In this paper, we study a class of $ (p, 2) $-Laplacian equation with Hartree-type nonlinearity and critical exponents. Under some general assumptions and based on variational tools, we establish the existence, regularity, and symmetry of nontrivial solutions for such a problem.
Citation: Lixiong Wang, Ting Liu. Existence and regularity results for critical $ (p, 2) $-Laplacian equation[J]. AIMS Mathematics, 2024, 9(11): 30186-30213. doi: 10.3934/math.20241458
In this paper, we study a class of $ (p, 2) $-Laplacian equation with Hartree-type nonlinearity and critical exponents. Under some general assumptions and based on variational tools, we establish the existence, regularity, and symmetry of nontrivial solutions for such a problem.
[1] | J. Abreu, G. F. Madeira, Generalized eigenvalues of the $(p, 2)$-Laplacian under a parametric boundary condition, Proc. Edinb. Math. Soc., 63 (2020), 287–303. https://doi.org/10.1017/s0013091519000403 doi: 10.1017/s0013091519000403 |
[2] | C. O. Alves, A. B. Nóbrega, M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var., 55 (2016), 48. https://doi.org/10.1007/s00526-016-0984-9 doi: 10.1007/s00526-016-0984-9 |
[3] | M. Badiale, E. Serra, Semilinear elliptic equations for beginners, London: Springer, 2011. https://doi.org/10.1007/978-0-85729-227-8 |
[4] | V. Benci, P. D'Avenia, D. Fortunato, L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Rational Mech. Anal., 154 (2000), 297–324. https://doi.org/10.1007/s002050000101 doi: 10.1007/s002050000101 |
[5] | V. Benci, D. Fortunato, L. Pisani, Soliton like solutions of a Lorentz invariant equation in dimension $3$, Rev. Math. Phys., 10 (1998), 315–344. https://doi.org/10.1142/S0129055X98000100 doi: 10.1142/S0129055X98000100 |
[6] | T. Bhattacharya, B. Emamizadeh, A. Farjudian, Existence of continuous eigenvalues for a class of parametric problems involving the $(p, 2)$-Laplacian operator, Acta Appl. Math., 165 (2020), 65–79. https://doi.org/10.1007/s10440-019-00241-9 doi: 10.1007/s10440-019-00241-9 |
[7] | D. Cassani, L. Du, Z. Liu, Positive solutions to the planar logarithmic Choquard equation with exponential nonlinearity, Nonlinear Anal., 241 (2024), 113479. https://doi.org/10.1016/j.na.2023.113479 doi: 10.1016/j.na.2023.113479 |
[8] | D. Cassani, J. Zhang, Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth, Adv. Nonlinear Anal., 8 (2019), 1184–1212. https://doi.org/10.1515/anona-2018-0019 doi: 10.1515/anona-2018-0019 |
[9] | D. Cassani, J. Van Schaftingen, J. Zhang, Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent, Proc. Roy. Soc. Edinb. A, 150 (2020), 1377–1400. https://doi.org/10.1017/prm.2018.135 doi: 10.1017/prm.2018.135 |
[10] | L. Cherfils, Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with $p \& q$-Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9–22. https://doi.org/10.3934/cpaa.2005.4.9 doi: 10.3934/cpaa.2005.4.9 |
[11] | P. G. Ciarlet, Linear and nonlinear functional analysis with applications, Philadelphia, PA: SIAM, 2013. |
[12] | M. Fărcăşeanu, M. Mihăilescu, D. Stancu-Dumitru, On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition, Nonlinear Anal.: Theor., 116 (2015), 19–25. https://doi.org/10.1016/j.na.2014.12.019 doi: 10.1016/j.na.2014.12.019 |
[13] | F. Gao, M. Yang, On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 448 (2017), 1006–1041. https://doi.org/10.1016/j.jmaa.2016.11.015 doi: 10.1016/j.jmaa.2016.11.015 |
[14] | L. Gasiński, N. S. Papageorgiou, Asymmetric $(p, 2)$-equations with double resonance, Calc. Var., 56 (2017), 88. https://doi.org/10.1007/s00526-017-1180-2 doi: 10.1007/s00526-017-1180-2 |
[15] | L. Gasiński, P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differ. Equations, 268 (2020), 4183–4193. https://doi.org/10.1016/j.jde.2019.10.022 doi: 10.1016/j.jde.2019.10.022 |
[16] | F. Li, T. Rong, Z. Liang, Multiple positive solutions for a class of $(2, p)$-Laplacian equation, J. Math. Phys., 59 (2018), 121506. https://doi.org/10.1063/1.5050030 doi: 10.1063/1.5050030 |
[17] | X. Li, S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math., 22 (2020), 1950023. https://doi.org/10.1142/S0219199719500238 doi: 10.1142/S0219199719500238 |
[18] | E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93–105. https://doi.org/10.1002/sapm197757293 doi: 10.1002/sapm197757293 |
[19] | E. H. Lieb, M. Loss, Analysis, 2 Eds., Providence, RI: American Mathematical Society, 1997. |
[20] | P. L. Lions, The Choquard equation and related questions, Nonlinear Anal.: Theor., 4 (1980), 1063–1072. https://doi.org/10.1016/0362-546X(80)90016-4 doi: 10.1016/0362-546X(80)90016-4 |
[21] | S. Liu, J. Yang, Y. Su, Regularity for critical fractional Choquard equation with singular potential and its applications, Adv. Nonlinear Anal., 13 (2024), 20240001. https://doi.org/10.1515/anona-2024-0001 doi: 10.1515/anona-2024-0001 |
[22] | W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equations, 265 (2018), 4311–4334. https://doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006 |
[23] | M. Mihăilescu, An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Commun. Pure Appl. Anal., 10 (2011), 701–708. https://doi.org/10.3934/cpaa.2011.10.701 doi: 10.3934/cpaa.2011.10.701 |
[24] | A. Moameni, K. L. Wong, Existence of solutions for supercritical $(p, 2)$-Laplace equations, Mediterr. J. Math., 20 (2023), 140. https://doi.org/10.1007/s00009-023-02336-y doi: 10.1007/s00009-023-02336-y |
[25] | V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557–6579. https://doi.org/10.1090/S0002-9947-2014-06289-2 doi: 10.1090/S0002-9947-2014-06289-2 |
[26] | V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005. https://doi.org/10.1142/S0219199715500054 doi: 10.1142/S0219199715500054 |
[27] | N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, On a class of parametric $(p, 2)$-equations, Appl. Math. Optim., 75 (2017), 193–228. https://doi.org/10.1007/s00245-016-9330-z doi: 10.1007/s00245-016-9330-z |
[28] | N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Existence and multiplicity of solutions for resonant $(p, 2)$-equations, Adv. Nonlinear Stud., 18 (2018), 105–129. https://doi.org/10.1515/ans-2017-0009 doi: 10.1515/ans-2017-0009 |
[29] | S. I. Pekar, Untersuchung ber die elektronentheorie der kristalle, Berlin: Akademie Verlag, 1954. https://doi.org/10.1515/9783112649305 |
[30] | R. Penrose, On gravity's role in quantum state reduction, Gen. Relat. Gravit., 28 (1996), 581–600. https://doi.org/10.1007/BF02105068 doi: 10.1007/BF02105068 |
[31] | D. Ruiz, J. Van Schaftingen, Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differ. Equations, 264 (2018), 1231–1262. https://doi.org/10.1016/j.jde.2017.09.034 doi: 10.1016/j.jde.2017.09.034 |
[32] | J. Seok, Nonlinear Choquard equations: doubly critical case, Appl. Math. Lett., 76 (2018), 148–156. https://doi.org/10.1016/j.aml.2017.08.016 doi: 10.1016/j.aml.2017.08.016 |
[33] | M. Struwe, Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems, Berlin: Springer, 2008. https://doi.org/10.1007/978-3-540-74013-1 |
[34] | Y. Su, L. Wang, H. Chen, S. Liu, Multiplicity and concentration results for fractional Choquard equations: doubly critical case, Nonlinear Anal., 198 (2020), 111872. https://doi.org/10.1016/j.na.2020.111872 doi: 10.1016/j.na.2020.111872 |
[35] | M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
[36] | V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 3 (1995), 249–269. |
[37] | V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 5 (1997), 105–116. |