], G′3 = [G′1 | G

′
2].

According to [16], G3 generates an [n1 +n2, k, d3] code with d3 ≥ min{d1 +d2,wmax}. Thus G3 generates
an [n1 + n2 − 1, k, d] code with d ≥ min{d1 + d2 − 1,wmax − 1}. It is not difficult to check that

G′3(G′3)† =

(
G2G

†

2 0T
(k−1)

0(k−1) 1

)
.

From this, we can derive that the lemma holds. �
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To construct Hermitian LCD code C = [n, k]4 with larger minimum distance, we need some special
Hermitian self-orthogonal codes and two Hermitian LCD codes.

For the sake of simplicity, we use 2 and 3 to represent ω and ω2. Let 1n=(1, 1, . . . , 1)1×n and
0n=(0, 0, . . . , 0)1×n denote the all-one vector and the all-zero vector of length n, respectively. Construct

S 2 =

(
1 0 1 1 1
0 1 1 2 3

)
= (α1, α2, α3, α4, α5),

S 3 =

(
S 2 02×1 S 2 S 2 S 2

05 1 15 2 · 15 3 · 15

)
= (β1, β2, . . . , β21),

S 4 =

(
S 3 03×1 S 3 S 3 S 3

021 1 121 2 · 121 3 · 121

)
= (γ1, γ2, . . . , γ85),

where αi(1 6 i 6 5), β j(1 6 j 6 21), γk(1 6 k 6 85) are column vectors over F4.
The matrices S 2, S 3 and S 4 generate C2,5 = [5, 2, 4]4, C3,21 = [21, 3, 16]4 and C4,85 = [85, 4, 64]4

simplex codes, respectively. Let A4,80 = (γ6, γ7, . . . , γ85), A4,64 = (γ22, γ23, . . . , γ85). It is self-evident
to see A4,80 and A4,64 generate [80, 4, 60]4 and [64, 4, 48]4 codes, respectively. Therefore, all these five
codes are Hermitian self-orthogonal codes [14, 15].

It is shown that there are Hermitian LCD codes [72, 4, 53]4 in [3] and [26, 3, 19]4 in [7], and these
two codes have generator matrices G4,72 and G3,26 as follows:

G4,72 =


111111111101110101111011110111101110101111011110111101110101111011110111
130230123011230011230112301123011230011230112301123011230011230112301123
112223333000001111112222233333000001111112222233333000001111112222233333
000000000111111111111111111111222222222222222222222333333333333333333333

,

G3,26 =


10033322001112233330011131
01020112032103133103102333
00102321211233123100220102

 .
3. Construction of Hermitian LCD codes and EAQECCs

We first construct seven Hermitian LCD codes by employing lemmas and known codes in the
previous section.

Theorem 1. There are Hermitian LCD codes with parameters [119, 4, 88]4, [123, 4, 91]4, [124, 4, 92]4,
[136, 4, 101]4, [140, 4, 104]4, [188, 4, 140]4 and [212, 4, 158]4.

Proof. (1) Let G1 = G4,64 as follows:
1000113302213100332313002322003011131212022132001132223310032233
0100030001102010103130132311323201203223222232222330333331111110
0010331322021113021200311320311220022133323210101102023232033110
0001313130320112301133321212030130211013032011233210023302101322

 ,
G2 = A4,64. Both of them can generate [64, 4, 48]4 Hermitian self-orthogonal codes.
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Constructing G3 = [G1 | G2], G4 = [A4,80 | G2], G5 = [G1 | G2 | G2], then G3, G4 and G5

generate [128, 4, 96]4, [144, 4, 108]4 and [192, 4, 144]4 Hermitian self-orthogonal codes, respectively.
From these three codes, one can obtain [124, 4, 92]4, [140, 4, 104]4 and [188, 4, 140]4 Hermitian LCD
codes according to Lemma 1. Deleting five columns, (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T , (0, 0, 0, 1)T

and (1, 1, 1, 1)T , from G3, one can obtain a 4 × 123 matrix. This matrix generates a [123, 4, 91]4

Hermitian LCD code.
Deleting five columns from G3, (1, 2, 3, 1)T , (1, 1, 3, 2)T , (0, 1, 0, 1)T , (1, 0, 3, 3)T and (1, 3, 3, 0)T ,

one obtains a 4 × 123 matrix A4,123 and a [123, 4, 92]4 Hermitian self-orthogonal code; hence, there is
a [119, 4, 88]4 Hermitian LCD code.

(2) Let G4,72 be the generator matrix of a [72, 4, 53]4 Hermitian LCD code given in the previous
section. Constructing G4,136 = (G2 | G4,72), this matrix generates a [136, 4, 101]4 Hermitian LCD code.

Using the generator matrix A4,123 of the [123, 4, 92]4 Hermitian self-orthogonal code given in (1),
we can construct G4,187 = [A4,123 | G2], with G4,187 generating a [187, 4, 140]4 Hermitian
self-orthogonal code. This code has a codeword of weight 172. From this [187, 4, 140]4 code and
a [26, 3, 19]4 Hermitian LCD code, we can construct a [212, 4, 158]4 Hermitian LCD code by
Lemma 2.

Summarizing the previous discussions, we complete the proof. �

Notation 1. The Hermitian LCD codes [119, 4, 88]4, [124, 4, 92]4, [136, 4, 101]4, [140, 4, 104]4 and
[188, 4, 140]4 are also optimal linear codes, while [123, 4, 91]4 and [212, 4, 158]4 are near-optimal
linear codes [17]. All these Hermitian LCD codes have distances larger than those in [3]. For N =

119, 123, 124, 136, 140, denote N = 85 + n1 with n1 = 34, 38, 39, 51, 55. For N = 188, 212, denote
N = 2 × 85 + n1 with n1 = 18, 42. These seven codes can be denoted as [N, 4, 64a + dn1]4, where
a = [N/85] and dn1 = 24, 27, 28, 37, 40, 12, 30 for n1 = 34, 38, 39, 51, 55, 18, 42, respectively. From
these seven Hermitian LCD codes, one can deduce seven families of Hermitian LCD codes and their
related maximal entanglement-assisted quantum codes.

Theorem 2. These are the following maximal entanglement-assisted quantum codes:
(1) If s ≥ 1, there are [[85s + 34, 4, 64s + 24; 85s + 30]], [[85s + 38, 4, 64s + 27; 85s + 34]],

[[85s + 39, 4, 64s + 28; 85s + 35]], [[85s + 51, 4, 64s + 37; 85s + 47]], [[85s + 55, 4, 64s + 40; 85s + 51]].
(2) If s ≥ 2, there are [[85s + 18, 4, 64s + 12; 85s + 14]], [[85s + 42, 4, 64s + 30; 85s + 38]].

Proof. (1) For s ≥ 1, if n = 85s+n1 with n1 = 34, 38, 39, 51, 55, denote n = 85(s−1)+(85+n1) = 85(s−
1) + N1, then N1 = 119, 123, 124, 136, 140, respectively. Let G4,N1 be generator matrices of Hermitian
LCD codes [N1, 4, dN1]4 with N1 = 119, 123, 124, 136, 140 given in Theorem 1. Constructing G4,n =

[(s− 1)S 4 | G4,N1], then G4,n = [(s− 1)S 4 | G4,N1] generates [n, 4, 64s + dn1]4 for n1 = 34, 38, 39, 51, 55.
Thus, (1) holds.

(2) For s ≥ 2, n = 85s + n1 with n1 = 18, 42, denote n = 85(s − 2) + (170 + n1) = 85(s − 2) + N1

with N1 = 188, 212. It is easy to see that (2) follows.
Using the Griesmer bound, one can check that the five families of Hermitian LCD codes [85s +

34, 4, 64s + 24]4, [85s + 39, 4, 64s + 28]4, [85s + 51, 4, 64s + 37]4, [85s + 55, 4, 64s + 40]4, [85s +

18, 4, 64s + 12]4, are optimal codes, and [85s + 38, 4, 64s + 27]4 and [85s + 42, 4, 64s + 30]4 are near-
optimal codes [17]. �

Comparing the above new obtained EAQECCs with those [[n, 4]] of the same lengths in [3], it can
be seen that our EAQECCs have larger minimum distances.
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Table 1 shows the parameters of our maximal entanglement-assisted quantum codes and theirs.

Table 1. parameters of maximal entanglement-assisted quantum codes.

No. [[n, k, d; c]] in [3] [[n, k, d; c]] in Theorem 2
1 [[85s + 34, 4, 64s + 23; 85s + 30]] [[85s + 34, 4, 64s + 24; 85s + 30]](s ≥ 1)
2 [[85s + 38, 4, 64s + 26; 85s + 34]] [[85s + 38, 4, 64s + 27; 85s + 34]](s ≥ 1)
3 [[85s + 39, 4, 64s + 27; 85s + 35]] [[85s + 39, 4, 64s + 28; 85s + 35]](s ≥ 1)
4 [[85s + 51, 4, 64s + 36; 85s + 47]] [[85s + 51, 4, 64s + 37; 85s + 47]](s ≥ 1)
5 [[85s + 55, 4, 64s + 39; 85s + 51]] [[85s + 55, 4, 64s + 40; 85s + 51]](s ≥ 1)
6 [[85s + 18, 4, 64s + 11; 85s + 14]] [[85s + 18, 4, 64s + 12; 85s + 14]](s ≥ 2)
7 [[85s + 42, 4, 64s + 29; 85s + 38]] [[85s + 42, 4, 64s + 30; 85s + 38]](s ≥ 2)

4. Conclusions

In this paper, we discussed the construction of Hermitian LCD codes from two known codes and
constructed seven [n, 4, d]4 Hermitian LCD codes with larger minimum distances than the previously
known [n, 4]4 Hermitian LCD codes. From these seven codes, we derived seven families of Hermitian
LCD codes. Five families of these Hermitian LCD codes were also optimal linear codes, and the other
two families were near-optimal linear codes. From these seven families of Hermitian LCD codes, we
gave seven families of entanglement-assisted quantum codes with maximal entanglement, and these
newly obtained codes are better than those given in [3] of the same lengths.

The methods used in this work can be useful in studying Hermitian LCD codes with higher
dimensions, and we will discuss such questions in the future.
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