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1. Introduction and main results

Let us consider the following critical (p, 2)-Laplacian equation

−∆pu − ∆u + u + |u|p−2u =
(
Iα ∗ F(u)

)
f (u), x ∈ RN , (1.1)

where N ⩾ 3, 1 < p < N, 0 < α < N, and ∆p is the p-Laplacian with ∆p = ∇(|∇u|p−2∇u). Iα is the
Riesz potential defined by

Iα(x) =
Γ
(

N−α
2

)
2απ

N
2 Γ

(
N
2

)
|x|N−α

, x ∈ RN\{0}.

Equation (1.1) is closely related to the following nonlocal quasilinear equation:

−∆pu − µ(x)∆qu + |u|p−2u + |u|q−2u =
(
Iα ∗ F(u)

)
f (u), x ∈ RN , (1.2)

where 1 < p, q < N and µ : RN 7→ [0,∞) is supposed to be Lipschitz continuous. The operator involved
in (1.2) is the so-called double phase operator whose behavior switches between two different elliptic
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situations. The pioneering work to treat such operators comes from Zhikov [36, 37], who introduced
such classes to provide models of strongly anisotropic materials. For more details and recent works
about double phase problems, we refer to [15, 22].

When N = 3, p = q = 2, µ = 1, and F(u) = u2, then Eq (1.1) is the well-known Choquard equation:

−∆u + u =
(
Iα ∗ |u|2

)
u, x ∈ R3. (1.3)

Equation (1.3) appears in several physical models like the quantum theory of polarons [29], Hartree-
Fock theory [18], and self-gravitating matter [30]. After the pioneer work of Lieb [18] and Lions [20],
the existence of weak solutions for Choquard equations have been a fascinating topic in past decades.
For more related work, we refer to [2, 31] for the subcritical case, [8, 13] for the upper critical case,
[9, 26] for the lower critical case, and [21, 32] for the double critical case.

When q = 2 , p and µ = 1, Eq (1.2) reduces to (1.1). It appears in many different disciplines
of physics and has a wide range of applications, such as chemical reaction design [5], quantum field
theory [4], biophysics [10], and plasma physics [33]. From a mathematical point of view, the main
difficulty in (1.1) is the non-homogeneity of the operator −∆p −∆. For this reason, equations involving
such operator or its variant have been received increasing attention from various authors. In particular,
Gasiński-Papageorgiou [14] considered Eq (1.1) when the nonlinearity takes the following form:−∆pu − ∆u = f (x, u), x ∈ Ω,

u|∂Ω = 0,
(1.4)

where p > 2 and Ω ∈ RN is a bounded C2 domain. Under the assumption that f (x, u) exhibits
asymmetric behaviour as u → ±∞, more precisely f (x, u) is superlinear in the positive direction
(without satisfying the Ambrosetti-Rabinowitz condition) and sublinear resonant in the negative
direction, the authors obtained the existence and multiplicity results of (1.4) via variational tools and
Morse theory methods. Later, Papageorgiou-Rădulescu-Repovš [28] imposed certain assumptions on
f (x, u) to make it double resonant at both ±∞ and 0. By virtue of variational tools and critical groups,
the authors obtained the existence and multiplicity results of (1.4).

In [27], the authors considered the following Dirichlet problem:−∆pu − ∆u = λ|u|p−2u + f (x, u), x ∈ Ω,

u|∂Ω = 0,
(1.5)

where p > 2, λ > 0, Ω ⊂ RN with a C2 boundary, and f (x, u) is a Carathéodory function. Based
on critical point theory, together with suitable truncation and comparison techniques, Papageorgiou-
Rădulescu-Repovš [27] obtained the existence and multiplicity results of (1.5) when λ is near the
principal eigenvalue λ1(p) > 0 of (−∆p,W

1,p
0 (Ω)). Subsequently, their work was extended by

Bhattacharya-Emamizadeh-Farjudian [6] to the case of 1 < p < 2. By applying the fibering method
and spectrum analysis, a priori bounds and regularity results of (1.5) were investigated. Moameni-
Wong [24] studied the case of f (x, u) in (1.5) satisfying supercritical growth. By using a variational
principle on convex subsets of a Banach space, the authors proved the existence of at least one
nontrivial solution of (1.5). Equation (1.5) with Neumann boundary condition (∂u

∂ν
= 0) has been

considered recently in Mihăilescu [23]. The authors showed that the eigenvalue set of this problem
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consists of 0 and an unbounded open interval from the first eigenvalue of −∆p − ∆ (p > 2) to infinity.
After that, Fărcăşeanu et al. [12] extended the results in [23] to 0 < p < 2 by means of the determination
of a critical point on the Nehari manifold [3]. For more results related to the (p, 2)-Laplacian equation,
one can refer to [1, 16]

Recently, Moroz-Van Schaftingen [25] established the W2,q
loc (RN) regularity (q > 1) and Pohožaev

identity of weak solutions for the following generalized Choquard equation:

−∆u + u =
(
Iα ∗ F(u)

)
f (u), x ∈ RN , (1.6)

where N ⩾ 3, α ∈ (0,N), and F satisfies the subcritical Berestycki-Lions type condition, namely:

(H1) There exists t0 ∈ R\{0} such that F(t0) , 0, where F : t ∈ R→
∫ t

0
f (ζ)dζ.

(H2) There exists C > 0 such that for every t ∈ R, |t f (t)| ⩽ C(|t|
N+α

N + |t|
N+α
N−2 ).

(H3)

lim
t→0

F(t)

|t|
N+α

N

= 0 and lim
t→∞

F(t)

|t|
N+α
N−2

= 0.

Li-Ma [17] studied Eq (1.6) with a perturbation. By virtue of the subcritical approximation and the
Pohožaev constraint method, they obtained the regularity and Pohožaev identity of weak solutions.
Cassani-Du-Liu [7] studied Eq (1.6) with N = 2 and Iα = ln 1

|x| . By using an asymptotic approximation
approach, the existence of positive solutions of (1.6) is obtained.

Up to our knowledge, no results have been reported regarding the existence and regularity of weak
solutions for the (p, 2)-Laplacian equation with critical Hartree-type nonlinearity. Inspired by the above
cited results, the main objective of this paper is to fill this gap. The novelty of this paper lies in two
aspects. On one hand, due to the existence of the (p, 2)-Laplacian operator, problem (1.1) becomes
non-homogeneous. Therefore, the method used in [25] is invalid. To overcome this difficulty, we
introduce some new ideas and establish new estimates to improve the integrability of weak solutions
of Eq (1.1). On the other hand, we are the first to consider a class of (p, 2)-Laplacian equation with
critical Hartree-type nonlinearity.

Before we present our results, we suppose that f satisfies the following conditions:

(F1) There exists C > 0 such that for every t ∈ R, |t f (t)| ⩽ C(|t|2
♯
α+ |t|2

∗
α), where 2♯α = N+α

N and 2∗α =
N+α
N−2 .

(F2) F(u) = 1
2♯α
|u|2

♯
α + λ

2∗α
|u|2

∗
α .

Now we can formulate our main results in this paper.

Theorem 1.1. Let N ⩾ 3, 1 < p < N, 0 < α < N, and condition (F1) holds. If u is a nontrivial solution
of Eq (1.1), then

(i) u ∈ Lq(RN) for any q ∈ [2,∞];
(ii) the following Pohožaev identity holds:

N − 2
2
∥u∥2D1,2(RN ) +

N
2
∥u∥2L2(RN ) +

N − p
p
∥u∥p

D1,p(RN ) +
N
p
∥u∥pLp(RN )

=
N + α

2

∫
RN

(
Iα ∗ F(u)

)
F(u)dx.
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Theorem 1.2. Let N ⩾ 3, 1 < p < N, 0 < α < N, and condition (F2) hold. Then, there exists Λ > 0
such that for any λ ∈ (0,Λ), Eq (1.1) possesses a nonnegative radially symmetric ground state solution,
where

Λ =
2∗α(α + 2)

2∗α−1
2 (N − 2)

1
2 (N + α)

N+α
α(N−2)S

2∗α
2

2

α
2∗α−1

2

[
N · (2♯α)2

] 2∗α−1

2(2♯α−1) S

2♯α(2∗α−1)

2(2♯α−1)

1

.

At the end of this section, we outline our method. We introduce this into two parts.
Regularity: First, by applying the Minty-Browder theorem [11] and the decomposition of Riesz
potential, we improve the integrability of weak solutions to Eq (1.1). Then, under a different range
of 2∗α, we use two different iteration approaches to establish an L∞(RN) estimate for weak solutions of
Eq (1.1). As a result, the Pohožaev identity of Eq (1.1) is established.
Existence: With delicate analysis and optimal range of λ, we give an exact estimate of the minimum
on the Pohožaev manifold. Using this fact, one can show that the minimizing sequences in Pohožaev
manifold are non-vanishing in L2(RN) and L2∗(RN). This, together with a compactness lemma (see
Proposition 2.2), the existence of ground state solutions of Eq (1.1) is obtained. Finally, we prove
these ground solutions are radially symmetric.

This paper is organized as follows. In Section 2, we introduce some basic notations and technical
lemmas. In Section 3, we study the regularity of weak solutions and Pohožaev identity of Eq (1.1). In
Section 4, we study the existence and symmetry of ground state solutions of Eq (1.1).

2. Preliminaries

In this section, we give some definitions and results which will be used later. C, Ci (i = 1, 2, · · · )
denote positive constants which can be changed line by line. Let X be a Banach space, and use Xrad to
denote the radial subspace of X.

In this work, our working space can be defined by

E = H1(RN) ∩W1,p(RN)

equipped with the norm
∥u∥E = ∥u∥H1(RN ) + ∥u∥W1,p(RN ).

Proposition 2.1. ( [19]) Let s, t > 1, and α ∈ (0,N) with 1
s +

1
t = 1+ αN . Then, there exists C(N, α, s, t) >

0 such that for any u ∈ Ls(RN) and v ∈ Lt(RN),∣∣∣∣∣∫
RN

∫
RN

u(x)v(y)
|x − y|N−α

dxdy
∣∣∣∣∣ ⩽ C(N, α, s, t)∥u∥Ls(RN )∥v∥Lt(RN ).

If s = t = 2N
N+α , then C(N, α, s, t) = CN,α = π

N−α
2
Γ( α2 )
Γ( N+α

2 )

[
Γ( N

2 )
Γ(N)

]− αN
.

Proposition 2.2. ( [34]) Let N ⩾ 3, and {un} ⊂ E be any bounded sequence satisfying

lim
n→∞

∫
RN
|un|

2dx > 0 and lim
n→∞

∫
RN
|un|

2∗dx > 0.

Then, the sequence {un} converges weakly and a.e. to u . 0 in L2
loc(R

N).

AIMS Mathematics Volume 9, Issue 11, 30186–30213.



30190

The following inequalities can be viewed as a consequence of Proposition 2.1, which is useful in
the following estimation:

S1

[∫
RN

(
Iα ∗ |u|2

♯
α
)
|u|2

♯
αdx

] 1

2♯α
⩽ ∥u∥2L2(RN ), u ∈ L2(RN) (2.1)

and

S2

[∫
RN

(
Iα ∗ |u|2

∗
α
)
|u|2

∗
αdx

] 1
2∗α

⩽ ∥u∥2D1,2(RN ), u ∈ D1,2(RN), (2.2)

where S1 and S2 are the embedding constants.

Lemma 2.1. For any x, y ∈ RN , the following assertions are valid:
(i) If 1 < p < 2, then

|x − y|2

(|x| + |y|)2−p ⩽ C(|x|p−2x − |y|p−2y)(x − y);∣∣∣|x|p−2x − |y|p−2y
∣∣∣ ⩽ C|x − y|p−1.

(ii) If 2 ⩽ p < ∞, then
|x − y|p ⩽ C(|x|p−2x − |y|p−2y)(x − y);∣∣∣|x|p−2x − |y|p−2y

∣∣∣ ⩽ C(|x| + |y|)p−2|x − y|.

3. Regularity of weak solutions and the Pohožaev identity

In this section, we study the regularity of weak solutions of Eq (1.1).

Lemma 3.1. ( [25]) Let q, r,w, t ∈ [1,∞) and ζ ∈ [0, 2] such that

1 +
α

N
−

1
w
−

1
t
=
ζ

q
+

2 − ζ
r
.

If µ ∈ (0, 2) satisfies

min(q, r)
(
α

N
−

1
w

)
< µ < max(q, r)

(
1 −

1
w

)
,

min(q, r)
(
α

N
−

1
t

)
< 2 − µ < max(q, r)

(
1 −

1
t

)
,

then for every H ∈ Lw(RN), K ∈ Lt(RN), and u ∈ Lq(RN) ∩ Lr(RN),∫
RN

(
Iα ∗ (H|u|µ)

)
G|u|2−µdx

⩽C
(∫
RN
|H|wdx

) 1
w
(∫
RN
|G|tdx

) 1
t
(∫
RN
|u|qdx

) ζ
q
(∫
RN
|u|rdx

) 2−ζ
r

.

Similar to the proof of [25, Lemma 3.2], we get the following lemma without proof.

Lemma 3.2. Let N ⩾ 3, 0 < α < N, and 0 < θ < 2. If H,G ∈ L
2N
α (RN) + L

2N
α+2 (RN), and α

N < θ < 2,
then for every ϵ > 0 there exists Cϵ,θ ∈ R such that, for every u ∈ E,∫

RN

[
Iα ∗ (H|u|θ)

]
G|u|2−θdx ⩽ ϵ2∥u∥2D1,2(RN ) +Cϵ,θ∥u∥2L2(RN ).
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Proposition 3.1. ( [11]) Let X be a reflexive Banach space. LetΦ be a (nonlinear) continuous mapping
from X into its dual space X−1 such that

(i) ⟨Φu − Φv, u − v⟩ > 0, ∀u, v ∈ X, u , v;
(ii) lim

∥u∥X→∞

⟨Φu,u⟩
∥u∥X
= +∞.

Then, for every g ∈ X−1, there exists a unique u ∈ X such that Φu = g.

Lemma 3.3. Let

⟨Φu, v⟩ =
∫
RN
∇u∇vdx +

∫
RN
|∇u|p−2∇u∇vdx + τ

∫
RN

uvdx

+

∫
RN
|u|p−2uvdx −

∫
RN

(
Iα ∗ Hu

)
Gvdx, ∀u, v ∈ E.

(3.1)

Then, Φ satisfies the following conditions:
(i) ⟨Φu − Φv, u − v⟩ > 0, ∀u, v ∈ E, u , v;
(ii) lim

∥u∥E→∞

⟨Φu,u⟩
∥u∥E
= +∞.

Proof. Under direct calculation, we can compute

⟨Φ(u) − Φ(v), u − v⟩ =∥u − v∥2D1,2(RN ) + τ∥u − v∥2L2(RN )

+

∫
RN

(
|∇u|p−2∇u − |∇v|p−2∇v

)(
∇u − ∇v

)
dx

+

∫
RN

(
|u|p−2u − |v|p−2v

)
(u − v)dx −

∫
RN

[
Iα ∗ H(u − v)

]
G(u − v)dx.

Now, we give the verifications of (i)–(ii). By Lemma 2.1, we have that for 1 < p < 2,∫
RN

(
|∇u|p−2∇u − |∇v|p−2∇v

)
(∇u − ∇v)dx +

∫
RN

(
|u|p−2u − |v|p−2v

)
(u − v)dx

⩾C
{ [∫

RN

(
|∇u|p−2∇u − |∇v|p−2∇v

)
(∇u − ∇v)dx

] [∫
RN

(
|∇u|p + |∇v|p

)
dx

] 2−p
p

+

[∫
RN

(
|u|p−2u − |v|p−2v

)
(u − v)dx

] [∫
RN

(|u|p + |v|p)dx
] 2−p

p }
⩾C

{ [∫
RN

∣∣∣(|∇u|p−2∇u − |∇v|p−2∇v
)
(∇u − ∇v)

∣∣∣ p
2 (|∇u|2−p + |∇v|2−p) p

2 dx
] 2

p

+

[∫
RN

∣∣∣(|u|p−2u − |v|p−2v
)
(u − v)

∣∣∣ p
2 (|u|2−p + |v|2−p)

p
2 dx

] 2
p }

⩾C
{ [∫

RN

∣∣∣(|∇u|p−2∇u − |∇v|p−2∇v
)
(∇u − ∇v)

∣∣∣ p
2 (∇u + ∇v

) p(2−p)
2 dx

] 2
p

+

[∫
RN

∣∣∣(|u|p−2u − |v|p−2v
)
(u − v)

∣∣∣ p
2 (u + v)

p(2−p)
2 dx

] 2
p }

⩾C
[ (∫

RN
|∇(u − v)|pdx

) 2
p

+

(∫
RN
|u − v|pdx

) 2
p ]
,

(3.2)
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and for 2 ⩽ p < ∞,∫
RN

(
|∇u|p−2∇u − |∇v|p−2∇v

)
(∇u − ∇v)dx +

∫
RN

(
|u|p−2u − |v|p−2v

)
(u − v)dx

⩾C
(∫
RN
|∇(u − v)|pdx +

∫
RN
|u − v|pdx

)
.

(3.3)

Combining (3.2) and (3.3), for p ∈ (1,∞) there exists C > 0 such that∫
RN

(
|∇u|p−2∇u − |∇v|p−2∇v

)
(∇u − ∇v)dx +

∫
RN

(
|u|p−2u − |v|p−2v

)
(u − v)dx

⩾C
(∫
RN
|∇(u − v)|pdx +

∫
RN
|u − v|pdx

)
.

(3.4)

In view of Lemma 3.2 with θ = 1, there exists τ > 0 such that for each v ∈ E, we have∫
RN

(
Iα ∗G|v|

)
H|v|dx ⩽

1
2

∫
RN
|∇v|2dx +

τ

2

∫
RN
|v|2dx. (3.5)

Taking this together with (3.4) and (3.5), we obtain

⟨Φu − Φφ, u − φ⟩ ⩾
1
2
∥u − φ∥2D1,2(RN ) +

τ

2
∥u − φ∥2L2(RN )

+C
(
∥u − φ∥p

D1,p(RN ) + ∥u − φ∥
p
Lp(RN )

)
>0.

So, condition (i) follows. By Lemma 3.2, it is easy to verify condition (ii). The proof is complete. □

Lemma 3.4. Suppose that H,G ∈ L
2N
α (RN) + L

2N
α+2 (RN) and u ∈ E solve

−∆pu − ∆u + u + |u|p−2u =
(
Iα ∗ Hu

)
G. (3.6)

Then, u ∈ Lq(RN) for each q ∈
[
2, 2∗N

α

]
.

Proof. Using Lemma 3.2 with θ = 1, there exists τ > 0 such that, for every φ ∈ E,∫
RN

(
Iα ∗ |Hφ|

)
|Gφ|dx ⩽

1
2
∥φ∥2D1,2(RN ) +

τ

2
∥φ∥2L2(RN ). (3.7)

Let sequences {Hn}, {Gn} ∈ L
2N
α (RN) such that |Hn| ⩽ |H| and |Gn| ⩽ |G|, and Hn → H and Gn → G

almost everywhere inRN . In what follows, we claim that there exists a unique solution un ∈ E satisfying

−∆pun − ∆un + τun + |un|
p−2un =

[
Iα ∗ (Hnun)

]
Gn + (τ − 1)u, (3.8)

where u ∈ E is the given solution of (3.6). The duality is given in this case by

⟨Ψu, φ⟩ =
∫
RN
∇u∇φdx +

∫
RN
|∇u|p−2∇u∇φdx + τ

∫
RN

uφdx

+

∫
RN
|u|p−2uφdx −

∫
RN

(
Iα ∗ Hu

)
Gφdx, ∀u, φ ∈ E.

(3.9)
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In view of Lemma 3.3, it is easy to verify thatΨ satisfies all the conditions described in Proposition 3.1.
Applying Proposition 3.1 with g(u) = (τ − 1)u, we get the desired results.

Moreover, we also claim that the sequence {un} converges weakly to u in E as n→ ∞. Multiplying
both sides of (3.8) by un and integrating it over RN , then

∥un∥
2
D1,2(RN ) + τ∥un∥

2
L2(RN ) + ∥un∥

p
D1,p(RN ) + ∥un∥

p
Lp(RN )

=

∫
RN

[
Iα ∗ (Hnun)

]
Gnundx + (τ − 1)

∫
RN

unudx.

Combining this with (3.7), the Hölder inequality, and the Young inequality, one has
1
2
∥un∥

2
D1,2(RN ) +

τ

2
∥un∥

2
L2(RN ) + ∥un∥

p
D1,p(RN ) + ∥un∥

p
Lp(RN )

⩽(τ − 1)
(∫
RN
|un|

2dx
) 1

2
(∫
RN
|u|2dx

) 1
2

⩽
τ − 1

2

(
∥un∥

2
L2(RN ) + ∥u∥

2
L2(RN )

)
.

By this, we obtain
∥un∥

2
H1(RN ) + ∥un∥

p
W1,p(RN ) ⩽ C∥u∥2L2(RN ), (3.10)

which implies that {un} is bounded in E. Then, there exists ũ ∈ E such that un ⇀ ũ in E and un → ũ
almost everywhere in RN . By Hn ∈ L

2N
α+2 (RN), it is easy to verify Hnun is bounded in L

2N
N+α (RN). Hence,

we get Hnun ⇀ Hũ in L
2N

N+α (RN). Moreover, for any φ ∈ C∞0 (RN), by |Gn| ⩽ |G| and the Lebesgue
dominated convergence theorem, we can deduce Gnφ→ Gφ in L

2N
N+α (RN). Then, we have∫

RN

[
Iα ∗ (Hnun)

]
Gnφdx→

∫
RN

[
Iα ∗ (Hũ)

]
Gφdx, ∀ φ ∈ C∞0 (RN).

Thus, ũ is a weak solution of

−∆pũ − ∆ũ + τũ + |ũ|p−2ũ =
[
Iα ∗ (Hũ)

]
G + (τ − 1)u. (3.11)

By Proposition 3.1, we know that Eq (3.11) admits a unique solution. Then, u = ũ.
For θ > 0, we define the truncation un,θ : RN → R by

un,θ(x) =


−θ, un ⩽ −θ,

un, −θ < un < θ,

θ, un ⩾ θ.

For any q > 2, it is easy to check |un,θ|
q−2un,θ ∈ E. Taking |un,θ|

q−2un,θ ∈ E as a test function in Eq (3.8),
we can see that ∫

RN
∇un∇

(
|un,θ|

q−2un,θ

)
dx + τ

∫
RN

∣∣∣|un,θ|
q
2
∣∣∣2dx

⩽

∫
RN
∇un∇

(
|un,θ|

q−2un,θ

)
dx +

∫
RN
|∇un|

p−2∇un∇
(
|un,θ|

q−2un,θ

)
dx

+ τ

∫
RN
|un,θ|

q−2un,θundx +
∫
RN
|un,θ|

q−2un,θ|un|
p−2undx

=

∫
RN

[
Iα ∗ (Hnun)

](
Gn|un,θ|

q−2un,θ
)
dx + (τ − 1)

∫
RN
|un,θ|

q−2un,θundx.

AIMS Mathematics Volume 9, Issue 11, 30186–30213.



30194

Applying Lemma 3.2 with θ = 2
q , where q ∈ [2, 2N

α
), there then exists C > 0 such that∫

RN

[
Iα ∗ |Hnun,θ|

](
|Gn||un,θ|

q−2un,θ
)
dx

⩽

∫
RN

[
Iα ∗ (|H||un,θ|)

](
|G||un,θ|

q−1)dx

⩽
2(q − 1)

q2

∫
RN

∣∣∣∣∇ (
|un|

q
2
)∣∣∣∣2 dx +C

∫
RN

∣∣∣|un,θ|
q
2
∣∣∣2dx.

Taking this together with the above two chain of inequalities and making use of the Hölder inequality
and the Young inequality, we can infer∫

RN

∣∣∣∣∇ (
|un|

q
2
)∣∣∣∣2 dx ⩽C

∫
RN

(|un|
q + |u|q) dx

+C
∫
{|un |>θ}

[
Iα ∗ (|Hnun|)

]
(|Gn||un|

q−1)dx.
(3.12)

By q ∈ [2, 2N
α

) and Proposition 2.1, then∫
{|un |>θ}

[
Iα ∗ (|Hnun|)

]
(|Gn||un|

q−1)dx ⩽ C
(∫
RN
|Hnun|

sdx
) 1

s
(∫
RN

∣∣∣|Gn||un|
q−1

∣∣∣tdx
) 1

t

,

with 1
s =

N+α
2N −

1
2 +

1
q and 1

t =
N+α
2N +

1
2 −

1
q .

Using the fact that un ∈ Lq(RN) and Hn,Gn ∈ L
2N
α (RN), we get |Hnun| ∈ Ls(RN) and |Gn||un|

q−1 ∈

Lt(RN). By applying the Lebesgue dominated convergence theorem, we have

lim
θ→∞

∫
{|un |>θ}

[
Iα ∗ (|Hnun|)

]
(|Gn||un|

q−1)dx = 0.

Inserting this into (3.12) and taking θ → ∞, by the Sobolev embedding theorem we can deduce(∫
RN
|un|

qN
N−2 dx

) N−2
N

⩽ C
∫
RN

(|un|
q + |u|q)dx. (3.13)

Taking into account (3.10), (3.13), and the Fatou lemma, we get that(∫
RN
|u|

qN
N−2 dx

) N−2
N

⩽ C
∫
RN
|u|qdx, (3.14)

which means that u ∈ Lq(RN) for any q ∈
[
2, 2∗N

α

]
. The proof is complete. □

Lemma 3.5. ([19]) Let 1 ⩽ s ⩽ ∞, g ∈ Lt1(RN), and h ∈ Lt2(RN). Then, there exists C > 0 such that

∥g ∗ h∥Ls(RN ) ⩽ C∥g∥Lt1 (RN )∥h∥Lt2 (RN ),

where
1
t1
+

1
t2
= 1 +

1
s
.
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Lemma 3.6. Suppose that all the conditions described in Theorem 1.1 are satisfied. Let u ∈ E be a
nontrivial solution of Eq (1.1). Then,

∥Iα ∗ F(u)∥L∞(RN ) ⩽ C

Proof. In view of Lemma 3.4, we obtain u ∈ Lq(RN) for every q ∈
[
2, 2∗N

α

]
. By condition (F1), one can

infer F(u) ∈ L p̃(RN) for every p̃ ∈
[

2N
N+α ,

2N2

α(N+α)

]
.

Fixing ϵ ∈
(
0, αN

2N+α

)
, Iα can be decomposed as

Iα = I1
α + I2

α,

where I1
α ∈ L

N−ϵ
N−α (RN) and I2

α ∈ L
N+ϵ
N−α (RN). Let s = ∞ in Lemma 3.5. It follows from I1

α ∈ L
N−ϵ
N−α (RN) that

∥I1
α ∗ F(u)∥L∞(RN ) ⩽ C∥I1

α∥L
N−ϵ
N−α (RN )

∥F(u)∥
L

N−ϵ
α−ϵ (RN )

. (3.15)

Similar to (3.15), by I2
α ∈ L

N+ϵ
N−α (RN) we can infer that

∥I2
α ∗ F(u)∥L∞(RN ) ⩽ C∥I2

α∥L
N+ϵ
N−α (RN )

∥F(u)∥
L

N+ϵ
α+ϵ (RN )

. (3.16)

In view of ϵ ∈
(
0, αN

2N+α

)
, we derive

2N
N + α

<
N + ϵ
α + ϵ

<
N − ϵ
α − ϵ

<
2N2

α(N + α)
. (3.17)

It follows from (3.15)–(3.17) that

I1
α ∗ F(u) ∈ L∞(RN) and I2

α ∗ F(u) ∈ L∞(RN).

The proof is completed. □

Lemma 3.7. Suppose that all the conditions described in Theorem 1.1 are satisfied. Let u ∈ E be a
nontrivial solution of Eq (1.1). For each L > 2, define

uL(x) =


−L, u(x) < −L;
u(x), |u(x)| ⩽ L;
L, u(x) > L.

For τ > 1, we set ũL = uu2(τ−1)
L . Then, for any s ∈ [2, 2∗], we have(∫

RN
|uuτ−1

L |
sdx

) 2
s

⩽ Cτ2
(∫
RN

u2♯α−2|uuτ−1
L |

2dx +
∫
RN

u2∗α−2|uuτ−1
L |

2dx
)
.

Proof. Multiplying both sides of Eq (1.1) by ũL and integrating, it follows that∫
RN
∇u∇ũLdx +

∫
RN

uũLdx +
∫
RN
|∇u|p−2∇u∇ũLdx +

∫
RN
|u|p−2uũLdx

=

∫
RN

(
Iα ∗ F(u)

)
f (u)ũLdx.
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Combining the above relation with Lemma 3.6, this leads to(∫
RN
|uuτ−1

L |
sdx

) 2
s

⩽C
[∫
RN

∣∣∣∇(uuτ−1
L

)∣∣∣2dx +
∫
RN

uũLdx
]

⩽Cτ2
(∫
RN

u2♯α−2|uuτ−1
L |

2dx +
∫
RN

u2∗α−2|uuτ−1
L |

2dx
)
.

The proof is completed. □

We now are ready to establish Theorem 1.1.

Proof of Theorem 1.1. (i) (L∞ estimate) We consider the following two cases separately.
Case 1. 2∗α ⩽ 2⇔ N ⩾ 4 + α.
In this case, we should keep in mind that τ = 2∗

2 .
Step 1. Clearly, we have

2 < 2♯α + 2(τ − 1) < 2∗α + 2(τ − 1) <
2∗N
α
.

In view of Lemma 3.4, we have u ∈ Lq(RN) for any q ∈
[
2, 2∗N

α

]
. That is,∫

RN
u2♯α−2|uuτ−1

L |
2dx < ∞ and

∫
RN

u2∗α−2|uuτ−1
L |

2dx < ∞.

For any 0 < R < ∞, we set

Bτ =
∫
RN

u2♯α−2|uuτ−1
L |

2dx

=

∫
{u⩽R}

u2♯α−2|uuτ−1
L |

2dx +
∫
{u>R}

u2♯α−2|uuτ−1
L |

2dx

=Bτ(R) + Bc
τ(R)

and
B̃τ =

∫
RN

u2∗α−2|uuτ−1
L |

2dx

=

∫
{u⩽R}

u2∗α−2|uuτ−1
L |

2dx +
∫
{u>R}

u2∗α−2|uuτ−1
L |

2dx

=B̃τ(R) + B̃c
τ(R).

Obviously, we have
lim
R→∞

Bτ(R) = Bτ, lim
R→0

Bτ(R) = 0

and
lim
R→∞

B̃τ(R) = B̃τ, lim
R→0

B̃τ(R) = 0.

Clearly, if it holds that Bτ = Bτ(R) or B̃τ = B̃τ(R), then we have u ∈ L∞(RN). This completes our proof.
To this end, we just need to consider the following case

Bτ(R) < Bτ and B̃τ(R) < B̃τ.
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Without loss of generality, we set R = 1. Then, there exist 0 < C1, C̃1 < ∞ such that

Bτ(1) = C1Bτ and B̃τ(1) = C̃1B̃τ. (3.18)

From 2♯α < 2, we deduce

Bc
τ(1) =

∫
{u>1}

u2♯α−2|uuτ−1
L |

2dx ⩽
∫
{u>1}
|uuτ−1

L |
2dx.

It follows from (3.18) that

Bτ = Bτ(1) + Bc
τ(1) =

1
1 −C1

Bc
τ(1) ⩽

1
1 −C1

∫
{u>1}
|uuτ−1

L |
2dx. (3.19)

Similarly, one can infer

B̃τ = B̃τ(1) + B̃c
τ(1) =

1
1 − C̃1

B̃c
τ(1) ⩽

1
1 − C̃1

∫
{u>1}
|uuτ−1

L |
2dx. (3.20)

Combining (3.19), (3.20), and Lemma 3.7, we obtain(∫
RN
|uuτ−1

L |
sdx

) 2
s

⩽

(
C

1 −C1
+

C
1 − C̃1

) ∫
RN
|uuτ−1

L |
2dx.

Let L→ ∞ in the above expression. Then,(∫
RN
|u|sτdx

) 2
s

⩽

(
C

1 −C1
+

C
1 − C̃1

) ∫
RN
|u|2τdx. (3.21)

By τ = 2∗
2 , we have

∥u∥
L

2∗ s
2 (RN )

⩽

(
C

1 −C1
+

C
1 − C̃1

) 1
2∗

∥u∥L2∗ (RN ) < ∞.

Since s ∈ [2, 2∗], we get u ∈ Lp1(RN), where p1 ∈
[
2, (2∗)2

2

]
.

Step 2. Obviously, we have

2 < 2♯α + 2(τ2 − 1) < 2∗α + 2(τ2 − 1) <
(2∗)2

2

and for Bτ and B̃τ, we have
Bτ2 < ∞ and B̃τ2 < ∞.

Similar to Step 1, we just need to show the case

Bτ2(1) < Bτ2 and B̃τ2(1) < B̃τ2 .

Moreover, we have

Bτ(1) =
∫
{u⩽1}

u2♯α−2|uuτ−1
L |

2dx ⩾
∫
{u⩽1}

u2♯α−2
∣∣∣∣uuτ−1

L (uτ
2−τ

L )
∣∣∣∣2 dx = Bτ2(1) (3.22)
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and
Bc
τ(1) =

∫
{u>1}

u2♯α−2|uuτ−1
L |

2dx ⩽
∫
{u>1}

u2♯α−2
∣∣∣∣uuτ−1

L (uτ
2−τ

L )
∣∣∣∣2 dx = Bc

τ2
(1). (3.23)

In view of (3.19), (3.20), (3.22), and (3.23), it follows that

Bτ2(1) ⩽ Bτ(1) =
C1

1 −C1
Bc
τ(1) ⩽

C1

1 −C1
Bc
τ2

(1),

which implies

Bτ2 ⩽
1

1 −C1

∫
{u>1}

∣∣∣∣uuτ
2−1

L

∣∣∣∣2 dx.

Similarly, we have

B̃τ2 ⩽
1

1 − C̃1

∫
{u>1}

∣∣∣∣uuτ
2−1

L

∣∣∣∣2 dx.

Taking L→ ∞ and making use of Lemma 3.7 again, we get

∥u∥
Ls·( 2∗

2 )2
(RN )
⩽

(
C

1 −C1
+

C
1 − C̃1

) 1

2·( 2∗
2 )2

∥u∥
L

(2∗)2
2 (RN )

< ∞,

which implies u ∈ Lp2(RN), where p2 ∈

[
2, 2∗s ·

(
2∗s
2

)2
]
.

Step 3. Iterating the above procedure, for any n ∈ N∗ we conclude

∥u∥
Ls·( 2∗

2 )n
(RN )
⩽

(
C

1 −C1
+

C
1 − C̃1

) 1
2·( 2∗

2 )n

∥u∥
L

(2∗)n

2n−1 (RN )
.

Let s = 2∗. Then,

∥u∥
L

(2∗)n+1
2n (RN )

⩽

(
C

1 −C1
+

C
1 − C̃1

) n∑
i=1

1

2·( 2∗
2 )i

∥u∥L2∗ (RN ).
(3.24)

Obviously, we have

lim
i→∞

2 ·
(

2∗
2

)i

2 ·
(

2∗
2

)i+1 =
2
2∗
< 1.

This means that the series
n∑

i=1

1
2·( 2∗

2 )i converges absolutely.

Let n→ ∞ in (3.24). Then, it holds that

∥u∥L∞(RN ) ⩽ C∥u∥L2∗ (RN ) < ∞.

Case 2. 2∗α > 2⇔ N < 4 + α.

Step 1. Let τ1 ∈

[
1 + 2−2♯α

2 , 1 +
2∗N
α −2♯α

2

]
. Then, we claim

(
1 +

∫
RN
|u|2

∗
ατ1dx

) 2
2∗α(τ1−1)

< ∞. (3.25)
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By the definition of uL, we obtain∫
RN
|u|2

♯
α−2|uuτ1−1

L |2dx ⩽
∫
RN
|u|2

♯
α+2(τ1−1)dx.

Let l > 0 be chosen later. By the Hölder inequality, we have∫
RN

u2∗α−2|uuτ1−1
L |2dx

⩽l2∗α−2♯α

∫
{u⩽l}

u2♯α−2|uuτ1−1
L |2dx +

∫
{u>l}

u2∗α−2|uuτ1−1
L |2dx

⩽l2∗α−2♯α

∫
RN
|u|2

♯
α+2(τ1−1)dx +

(∫
{u>l}
|u|2

∗
αdx

) 2∗α−2
2∗α

(∫
RN
|uuτ1−1

L |2
∗
αdx

) 2
2∗α

.

By 2∗α ∈
[
2, 2∗N

α

]
, we can choose suitable l > 0 such that

(∫
{u>l}
|u|2

∗
αdx

) 2∗α−2
2∗α

⩽
1

2Cτ2
1

.

It follows from the inequalities and Lemma 3.7 that(∫
RN
|uuτ1−1

L |2
∗
αdx

) 2
2∗α

⩽ 2Cτ2
1

(∫
RN

u2♯α−2|uuτ1−1
L |2dx + l2∗α−2♯α

∫
RN
|u|2

♯
α+2(τ1−1)dx

)
.

Let L→ ∞. The above inequality becomes(∫
RN
|u|2

∗
ατ1dx

) 2
2∗α

⩽ 2Cτ2
1

(
1 + l2∗α−2♯α

) ∫
RN
|u|2

♯
α+2(τ1−1)dx. (3.26)

In view of 2♯α + 2(τ1 − 1) ∈
[
2, 2∗N

α

]
and (3.26), we conclude (3.25).

Step 2. Let τ2 = 1 + 2∗α
2 (τ1 − 1). We claim(

1 +
∫
RN
|u|2

∗
ατ2dx

) 2
2∗α(τ2−1)

⩽ (Cτ2)
2
τ2−1

(
1 +

∫
RN
|u|2

∗
ατ1dx

) 2
2∗α(τ1−1)

.

We choose τ ∈
[
τ1, τ2

]
. Then,

2 ⩽ 2♯α + 2(τ − 1) < 2∗α + 2(τ − 1) ⩽ 2∗ατ1.

Combining (3.25) and Lemma 3.7, we obtain(∫
RN
|u|2

∗
ατdx

) 2
2∗α

⩽ Cτ2
(∫
RN
|u|2

♯
α+2(τ−1)dx +

∫
RN
|u|2

∗
α+2(τ−1)dx

)
< ∞. (3.27)

Let τ = τ2 in (3.27). Then,(∫
RN
|u|2

∗
ατ2dx

) 2
2∗α

⩽ Cτ2
2

(∫
RN
|u|2

♯
α+2(τ2−1)dx +

∫
RN
|u|2

∗
α+2(τ2−1)dx

)
< ∞.
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Making use of the Young inequality, it holds that∫
RN
|u|2

♯
α+2(τ2−1)dx =

∫
RN
|u|a|u|bdx

⩽
a
2∗α

∫
RN
|u|2

∗
αdx +

2∗α − a
2∗α

∫
RN
|u|2

∗
α+2(τ2−1)dx

⩽C
(
1 +

∫
RN
|u|2

∗
α+2(τ2−1)dx

)
,

where a = 2∗α
(

2∗α−2♯α
)

2(τ2−1) and b = 2♯α + 2(τ2 − 1) − 2∗α
(

2∗α−2♯α
)

2(τ2−1) . Thus, we get

(∫
RN
|u|2

∗
ατ2dx

) 2
2∗α

⩽ Cτ2
2

(
1 +

∫
RN
|u|2

∗
α+2(τ2−1)dx

)
.

Moreover, by 2
2∗α
< 1, it is easy to observe

(x1 + x2)
2

2∗α ⩽ x
2

2∗α
1 + x

2
2∗α
2 , ∀x1, x2 > 0.

Then, (
1 +

∫
RN
|u|2

∗
ατ2dx

) 2
2∗α

⩽1 +
(∫
RN
|u|2

∗
ατ2dx

) 2
2∗α

⩽Cτ2
2

(
1 +

∫
RN
|u|2

∗
α+2(τ2−1)dx

)
,

which implies (
1 +

∫
RN
|u|2

∗
ατ2dx

) 2
2∗α(τ2−1)

⩽(Cτ2)
2
τ2−1

(
1 +

∫
RN
|u|2

∗
ατ1dx

) 1
τ2−1

=(Cτ2)
2
τ2−1

(
1 +

∫
RN
|u|2

∗
ατ1dx

) 2
2∗α(τ1−1)

.

Step 3. We iterate the above procedure and set

τi+1 − 1 =
2∗α
2

(τi − 1), ∀i ⩾ 1 and i ∈ N∗. (3.28)

Then, (
1 +

∫
RN
|u|2

∗
ατi+1dx

) 2
2∗α(τi+1−1)

⩽ (Cτi+1)
2

τi+1−1

(
1 +

∫
RN
|u|2

∗
ατidx

) 2
2∗α(τi−1)

,

which further gives(∫
RN
|u|2

∗
ατn+1dx

) 2
2∗α(τn+1−1)

⩽

(
1 +

∫
RN
|u|2

∗
ατn+1dx

) 2
2∗α(τn+1−1)

⩽
n∏

i=1

(Cτi+1)
2

τi+1−1

(
1 +

∫
RN
|u|2

∗
ατ1dx

) 2
2∗α(τ1−1)

.
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This yields that

∥u∥L2∗ατn+1 (RN ) ⩽

 n∏
i=1

(Cτi+1)
2

τi+1−1

(
1 +

∫
RN
|u|2

∗
ατ1dx

) 2
2∗α(τ1−1)


τn+1−1
2τn+1

. (3.29)

According to (3.28), we deduce

τn+1 = 1 +
(
2∗α
2

)n

(τ1 − 1). (3.30)

Taking into account (3.29) and (3.30), it follows that

∥u∥L2∗ατn+1 (RN ) ⩽

 n∏
i=1

(Cτi+1)
2

τi+1−1

(
1 +

∫
RN
|u|2

∗
ατ1dx

) 2
2∗α(τ1−1)


(2∗α)n(τ1−1)

2[2n+(2∗α)n(τ1−1)]

. (3.31)

By a straightforward calculation, we can infer

lim
n→∞

n∏
i=1

(Cτi+1)
2

τi+1−1 = lim
n→∞

e
2

n∑
i=1

(
ln C
τi+1−1+

ln τi+1
τi+1−1

)
. (3.32)

For the series
∞∑

i=1

ln C
τi+1−1 , we have

lim
i→∞

i

√
ln C
τi+1 − 1

= lim
i→∞

i

√
2i ln C

(2∗α)i(τ1 − 1)
=

2
2∗α
< 1. (3.33)

This means
∞∑

i=1

ln C
τi+1−1 converges absolutely.

For the series
∞∑

i=1

ln τi+1
τi+1−1 , it follows that

lim
i→∞

ln τi+2

τi+2 − 1
·
τi+1 − 1
ln τi+1

=
2
2∗α

lim
i→∞

ln
[
1 + 2∗α

2 (τi+1 − 1)
]

ln τi+1

⩽
2
2∗α

lim
i→∞

ln
[

2∗α
2 +

2∗α
2 (τi+1 − 1)

]
ln τi+1

=
2
2∗α

lim
i→∞

 ln 2∗α
2

ln τi+1
+

ln τi+1

ln τi+1


<1,

(3.34)

which implies
∞∑

i=1

ln τi+1
τi+1−1 converges absolutely.

Together with (3.32)–(3.34), we conclude
∞∏

i=1

(
Cτi+1

) 2
τi+1−1 < ∞. Letting n→ ∞ in (3.31), we obtain

∥u∥L∞(RN ) < ∞.
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(ii) (Pohožaev indentity) Observe that, by u ∈ L∞(RN), Lemma 3.6, and condition (F1), there exists
C > 0 such that

−∆pu − ∆u = −u − |u|p−2u +
(
Iα ∗ F(u)

)
f (u) ⩽ C

(
|u|2

♯
α−2u + |u|2

∗
α−2u

)
.

Set l(u) = C
(
|u|2

♯
α−2u + |u|2

∗
α−2u

)
. By a classical bootstrapping argument for subcritical local problems

in [33], we infer that u ∈ W2,q
loc (RN) for every q ⩾ 1, and hence we have u ∈ C1,β

loc(RN) for any 0 < β < 1
by the Sobolev embedding theorem. Under the classical strategy used in [25, Theorem 3], one can
show that

N − 2
2
∥u∥2D1,2(RN ) +

N
2
∥u∥2L2(RN ) +

N − p
p
∥u∥p

D1,p(RN ) +
N
p
∥u∥pLp(RN )

=
N + α

2

∫
RN

(
Iα ∗ F(u)

)
F(u)dx.

This completes the proof of Theorem 1.1. □

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by virtue of the Pohožaev manifold method and a generalized
version of a Lions-type theorem.

Under condition (F2), Eq (1.1) turns into a (p, 2)-Laplacian equation as follows:

−∆pu − ∆u + u + |u|p−2u =
Iα ∗  1

2♯α
|u|2

♯
α +
λ

2∗α
|u|2

∗
α

 (|u|2♯α−2u + λ|u|2
∗
α−2u

)
, x ∈ RN . (D)

Then, the corresponding energy functional of Eq (D) can be defined as

J(u) =
1
2
∥u∥2D1,2(RN ) +

1
2
∥u∥2L2(RN ) +

1
p
∥u∥p

D1,p(RN ) +
1
p
∥u∥pLp(RN )

−
1

2 · (2♯α)2

∫
RN

(
Iα ∗ |u|2

♯
α
)
|u|2

♯
αdx −

λ2

2 · (2∗α)2

∫
RN

(
Iα ∗ |u|2

∗
α
)
|u|2

∗
αdx

−
λ

2♯α · 2∗α

∫
RN

(
Iα ∗ |u|2

♯
α
)
|u|2

∗
αdx.

It is easy to check J ∈ C1(E,R). Obviously, the critical points of J are weak solutions of Eq (D) and
satisfy the following Pohožaev identity:

P(u) =
N − 2

2
∥u∥2D1,2(RN ) +

N
2
∥u∥2L2(RN ) +

N − p
p
∥u∥p

D1,p(RN ) +
N
p
∥u∥pLp(RN )

−
N + α

2 · (2♯α)2

∫
RN

(
Iα ∗ |u|2

♯
α
)
|u|2

♯
αdx −

λ2(N + α)
2 · (2∗α)2

∫
RN

(
Iα ∗ |u|2

∗
α
)
|u|2

∗
αdx

−
λ(N + α)

2♯α · 2∗α

∫
RN

(
Iα ∗ |u|2

♯
α
)
|u|2

∗
αdx.

We define the Pohožaev manifold and its minimum as follows:

P =
{
u ∈ E\{0}

∣∣∣P(u) = 0
}

and m = inf
u∈P

J(u).
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Lemma 4.1. Assume that all conditions described in Theorem 1.2 are satisfied. Let C1,C2,C3 > 0.
Define a function k : R+ → R as

k(t) = C1tN−2 +C2tN +C3tN−p −C4tN+α.

Then, k(t) has a unique critical point which corresponds to its maximum.

Proof. By the definition of k(·), we have

k′(t) = C1(N − 2)tN−3 +C2NtN−1 +C3(N − p)tN−p−1 −C4(N + α)tN+α−1.

From the above expression, it is easy to see that k′(t) > 0 for t > 0 small, and k′(t) < 0 for t > 0 large.
This yields that k(t) possesses at least one maximum point. Next, we claim that the maximun point
corresponding to k(t) is unique. Otherwise, we suppose that there exists t1 , t2 > 0 such that

k′(t1) = C1(N − 2)tN−3
1 +C2NtN−1

1 +C3(N − p)tN−p−1
1 −C4(N + α)tN+α−1

1 = 0

and
k′(t2) = C1(N − 2)tN−3

2 +C2NtN−1
2 +C3(N − p)tN−p−1

2 −C4(N + α)tN+α−1
2 = 0.

Combining the above two equalities, it holds that

C1(N − 2)(t−2
1 − t−2

2 ) +C3(N − p)(t−p
1 − t−p

2 ) = C4(N + α)(tα1 − tα2 ),

which further gives t1 = t2. The proof is complete. □

Lemma 4.2. Assume that all conditions described in Theorem 1.2 are satisfied. Then, for every u ∈ E,
there exists a unique tu > 0 such that P(utu) = 0, where ut = u

(
x
t

)
. Moreover, J(utu) = max

t⩾0
J(ut).

Proof. For every u ∈ E\{0}, one has

J(ut) =
tN−2

2
∥u∥2D1,2(RN ) +

tN

2
∥u∥2L2(RN ) +

tN−p

p
∥u∥2D1,p(RN ) +

tN

p
∥u∥pLp(RN )

−
tN+α

2 · (2♯α)2

∫
RN

(
Iα ∗ |u|2

♯
α
)
|u|2

♯
αdx −

λ2tN+α

2 · (2∗α)2

∫
RN

(
Iα ∗ |u|2

∗
α
)
|u|2

∗
αdx

−
λtN+α

2♯α · 2∗α

∫
RN

(
Iα ∗ |u|2

♯
α
)
|u|2

∗
αdx

and

P(ut) =
(N − 2)tN−2

2
∥u∥2D1,2(RN ) +

NtN

2
∥u∥2L2(RN ) +

(N − p)tN−p

p
∥u∥p

D1,p(RN ) +
NtN

p
∥u∥pLp(RN )

−
(N + α)tN+α

2 · (2♯α)2

∫
RN

(
Iα ∗ |u|2

♯
α
)
|u|2

♯
αdx −

λ2(N + α)tN+α

2 · (2∗α)2

∫
RN

(
Iα ∗ |u|2

∗
α
)
|u|2

∗
αdx

−
λ(N + α)tN+α

2♯α · 2∗α

∫
RN

(
Iα ∗ |u|2

♯
α
)
|u|2

∗
αdx.

Combining the above two formulas, it is easy to see that P(ut) = tJ′(ut) = 0. By Lemma 4.1, we
complete the proof. □
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Lemma 4.3. Suppose that all conditions described in Theorem 1.2 are satisfied. Then, m > 0.

Proof. For every u ∈ P, it follows from Proposition 2.1 that

N − 2
2
∥u∥2D1,2(RN ) +

N
2
∥u∥2L2(RN ) +

N − p
p
∥u∥p

D1,p(RN ) +
N
p
∥u∥pLp(RN )

=
N + α

2 · (2♯α)2

∫
RN

(
Iα ∗ |u|2

♯
α
)
|u|2

♯
αdx +

λ2(N + α)

2♯α · 2∗α

∫
RN

(
Iα ∗ |u|2

♯
α
)
|u|2

∗
αdx

+
λ(N + α)
2 · (2∗α)2

∫
RN

(
Iα ∗ |u|2

∗
α
)
|u|2

∗
αdx

⩽C∥u∥2·2
♯
α

E +C∥u∥2
♯
α+2∗α

E +C∥u∥2·2
∗
α

E ,

which implies that ∥u∥E ⩾ C. Then, it holds that

J(u) −
1

N + α
P(u)

=
α + 2

2(N + α)
∥u∥2D1,2(RN ) +

α

2(N + α)
∥u∥2L2(RN )

+
α + p

p(N + α)
∥u∥p

D1,p(RN ) +
α

p(N + α)
∥u∥pLp(RN )

⩾C∥u∥2E > 0.

(4.1)

The proof is complete. □

Lemma 4.4. Assume that all conditions described in Theorem 1.2 are satisfied. Then, we have

0 < m < m∗ =min

 α

2(N + α)

N · (2♯α)2

N + α


1

2♯α−1

S

2♯α

2♯α−1

1 ,
α + 2

2(N + α)

[
(2∗α)

2(N − 2)
λ2(N + α)

] 1
2∗α−1

S

2∗α
2∗α−1

2

 .
Proof. From λ < Λ, we can easily get

α

2(N + α)

N · (2♯α)2

N + α


1

2♯α−1

S

2♯α

2♯α−1

1 <
α + 2

2(N + α)

[
(2∗α)

2(N − 2)
λ2(N + α)

] 1
2∗α−1

S

2∗α
2∗α−1

2 ,

where Λ is defined in Threorem 1.2.
The extremal function of inequalities (2.1) can be defined as

µσ =
Cσ

N
2

(σ2 + |x|2)
N
2

.

Let tσ > 0 satisfy
J
(
(µσ)tσ

)
= max

t>0
J
(
(µσ)t

)
.

By the definition of m, it is easy to see that

0 < m < J
(
(µσ)tσ

)
.
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A straightforward calculation shows that

∥µσ∥
2
L2(RN ) = ∥µ1∥

2
L2(RN ) =

∫
RN

(
Iα ∗ |µ1|

2♯α
)
|µ1|

2♯αdx =
∫
RN

(
Iα ∗ |µσ|2

♯
α
)
|µσ|

2♯αdx = S
2♯α

2♯α−1

1 .

Moreover, we can compute∫
RN
|∇µσ|

2dx = σ−2
∫
RN
|∇µ1|

2dx,
∫
RN
|∇µσ|

pdx = σ
(2−p)N

2 −p
∫
RN
|∇µ1|

pdx

and ∫
RN
|µσ|

pdx = σ
(2−p)N

2

∫
RN
|µ1|

pdx

and ∫
RN

(
Iα ∗ |µσ|2

∗
α
)
|µσ|

2∗αdx = σ−2·2∗α

∫
RN

(
Iα ∗ |µ1|

2∗α
)
|µ1|

2∗αdx

and ∫
RN

(
Iα ∗ |µσ|2

♯
α
)
|µσ|

2∗αdx = σ−2∗α

∫
RN

(
Iα ∗ |µ1|

2♯α
)
|µ1|

2∗αdx.

It follows that
0 =P

(
(µσ)tσ

)
=

(N − 2)σ−2tN−2
σ

2
∥µ1∥

2
D1,2(RN ) +

NtN
σ

2
−

(N + α)tN+α
σ

2 · (2♯α)2

 ∥µ1∥
2
L2(RN )

+
(N − p)σ

(2−p)N
2 −ptN−p

σ

p
∥µ1∥

p
D1,p(RN ) +

Nσ
(2−p)N

2 tN
σ

p
∥µ1∥

p
Lp(RN )

−
λ2(N + α)σ−2·2∗αtN+α

σ

2 · (2∗α)2

∫
RN

(
Iα ∗ |µ1|

2∗α
)
|µ1|

2∗αdx

−
λ(N + α)σ−2∗αtN+α

σ

2♯α · 2∗α

∫
RN

(
Iα ∗ |µ1|

2♯α
)
|µ1|

2∗αdx.

(4.2)

Taking the limit superior as σ→ ∞ in (4.1), we further obtain

lim sup
σ→∞

[
(N − 2)σ−2tN−2

σ

2
∥µ1∥

2
D1,2(RN ) +

NtN
σ

2
∥µ1∥

2
L2(RN )

+
(N − p)σ

(2−p)N
2 −ptN−p

σ

p
∥µ1∥

p
D1,p(RN ) +

Nσ
(2−p)N

2 tN
σ

p
∥µ1∥

p
Lp(RN )


= lim sup

σ→∞

 (N + α)tN+α
σ

2 · (2♯α)2
∥µ1∥

2
L2(RN ) +

λ2(N + α)σ−2·2∗αtN+α
σ

2 · (2∗α)2

∫
RN

(
Iα ∗ |µ1|

2∗α
)
|µ1|

2∗αdx

+
λ(N + α)σ−2∗αtN+α

σ

2♯α · 2∗α

∫
RN

(
Iα ∗ |µ1|

2♯α
)
|µ1|

2∗αdx

 .
(4.3)
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Let s∞ = lim sup
σ→∞

tσ. We can prove 0 < tσ < ∞. Otherwise, we suppose tσ = ∞. Then,

lim sup
σ→∞

[
(N − 2)σ−2tN−2

σ

2
∥µ1∥

2
D1,2(RN ) +

NtN
σ

2
∥µ1∥

2
L2(RN )

+
(N − p)σ

(2−p)N
2 −ptN−p

σ

p
∥µ1∥

p
D1,p(RN ) +

Nσ
(2−p)N

2 tN
σ

p
∥µ1∥

p
Lp(RN )


< lim sup

σ→∞

tσN

 (N + α)tασ
2 · (2♯α)2

∥µ1∥
2
L2(RN )


⩽ lim sup

σ→∞

 (N + α)tN+α
σ

2 · (2♯α)2
∥µ1∥

2
L2(RN ) +

λ2(N + α)σ−2·2∗αtN+α
σ

2 · (2∗α)2

∫
RN

(
Iα ∗ |µ1|

2∗α
)
|µ1|

2∗αdx

+
λ(N + α)σ−2∗αtN+α

σ

2♯α · 2∗α

∫
RN

(
Iα ∗ |µ1|

2♯α
)
|µ1|

2∗αdx

 .
This yields a contradiction with (4.3).

Now, we show s∞ > 0. Arguing by contradiction, we assume s∞ = 0. Therefore, there exists σ̂ > 0
large such that sσ̂ > 0 small enough. Then,

(N − 2)σ̂−2sN−2
σ̂

2
∥µ1∥

2
D1,2(RN ) +

NsN
σ̂

2
∥µ1∥

2
L2(RN ) +

(N − p)σ̂
(2−p)N

2 −psN−p
σ̂

p
∥µ1∥

p
D1,p(RN )

+
Nσ̂

(2−p)N
2 sN

σ̂

p
∥µ1∥

p
Lp(RN )

>
NsN
σ̂

2
∥µ1∥

2
L2(RN )

⩾sN
σ̂

 (N + α)sασ̂
2 · (2♯α)2

∥µ1∥
2
L2(RN ) +

λ2(N + α)σ̂−2·2∗α sασ̂
2 · (2∗α)2

∫
RN

(
Iα ∗ |µ1|

2∗α
)
|µ1|

2∗αdx

+
λ(N + α)σ̂−2∗α sασ̂

2♯α · 2∗α

∫
RN

(
Iα ∗ |µ1|

2♯α
)
|µ1|

2∗αdx


=

(N + α)sN+α
σ̂

2 · (2♯α)2
∥µ1∥

2
L2(RN ) +

λ2(N + α)σ̂−2·2∗α sN+α
σ̂

2 · (2∗α)2

∫
RN

(
Iα ∗ |µ1|

2∗α
)
|µ1|

2∗αdx

+
λ(N + α)σ̂−2∗α sN+α

σ̂

2♯α · 2∗α

∫
RN

(
Iα ∗ |µ1|

2♯α
)
|µ1|

2∗αdx,

which contradicts with (4.2). Hence, we get 0 < s∞ < ∞.
In view of 0 < s∞ < ∞ and taking the limit superior as σ→ ∞ in (4.2) again, it holds that

lim sup
σ→∞

NtN
σ

2
−

(N + α)tN+α
σ

2 · (2♯α)2

 ∥µ1∥
2
L2(RN ) = 0.

Then, we have

s∞ =

N · (2♯α)2

N + α


1
α

.
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Applying this for any σ̄ > 0 large, it follows that

J
(
(µσ̄)sσ̄

)
=
σ̄−2sN−2

σ̄

2
∥µ1∥

2
D1,2(RN ) +

 sN
σ̄

2
−

sN+α
σ̄

2 · (2♯α)2

 ∥µ1∥
2
L2(RN )

+
σ̄

(2−p)N
2 −psN−p

σ̄

p
∥µ1∥

p
D1,p(RN ) +

σ̄
(2−p)N

2 sN
σ̄

p
∥µ1∥

p
Lp(RN )

−
λ2σ̄−2·2∗α sN+α

σ̄

2 · (2∗α)2

∫
RN

(
Iα ∗ |µ1|

2∗α
)
|µ1|

2∗αdx

−
λσ̄−2∗α sN+α

σ̄

2♯α · 2∗α

∫
RN

(
Iα ∗ |µ1|

2♯α
)
|µ1|

2∗αdx

<max
s>0

 sN

2
−

sN+α

2 · (2♯α)2

 ∥µ1∥
2
L2(RN ).

(4.4)

Set

h(t) =
tN

2
−

tN+α

2 · (2♯α)2
.

Then, we know h′(s∞) = 0 and s∞ is the unique maxium point of h(·). By (4.4), one has

J
(
(µσ̄)sσ̄

)
<

 sN
∞

2
−

sN+α
∞

2 · (2♯α)2

 ∥µ1∥
2
L2(RN ) =

α

2(N + α)

N · (2♯α)2

N + α


1

2♯α−1

S

2♯α

2♯α−1

1 .

The proof is completed. □

Lemma 4.5. Suppose that all conditions described in Theorem 1.2 hold. Let {un} be a bounded
minimizing sequence of J satisfying

J(un)→ m and P(un)→ 0, as n→ ∞.

Then, we have

lim
n→∞

∫
RN
|un|

2dx > 0 and lim
n→∞

∫
RN
|un|

2∗dx > 0.

Proof. First, we show lim
n→∞

∫
RN |un|

2dx > 0. Otherwise, we suppose

lim
n→∞

∫
RN
|un|

2dx = 0. (4.5)

Combining Proposition 2.1 and (4.5), we have

lim
n→∞

∫
RN

(
Iα ∗ |un|

2♯α
)
|un|

2♯αdx ⩽ lim
n→∞

CN,α

(∫
RN
|un|

2dx
) N+α

N

= 0

and

lim
n→∞

∫
RN

(
Iα ∗ |un|

2♯α
)
|un|

2∗αdx ⩽ lim
n→∞

CN,α

(∫
RN
|un|

2dx
) N+α

2N
(∫
RN
|un|

2∗dx
) N+α

2N

= 0.
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Combining the above two inequalities, one has

m + on(1) =
1
2
∥un∥

2
D1,2(RN ) +

1
2
∥un∥

2
L2(RN ) +

1
p
∥un∥

p
D1,p(RN ) +

1
p
∥un∥

p
Lp(RN )

−
λ2

2 · (2∗α)2

∫
RN

(
Iα ∗ |un|

2∗α
)
|un|

2∗αdx
(4.6)

and
on(1) =

N − 2
2
∥un∥

2
D1,2(RN ) +

N
2
∥un∥

2
L2(RN ) +

N − p
p
∥un∥

p
D1,p(RN ) +

N
p
∥un∥

p
Lp(RN )

−
λ2(N + α)
2 · (2∗α)2

∫
RN

(
Iα ∗ |un|

2∗α
)
|un|

2∗αdx.
(4.7)

Combining (4.6) and (4.7), it follows that

m + on(1) ⩾
α + 2

2(N + α)
∥un∥

2
D1,2(RN ) +

α

2(N + α)
∥un∥

2
L2(RN ) +

α + p
p(N + α)

∥un∥
p
D1,p(RN )

+
α

p(N + α)
∥un∥

p
Lp(RN )

⩾
α + 2

2(N + α)
∥un∥

2
D1,2(RN ).

(4.8)

It follows from (2.2) and (4.7) that

(N − 2)∥un∥
2
D1,2(RN ) ⩽

λ2(N + α)
(2∗α)2

∫
RN

(
Iα ∗ |un|

2∗α
)
|un|

2∗αdx

⩽
λ2(N + α)

(2∗α)2

(
1
S2

)2∗α

∥un∥
2·2∗α
D1,2(RN ).

This implies [
(2∗α)

2(N − 2)
λ2(N + α)

] 1
2∗α−1

S

2∗α
2∗α−1

2 ⩽ ∥un∥
2
D1,2(RN ). (4.9)

In view of (4.8) and (4.9), we can derive

m + on(1) ⩾
α + 2

2(N + α)

[
(2∗α)

2(N − 2)
λ2(N + α)

] 1
2∗α−1

S

2∗α
2∗α−1

2 .

This yields a contradiction with Lemma 4.4.
Next, we show lim

n→∞

∫
RN |un|

2∗dx > 0. On the contrary, it suffices to show

lim
n→∞

∫
RN
|un|

2∗dx = 0. (4.10)

From Proposition 2.1 and (4.10), we have

lim
n→∞

∫
RN

(
Iα ∗ |un|

2∗α
)
|un|

2∗αdx ⩽ lim
n→∞

CN,α

(∫
RN
|un|

2∗dx
) N+α

N

= 0
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and
lim
n→∞

∫
RN

(
Iα ∗ |un|

2♯α
)
|un|

2∗αdx

⩽ lim
n→∞

CN,α

(∫
RN
|un|

2dx
) N+α

2N
(∫
RN
|un|

2∗dx
) N+α

2N

= 0.

Together with the above two expressions, we get

m + on(1) =
1
2
∥un∥

2
D1,2(RN ) +

1
2
∥un∥

2
L2(RN ) +

1
p
∥un∥

p
D1,p(RN ) +

1
p
∥un∥

p
Lp(RN )

−
λ2

2 ·
(
2♯α

)2

∫
RN

(
Iα ∗ |un|

2♯α
)
|un|

2♯αdx
(4.11)

and
on(1) =

N − 2
2
∥un∥

2
D1,2(RN ) +

N
2
∥un∥

2
L2(RN ) +

N − p
p
∥un∥

p
D1,p(RN ) +

N
p
∥un∥

p
Lp(RN )

−
λ2(N + α)

2 · (2♯α)2

∫
RN

(
Iα ∗ |un|

2♯α
)
|un|

2♯αdx.
(4.12)

From (4.11) and (4.12), we get that

m + on(1) ⩾
α

2(N + α)
∥un∥

2
L2(RN ). (4.13)

Observe that, by (2.1) and (4.12), we have

∥un∥
2
L2(RN ) ⩽

λ2(N + α)

N · (2♯α)2

∫
RN

(
Iα ∗ |un|

2♯α
)
|un|

2♯αdx

⩽
λ2(N + α)

N · (2♯α)2

(
1
S1

)2♯α

∥un∥
2·2♯α
L2(RN ).

This shows  N · (2♯α)2

λ2(N + α)


1

2♯α−1

S

2♯α

2♯α−1

1 ⩽ ∥u∥2L2(RN ). (4.14)

Combining (4.13) and (4.14), we infer that

m ⩾
α

2(N + α)

 N · (2♯α)2

λ2(N + α)


1

2♯α−1

S

2♯α

2♯α−1

1 .

This contradicts with Lemma 4.5, the proof is complete. □

We now can conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. Let {un} be a minimizing sequence of J satisfying

J(un)→ m and P(un)→ 0, as n→ ∞.
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It is easy to verify {un} is bounded in E. Taking into account Lemmas 4.4 and 4.5 and Proposition 2.2,
we deduce that {un} converges weakly and a.e. to u . 0 in L2

loc(R
N). Using the Brézis-Lieb lemma [35],

we obtain

m ⩽ J(u) = J(u) −
1

N + α
P(u) ⩽ lim

n→∞

(
J(un) −

1
N + α

P(un)
)
= lim

n→∞
J(un) = m,

which implies J(u) = m. Moreover, we can choose u ⩾ 0. Therefore, u is a nonnegative ground state
solution of Eq (D).

Let u be a nonnegative ground state solution of Eq (D). In order to show u is radial, it suffices to
prove m = mrad, where

Prad =

{
u ∈ Erad\{0}

∣∣∣∣P(u) = 0
}

and
mrad = inf

u∈Prad
J(u).

On one hand, by Erad ⊂ E, it follows that m ⩽ mrad. On the other hand, for any v ∈ P, by J being even,
we know |v| ∈ P. Let |v|∗ be the decreasing rearrangement of |v|. In view of [19, Theorem 3.7], one has

∥|v|∗∥2D1,2(RN ) ⩽ ∥|v|∥
2
D1,2(RN ) and ∥|v|∗∥2L2(RN ) ⩽ ∥v∥

2
L2(RN ) (4.15)

and
∥|v|∗∥p

D1,p(RN ) ⩽ ∥|v|∥
p
D1,p(RN ) and ∥|v|∗∥pLp(RN ) ⩽ ∥v∥

p
Lp(RN ) (4.16)

and ∫
RN

∫
RN

|v(x)|2
♯
α |v(y)|2

♯
α

|x − y|N−α
dxdy ⩽

∫
RN

∫
RN

||v(x)|∗|2
♯
α ||v(y)|∗|2

♯
α

|x − y|N−α
dxdy (4.17)

and ∫
RN

∫
RN

|v(x)|2
♯
α |v(y)|2

∗
α

|x − y|N−α
dxdy ⩽

∫
RN

∫
RN

||v(x)|∗|2
♯
α ||v(y)|∗|2

∗
α

|x − y|N−α
dxdy (4.18)

and ∫
RN

∫
RN

|v(x)|2
∗
α |v(y)|2

∗
α

|x − y|N−α
dxdy ⩽

∫
RN

∫
RN

||v(x)|∗|2
∗
α ||v(y)|∗|2

∗
α

|x − y|N−α
dxdy (4.19)

From (4.15)–(4.19), for any t > 0, it follows that

J
(
(|v|∗)t

)
⩽ J

(
(|v|t)

)
. (4.20)

By Lemma 4.2, there exists tv > 0 such that (|v|∗)tv ∈ P. We have

(N − 2)tN−2
v

2
∥|v|∗∥2D1,2(RN ) +

NtN
v

2
∥|v|∗∥2L2(RN ) +

(N − p)tN−p
v

p
∥|v|∗∥p

D1,p(RN ) +
NtN

v

p
∥|v|∗∥pLp(RN )

=
(N + α)tN+α

v

2 · (2♯α)2

∫
RN

(
Iα ∗ ||v|∗|2

♯
α
)
||v|∗|2

♯
αdx +

λ(N + α)tN+α
v

2♯α · 2∗α

∫
RN

(
Iα ∗ ||v|∗|2

♯
α
)
||v|∗|2

∗
αdx

+
λ2(N + α)tN+α

v

2 · (2∗α)2

∫
RN

(
Iα ∗ ||v|∗|2

∗
α
)
||v|∗|2

∗
αdx.
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From the above and |v| ∈ P, it is easy to observe tv ∈ (0, 1]. In view of (4.20), one has

m ⩽ J
(
(|v∗|)tv

)
⩽ J

(
(|v|)tv

)
⩽ max

t⩾0
J
(
(|v|)t

)
= J(|v|).

Therefore, for any |v| ∈ P, there exists tv > 0 such that tv|v|∗ ∈ P and

J
(
(|v|∗)tv

)
⩽ J(|v|).

This implies mrad ⩽ m. Hence, we have mrad = m. This means u is a radially symmetric ground state
solution of Eq (D). The proof is complete. □
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