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1. Introduction and main results

Let us consider the following critical (p, 2)-Laplacian equation
—Apu = Au+u + uf”u = (I, * F(w)f(u), x€R", (1.1)

where N > 3,1 < p < N,0 < a < N, and A, is the p-Laplacian with A, = V(VulP~2Vu). 1, is the
Riesz potential defined by
r (%)

. , x e RM\{0}.
2075 (%) |V

Io(x) =

Equation (1.1) is closely related to the following nonlocal quasilinear equation:
—Apu — (AU + ulP2u + |l = (I, = Fw) f(u), x€RY, (1.2)

where 1 < p,g < Nandu : RY [0, o0) is supposed to be Lipschitz continuous. The operator involved
in (1.2) is the so-called double phase operator whose behavior switches between two different elliptic
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situations. The pioneering work to treat such operators comes from Zhikov [36, 37], who introduced
such classes to provide models of strongly anisotropic materials. For more details and recent works
about double phase problems, we refer to [15,22].

When N =3, p=q=2,u=1,and F(u) = u?, then Eq (1.1) is the well-known Choquard equation:

~Au+u=(I,*u*u, xeR> (1.3)

Equation (1.3) appears in several physical models like the quantum theory of polarons [29], Hartree-
Fock theory [18], and self-gravitating matter [30]. After the pioneer work of Lieb [18] and Lions [20],
the existence of weak solutions for Choquard equations have been a fascinating topic in past decades.
For more related work, we refer to [2,31] for the subcritical case, [8, 13] for the upper critical case,
[9,26] for the lower critical case, and [21,32] for the double critical case.

When g = 2 # pand u = 1, Eq (1.2) reduces to (1.1). It appears in many different disciplines
of physics and has a wide range of applications, such as chemical reaction design [5], quantum field
theory [4], biophysics [10], and plasma physics [33]. From a mathematical point of view, the main
difficulty in (1.1) is the non-homogeneity of the operator —A,, — A. For this reason, equations involving
such operator or its variant have been received increasing attention from various authors. In particular,
Gasinski-Papageorgiou [14] considered Eq (1.1) when the nonlinearity takes the following form:

{—A,,u —Au = f(x,u), x€Q, (1.4)

ulao = 0,

where p > 2 and Q € R" is a bounded C? domain. Under the assumption that f(x,u) exhibits
asymmetric behaviour as u — =+oo, more precisely f(x,u) is superlinear in the positive direction
(without satisfying the Ambrosetti-Rabinowitz condition) and sublinear resonant in the negative
direction, the authors obtained the existence and multiplicity results of (1.4) via variational tools and
Morse theory methods. Later, Papageorgiou-Radulescu-Repovs [28] imposed certain assumptions on
f(x, u) to make it double resonant at both +co and 0. By virtue of variational tools and critical groups,
the authors obtained the existence and multiplicity results of (1.4).

In [27], the authors considered the following Dirichlet problem:

(1.5)
uloo = 0,

{—Apu —Au=AufPu+ f(x,u), xeQ,
where p > 2,1 > 0, Q c RN with a C? boundary, and f(x, u) is a Carathéodory function. Based
on critical point theory, together with suitable truncation and comparison techniques, Papageorgiou-
Rédulescu-Repovs [27] obtained the existence and multiplicity results of (1.5) when A is near the
principal eigenvalue A,(p) > O of (—AP,W&”’ (€2)). Subsequently, their work was extended by
Bhattacharya-Emamizadeh-Farjudian [6] to the case of 1 < p < 2. By applying the fibering method
and spectrum analysis, a priori bounds and regularity results of (1.5) were investigated. Moameni-
Wong [24] studied the case of f(x,u) in (1.5) satisfying supercritical growth. By using a variational
principle on convex subsets of a Banach space, the authors proved the existence of at least one
nontrivial solution of (1.5). Equation (1.5) with Neumann boundary condition (% = 0) has been
considered recently in Mihdilescu [23]. The authors showed that the eigenvalue set of this problem
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consists of 0 and an unbounded open interval from the first eigenvalue of —A, — A (p > 2) to infinity.
After that, Farcdseanu et al. [12] extended the results in [23] to 0 < p < 2 by means of the determination
of a critical point on the Nehari manifold [3]. For more results related to the (p, 2)-Laplacian equation,
one can refer to [1, 16]

Recently, Moroz-Van Schaftingen [25] established the leo’f(RN ) regularity (¢ > 1) and Pohozaev
identity of weak solutions for the following generalized Choquard equation:

~Au+u=(I,* F(u))f(u), xR, (1.6)

where N > 3, @ € (0, N), and F satisfies the subcritical Berestycki-Lions type condition, namely:

(H,) There exists ty € R\{0} such that F(ty)) # 0O, where FF : t e R — fot f(Ode.

N+a

(H,) There exists C > 0 such that for every r € R, |tf ()] < C(|t| ¥ + ItI%).

(H3) . -

t t
lim ](wz =0 and lim ,Ejy
t—0 |Z|T t—o0 mm

=0.

Li-Ma [17] studied Eq (1.6) with a perturbation. By virtue of the subcritical approximation and the
Pohozaev constraint method, they obtained the regularity and Pohozaev identity of weak solutions.
Cassani-Du-Liu [7] studied Eq (1.6) with N =2 and /, = In ﬁ By using an asymptotic approximation
approach, the existence of positive solutions of (1.6) is obtained.

Up to our knowledge, no results have been reported regarding the existence and regularity of weak
solutions for the (p, 2)-Laplacian equation with critical Hartree-type nonlinearity. Inspired by the above
cited results, the main objective of this paper is to fill this gap. The novelty of this paper lies in two
aspects. On one hand, due to the existence of the (p, 2)-Laplacian operator, problem (1.1) becomes
non-homogeneous. Therefore, the method used in [25] is invalid. To overcome this difficulty, we
introduce some new ideas and establish new estimates to improve the integrability of weak solutions
of Eq (1.1). On the other hand, we are the first to consider a class of (p,2)-Laplacian equation with
critical Hartree-type nonlinearity.

Before we present our results, we suppose that f satisfies the following conditions:

(F1) There exists C > 0 such that for every ¢ € R, [tf(?)| < C(|t|2§r +#|*), where 2& = % and 2;, = %

; .
(F2) F(u) = splul + 5t luf*.
Now we can formulate our main results in this paper.

Theorem 1.1. Let N > 3,1 < p < N, 0 < @ < N, and condition (F) holds. If u is a nontrivial solution
of Eq (1.1), then

(i) u € L1(RN) for any q € [2, o];

(ii) the following PohoZaev identity holds:

Tllul|D1~2(RN) + EHMHLZ(RN) + —||u||1;1,p(RN) + ;”u”IZI)(RN)
N +a
= fN(Ia x F(u))F(u)dx.
R
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Theorem 1.2. Let N > 3,1 < p < N, 0 < @ < N, and condition (F,) hold. Then, there exists A > 0
such that for any A € (0, A), Eq (1.1) possesses a nonnegative radially symmetric ground state solution,
where

2:;—1 N+a é
A 2l )T (N - 2)3(N + @)i-s 8,
B ot 22 '

a% [N . (2&)2] 205 -1) Slz(zgrl)

At the end of this section, we outline our method. We introduce this into two parts.
Regularity: First, by applying the Minty-Browder theorem [11] and the decomposition of Riesz
potential, we improve the integrability of weak solutions to Eq (1.1). Then, under a different range
of 2;, we use two different iteration approaches to establish an L*(R") estimate for weak solutions of
Eq (1.1). As aresult, the Pohozaev identity of Eq (1.1) is established.
Existence: With delicate analysis and optimal range of A, we give an exact estimate of the minimum
on the Pohozaev manifold. Using this fact, one can show that the minimizing sequences in Pohozaev
manifold are non-vanishing in L>(RY) and L* (R"). This, together with a compactness lemma (see
Proposition 2.2), the existence of ground state solutions of Eq (1.1) is obtained. Finally, we prove
these ground solutions are radially symmetric.

This paper is organized as follows. In Section 2, we introduce some basic notations and technical
lemmas. In Section 3, we study the regularity of weak solutions and PohoZaev identity of Eq (1.1). In
Section 4, we study the existence and symmetry of ground state solutions of Eq (1.1).

2. Preliminaries

In this section, we give some definitions and results which will be used later. C, C; (i = 1,2,---)
denote positive constants which can be changed line by line. Let X be a Banach space, and use X,,, to
denote the radial subspace of X.

In this work, our working space can be defined by

E = H'RY) n W'(RM)
equipped with the norm
leelle = Neallgr vy + lleallyrpey-

Proposition 2.1. ([19]) Let s,t > 1, and a € (0, N) with §+% =1+ % Then, there exists C(N, a, s,t) >
0 such that for any u € L’(RN) and v € L'(R"),

u(x)v(y)
f T N-a dxdy| < C(N, a, s, Dllullzs@m |Vl 2 @vy.-
rY Jrv X =y

— = 2N _ N T(®) [ N
IfS—l‘— l’henC(N,CY,S,l)—CN,a—ﬂ'Z HN—;Q)I:W

N+a’

Proposition 2.2. ( [34]) Let N > 3, and {u,} C E be any bounded sequence satisfying

lim lu,)’dx > 0 and lim |u,|* dx > 0.

n—oo RN n—oo RN

Then, the sequence {u,} converges weakly and a.e. to u % 0 in L (RY).
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The following inequalities can be viewed as a consequence of Proposition 2.1, which is useful in

the following estimation:

T
Si [ f o |u|2“)|u|2“dx] < NullZsnys u € LARY)
R

and 1
7

SZ |:fN(Ia/ * |u|2:;)|u|2;dx:| < ”u”%LZ(RN)a ue DI’Z(RN)a
R
where 8| and S, are the embedding constants.

Lemma 2.1. For any x,y € R, the following assertions are valid:
(i)If1 < p <2, then
x =y
(Ixl + yh*r
[lxlP~2x = [y172y| < Clx = yIP 7.

< C>P2x = Iyl 2y)(x = y);

(ii) If 2 < p < o0, then
Ix = yIP < C(xP2x = [yIP ) (x — y);

[lxlP=2x = [yP~2y] < Clxl + )72l =y
3. Regularity of weak solutions and the PohoZaev identity

In this section, we study the regularity of weak solutions of Eq (1.1).
Lemma 3.1. ([25]) Let g, r,w,t € [1,00) and { € [0,?2] such that
1 1 2 -
2 = < + §'

If u € (0,2) satisfies
min(g, r) (g - l) < u < max(q,r) (1 - l) ,
N w w
min(g, r) (g - l) < 2 — u < max(q, r)(l — l),
N t t
then for every H € L"(RY), K € L'(R"), and u € LY(R") n L"(R"),

f (1, * (Hul")Glul*#dx
RN

2

<c( fR ) |H|de)i ( fR ) IGI’dx): ( fR ) Iul"dx)g ( fR ) |u|’dx)/.

Similar to the proof of [25, Lemma 3.2], we get the following lemma without proof.

2.1

(2.2)

Lemma3.2. Let N >3,0<a <N,and0< 6 <2 IfH,G € L RY) + L& (RY), and & < 6 < 2,

then for every € > O there exists C.y € R such that, for every u € E,

[4% 2-6 2 2 2
f [Ia/ * (Hll/ll )]Glul d-x < € ||u||D1>2(RN) + CE,GHMHLZ(RN)'
RN
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Proposition 3.1. ([11]) Let X be a reflexive Banach space. Let ® be a (nonlinear) continuous mapping
from X into its dual space X' such that
1) (Pu—Ddv,u—v) >0, Yu,ve X, u+v;

(i) lim Qw0 — 4o
o Ml

Then, for every g € X~', there exists a unique u € X such that ®u = g.

Lemma 3.3. Let

(@u,v)zf Vqudx+f IVulp_ZVqudx+Tf uvdx
RN RN RN

(3.1)
+ f lulP2uvdx — (I, * Hu)Gvdx, Yu,v € E.
RN RN
Then, ® satisfies the following conditions:
Q) (Pu—-Ov,u—v)>0, Yu,ve E, u#v;
.. . (Quuy _
(@) ||u|1|}sr2<>o e = OO
Proof. Under direct calculation, we can compute
(D) ~ D), 1= v) =l = VIR, + Tl = Vs,
+ f (IVulP>Vu — |[VvP2Vv)(Vu — Vv)dx
RN
+ (ulPu = WP2v)(u — v)dx — f [1, * Hu — v)]|G(u — v)dx.
RN RN
Now, we give the verifications of (i)—(ii). By Lemma 2.1, we have that for 1 < p < 2,
(IVulP2Vu — |[VvP~2Vv)(Vu — Vv)dx + f (JulP~u — P 2v)(u — v)dx
R R .
>C{ [ f (IVulP2Vu — |Vv|P~2Vv)(Vu — Vv)dx f (IVul? + |Vv|1’)dx]
RV RV
2-p
p
| QulPu = Py - V)dx] [ (lul” + [vIP)dx }
RN RN
2
>C{ [ f |(Vul? 2V = [VvP2 V) (Vu = Vv)| IVl 7 + |Vv|2-1’)'5dx]
N
- (3.2)

—+

)

>C{ [ f (V2720 = [V 2V0) (Vi — V)| (Vu + Vv)p(zzp)dx]
RN

P
f |l = P 2) e = )] (7 + PP) 2 dx
RN

[N

~

+

2
f |(|u|1’_2u — P2 (u - v)|%(u + v)pa{p)dx] }
RN

>C[ (f V(i - v)|”dx)p + ( I — vlpdx)p ]
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and for 2 < p < oo,

f (IVulP2Vu — |VvP2Vv)(Vu — Vv)dx + f (lulP~u — P~ 2v)(u — v)dx
RN RV

3.3)
>C (f V(u — v)|Pdx + f lu — vlpdx).
RN RN
Combining (3.2) and (3.3), for p € (1, 0o) there exists C > 0 such that
(IVulP>Vu — |Vv|P2Vv)(Vu — Vv)dx + f (ulPu = WP~2v)(u — v)dx
RN RN
(3.4
>C( V(u — v)|Pdx + |l — vl”dx) .
RN RV
In view of Lemma 3.2 with 8 = 1, there exists T > 0 such that for each v € E, we have
1
(L *GM)HMdx < = | [VoPdx+ < [ pPdx. (3.5)
RN 2 RN 2 RN

Taking this together with (3.4) and (3.5), we obtain

1 T
<(DM - (DQO’ u— Q0> 25”1/[ - ()0||2D1,2(RN) + E”u - (p”iZ(RN)

o+ C (1l = @l oy + Nt = @17 )
>0.

So, condition (i) follows. By Lemma 3.2, it is easy to verify condition (ii). The proof is complete. O

Lemma 3.4. Suppose that H,G € L% RM) + L%(RN) and u € E solve
—Apu—Au+u+ lul"~*u = (I, * Hu)G. (3.6)

Then, u € LY(RN) for each q € [2, ZTN]

Proof. Using Lemma 3.2 with 6 = 1, there exists 7 > 0 such that, for every ¢ € E,
|- LT
RN(IQ * |H‘70|)|G90|d'x < Ell(p”D],Z(RN) + Ell(plle(RN)' (3'7)

Let sequences {H,},{G,} € LZTYN(RN) such that |H,| < |H| and |G,| < |G|,and H, - Hand G, —» G
almost everywhere in RY. In what follows, we claim that there exists a unique solution u, € E satisfying

—Aputy — Aty + TUy + || u, = [, * (Hou,)|G, + (= D, (3.8)

where u € E is the given solution of (3.6). The duality is given in this case by
(Yu, ¢) :f VuVedx + IVulP2VuVedx + ‘rf updx
RV RV
(3.9)
+ f lulP2updx — | (I, * Hu)Gedx, Yu,¢ € E.
RN RV

RN
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In view of Lemma 3.3, it is easy to verify that ‘¥ satisfies all the conditions described in Proposition 3.1.
Applying Proposition 3.1 with g(u) = (7 — 1)u, we get the desired results.

Moreover, we also claim that the sequence {u,} converges weakly to u in E as n — co. Multiplying
both sides of (3.8) by u, and integrating it over RY, then
||un||2D1,2(RN) + T””n”%}(RN) + ||unllgl,p(RN) + ||un||€p(RN)

:f [1, * (H,u,)]Gpu,dx + (1 — 1)[ uudx.
RN RN

Combining this with (3.7), the Holder inequality, and the Young inequality, one has

2 T 12
Ellu””D]’Z(RN) + §||Mn||L2(RN) + ||uﬂ||2|,p(RN) + ||un||§p(RN)
% %
<r-1) ( f |u,,|2dx) ( f |u|2dx)
RV RN
T-—1 ) 5
<T (”un”LZ(RN) + ||u||L2(RN)) .
By this, we obtain
2 2
”un”Hl(RN) + ”un”;/l,p(RN) < C”u”LZ(RN)a (310)

which implies that {«,} is bounded in E. Then, there exists it € E such that 4, — @i in E and u,, — i
almost everywhere in RY. By H, € La2(RV), it is easy to verify H,u, is bounded in L¥* (R"). Hence,
we get H,u, — Hii in L%(RN). Moreover, for any ¢ € Cg"(RN), by |G,| < |G| and the Lebesgue
dominated convergence theorem, we can deduce G, — Gy in L%(RN ). Then, we have

f [1, * (H,u,)]|Gpdx — f [1, * (Hit)|Gedx, YV ¢ € C3RY).
RN RN
Thus, i is a weak solution of
—A, it — Adi + 7ii + [P 2 = [1, * (Hi)]G + (7 — Du. (3.11)

By Proposition 3.1, we know that Eq (3.11) admits a unique solution. Then, u = i.
For 6 > 0, we define the truncation u,, : RY — R by

-0, u,< -0,
Upo(x) =3u,, -0<u,<®,
0, u, = 0.

For any ¢g > 2, it is easy to check |u, |9 %u, o € E. Taking |u, 4| >u, ¢ € E as a test function in Eq (3.8),
Yy q y , ; g Uy, ; q

we can see that
f Vu,V (Iun,glq_zun,g) dx + Tf
RN RN

< f V14,V (|1t 6l" 11 0) dix + f IVuaal" V10,V (|t 11,) dx
RN N

R

912
017 | dox

-2 -2 -2
+7 f 04 612t 10,0 + f it o172t | "2, ¢
RN RN

= f (1, * (H,u)|(Gultty 6l 21t 6)dx + (7 — 1) f ltt 0|41, g1t dx.

RN R
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Applying Lemma 3.2 with 6 = %, where ¢q € [2, %N), there then exists C > 0 such that
f [Ia * |Hnun,6|](lGn”un,Olq_zun,b’)dx
RN
< f [Zo * (1H 1ty gD](1G I 61"~ )dx
RN

2(g -1 2
<(q2 )f dx+Cf
q RN RN

Taking this together with the above two chain of inequalities and making use of the Holder inequality
and the Young inequality, we can infer

fRN V (lul?)

912
617 | dox.

V (lual?)

2
dx <C f (]9 + Jul9) dx
RY (3.12)
+C f (1, * (H,u,)) (|G |l ")dox.
{lutn|>6}

By g € [2, %N) and Proposition 2.1, then

1 1
f [Ia*<|H,,un|)]<|Gn||un|q‘1)dx<C( f |Hnun|3dx) ( f ||Gn||un|q‘1|’dx) ,
{lun|>6} RN RN

s 1l _ Nta 1, 1 1 _Nta , 1 1
with ¢ = =F 2+qandt——2N+2 .

Using the fact that u, € LYRY) and H,,G, € L% (RY), we get |H,u,| € L*(RY) and |G, ||u,|?" €
L'(RY). By applying the Lebesgue dominated convergence theorem, we have

Hm [ [l (H DGl )dx = 0.
7 Hlunl>6)

Inserting this into (3.12) and taking 8 — oo, by the Sobolev embedding theorem we can deduce

N-2

N
( f |u,,|~"72dx) <C f (| + |u7)dx. (3.13)
RN RN

Taking into account (3.10), (3.13), and the Fatou lemma, we get that

N-2

qN kS
( [ IulN—de) <c [ pax, (3.14)
RV RV
which means that u € LY(R") for any ¢ € [2, Z(TN] The proof is complete. i
Lemma 3.5. ((19]) Let 1 < s < 00, g € L'(RY), and h € L*(RY). Then, there exists C > 0 such that

llg * Allos@ry < Cligllen @m)lillia @y),

where
1 1 1
—+—=1+-.
h 153 S
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Lemma 3.6. Suppose that all the conditions described in Theorem 1.1 are satisfied. Let u € E be a
nontrivial solution of Eq (1.1). Then,

1y * Fu)llpo@yy < C

Proof. In view of Lemma 3.4, we obtain u € LY(RY) for every g € [2, ZTN] By condition (), one can

infer F(u) € LP(R") for every p € [%, a(%‘fa)].
aN

> IN+a m), 1, can be decomposed as

Fixing € € (0
I,=1 +1,

where I! € L= (RY) and I? € L+ (RY). Let s = co in Lemma 3.5. It follows from I! € L= (RY) that

M} F @l < O g o IF GO, (3.15)

Similar to (3.15), by I2 € L~ (RY) we can infer that

12 5 F)llzsey < CUEI e o IF GO, (3.16)

. (IN .
In view of € € (O, 2N+a)’ we derive

2N N+e N-¢€ 2N?

N+a<a+6<af—6<a/(N+oz)' ©-17
It follows from (3.15)—(3.17) that
I}« F(u) € L°(RY) and I * F(u) € L°(R").
The proof is completed. O

Lemma 3.7. Suppose that all the conditions described in Theorem 1.1 are satisfied. Let u € E be a
nontrivial solution of Eq (1.1). For each L > 2, define

—-L, ulx)<-L;
ur(x) = qu(x), |u(x)| <L;
L, u(x) > L.

Fort > 1, we set it = uui(T_l). Then, for any s € [2,2"], we have

2
_ ’ i_ _ *_ _
(f |uu; 1|sdx) < Ct? (f u* 2quz ! 2d)c+f u 2quz ! 2d)c).
RV RV RV

Proof. Multiplying both sides of Eq (1.1) by i1, and integrating, it follows that

‘[VW%M+IMMM+owWwWMM+fnw%mm
RN RN RN RN

= f (Lo * F(w)) f(u)it, dx.
RN
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Combining the above relation with Lemma 3.6, this leads to

2
(f |uu ™! de) <C [f |V(uuz_l)|2dx+f uﬁde]
RN RN RN
<C7? (f uzg_zluuz—l 2dx+f w2l 2dx).
RV RV

The proof is completed. O
We now are ready to establish Theorem 1.1.

Proof of Theorem 1.1. (i) (L™ estimate) We consider the following two cases separately.
Casel. 2, <2 N>4+a.
In this case, we should keep in mind that 7 = 27
Step 1. Clearly, we have

2*N
2<2 4 2(r-1) <2 +2(1—1) < =,
04

In view of Lemma 3.4, we have u € LY(RV) for any g € [2, 271\/] That is,

i _ . ~
f w2 uul ' ?dx < oo and f W2 unl ' Fdx < oo.
RN RN
For any 0 < R < o0, we set
4
B, :f u2"_2|uu2_1|2dx
RN
f_ _ i _
:f MZ(Y 2|I/ll/lz 1|2dx+f MZG 2|uuz l|2dx
{u<R) {u>R)
=B.(R) + B{(R)
B, :f Wl Pdx
RN

:f uza_zluuz_llzdx+f uzﬂ_zluuz—] 2dx
{u<R} {u>R}

=B.(R) + B*(R).

and

Obviously, we have
Igim B.(R) = B, }eir% B.(R)=0

and _ B _
Igggo B.(R) = B, }elg(l) B-(R) = 0.

Clearly, if it holds that B, = B,(R) or B, = B.(R), then we have u € L*(R"). This completes our proof.
To this end, we just need to consider the following case

B.(R) < B, and B.(R) < B..
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Without loss of generality, we set R = 1. Then, there exist 0 < Cy, C, < oo such that
B.(1) = C\B, and B.(1) = C,B,.

From Zﬁ < 2, we deduce

. i _ _ _
B(1) = f w2 Fdx < f |uul ! Pdx.
{u>1}

{u>1}

It follows from (3.18) that

1 1
B, = B.(1)+ Bi(1) = ﬁBi(l) < T—C f |uu ™! 2dx.
-C = C1 Jusy

Similarly, one can infer

_ N 1 . 1
B. = B.(1) + B(1) = —B(1) < . f | Pdx.
1-G, 1-C Jusyy -

Combining (3.19), (3.20), and Lemma 3.7, we obtain

e C
(f M de) <( + = )f |uu, ! [*dx.
RN 1 - C'1 1- Cl RN

Let L — oo in the above expression. Then,

2
s C C
( f |u|”dx) <( + _ ) f lu**dx.
RN 1 - Cl 1 — Cl RN

By 7 = £, we have

g

C C )

Ul 2*s < + poy u * < 00,
2 \(1_ ) Ml

Since s € [2,2*], we get u € LP'(RY), where p; € [2, %]
Step 2. Obviously, we have

(2’

2<2 42— <2i+2(P - 1)< 5

and for B, and B,, we have
B> < o0 and Bp < .

Similar to Step 1, we just need to show the case
B»(1) < B2 and ETz(l) < BTz.

Moreover, we have

B # 2
B.(1) = f uz“‘2|uuz_1 2dx > f w2 ‘uuz_l(uz )
{u<1)

{u<1}

2
dx = B(1)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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and

P ol o1, e
Bi(1) = f w2 |un ! Pdx < f U ‘uuz "y ™)
{u>1}

{u>1}

In view of (3.19), (3.20), (3.22), and (3.23), it follows that

C C
B.(1) < B.(1) = B(1) < B, (1),
~(1) ) I—C, (D) —C, (1)
which implies
1
Bo < ——— uuzz_l‘ dx
1 -Ci Jusy
Similarly, we have
~ 1 2
2 < ——— uuzz_l‘ dx.
1 =Cy Jusy

Taking L — oo and making use of Lemma 3.7 again, we get

1
c C )3y
. < + 2
||M||LS,(27)2(RN) (1 -C; 1- Cl)

llull oo < oo,
L7 RV
C N 2\2

which implies u € L”*(R"), where p, € [2, 2% - (7) ]
Step 3. Iterating the above procedure, for any n € N* we conclude

1

C C (%)
u * \1 < + — u * 1
| ”L“‘(%) @Yy (1 -G 1= Cl) | llL(zzw)l (RY)
Let s = 2*. Then,
C c \&ioy
i=1 2-(2)’
[122] e < + = 2wl 2+ vy -
L(zz)in(]RN)\ 1-C, 1-C BED

Obviously, we have

i_mv:§<l.
2-(3)

This means that the series )| ; (; y
i=1 2(%7
Let n — oo in (3.24). Then, it holds that

converges absolutely.

lleell Loy < Cllull 2 gy < o0.

Case2.2;, >2 & N<4+a.

#
Step 1. Let 1, € 1+%,1+

28

2

2
oo 2@ -1
1+ || dx < 00,
RN

]. Then, we claim

2
dx = BS,(1).

(3.23)

(3.24)

(3.25)
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By the definition of u;, we obtain

i - # _
f e~ Plx < f Ju> 2=V,
RV RV

Let [/ > 0 be chosen later. By the Holder inequality, we have

f uzﬁ_zluug_] I*dx
RN

.o i - . 4
Po2e f u> 2quz1 Pdx + f u* 2|““21 *dx
{u<l} {u>1)

2k -2 2

2x of 2k 201 -1) o\ T1-172* %
o |2| dx + || “dx luw," " [dx| .
RN {u>1) RN

By 2! € [2, N ], we can choose suitable / > 0 such that

a

2% -2

o\ = 1
( f |u|2«dx) <z
{(u>1) 2CT1

It follows from the inequalities and Lemma 3.7 that

2
2
_12* @ B -1 «_off # _
luu;' " Pedx| < 2CT7 W T Pdx + P [yt D)
RN RN RN

Let L — oo. The above inequality becomes

2
%a s _o i
uPndx) < 2072 (1 # B [ ey,
RN RN

In view of 2§ +2(r; - 1) € |2, 2¥] and (3.26), we conclude (3.25).
Step 2. Let 75 = 1 + %(r; — 1). We claim

We choose 7 € 11, 72]. Then,
2<28 42— 1) <2 +2(r = 1) < 27y

Combining (3.25) and Lemma 3.7, we obtain

2
. 2% # . * _
( f |u|2afdx) <CT2( f | Ddx + f MRS 1>dx)<oo.
RN RN RN

Let T = 75 in (3.27). Then,

2
. 2o § .
( f |u|2aT2dx) <C1; ( f | H ™D x + f |u|2”+2(72_1)dx) < oo,
RN RN RN

(3.26)

(3.27)
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Making use of the Young inequality, it holds that

i _
f |u|2(,+2(7'2 l)dx — f |u|a|u|bdx
RN RN

a . 2¥ —a .
<— f lulodx + —2— f w2 =D
2:; RN 22 RN

<Cl1+ f w22 Dd x|,
RN

2ry-1)

2
2% B
(f |u|2“72d)€) <CT% (1+f |u|2“+2(”_1)dx).
RN RN

Moreover, by 21 < 1, it is easy to observe
@

w (e ot
wherea:Mandb=2i+2(T2—1)—

D) Thus, we get

) 2 2
5% 2k 2k
(X1 +x2)% < x" +x°, Yx,x>0.

2 2

2% ; 27

(1+ f |u|2mdx) <1+( f |u|2mdx)
RN RN

<Ct3 (1 + f |u|23+2(72_1)dx),
RN

2 1

o 2a(m=D) 2 o -1
1+ || dx <(Cty)2 T (1 + || dx
RN RN

2

—(C % 27 2a(t1=D)

=(Cty)~" |1+ |ze| ™" dx .
RN

Step 3. We iterate the above procedure and set

Then,

which implies

*

2
T — 1= ?“(T,-— 1), Vi>1 and i e N*. (3.28)

__2 2

>r. 251 -1 2 o 25(Ti=1)

P [ e dx <@y (14 [ ]
RN RN

which further gives

2 2
. 1D 2r 26Gpe1-D
|u| ™+ dx <1+ |ug] ™+ dx
RV RN
2

n 2 o 25(r -1

< | |(CT,~+1)Tf+I-‘ 1+ ||~ dx .
i=1 RY
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This yields that

lleell 25, ®Y) S

According to (3.28), we deduce
2:\"
r,,+1—1+( )(n—l)

Taking into account (3.29) and (3.30), it follows that

||u||L23Tn+1 (RN) <

By a straightforward calculation, we can infer

n 22( InC_
lim | |(Ctip)7nt ! T = hme =i
n—o00
i=1
o 1
For the series )| T_“ﬁl , we have
=1 "

I ~ lim 2iInC 2
im = lim = —
im0 \[Typ — 1 ioeo (2:;) (-0 2

This means Z & converges absolutely.

For the series Z In T’*‘ , it follows that
l—l

lim Intip 71 -1 _

2
. ST -1)
H(CTHI)T‘” 1 ( f |u|2“Tl dx) 1= :'

b LI
| |(CT,’+1)TI'+1’1 1+ e dx .
i=1 RN

In[1+ %ty = 1)

2

2
im0 Tio— 1 InTiyy 2_ m In7;
2 In [2—“ +

lim

%t - 1)

2*

« i—00 lnTH-l

2 . In %
=— +
2 l—)I‘{loo ln Tl+1

<1,

Inziyy

which implies Z T converges absolutely.

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Together with (3.32)—(3.34), we conclude ]‘[(CT,-H)#H < oo, Letting n — oo in (3.31), we obtain
i=1

[|zt]| Loy < 00.

AIMS Mathematics

Volume 9, Issue 11, 30186-30213.



30202

(ii) (PohoZaev indentity) Observe that, by u € L*(R"), Lemma 3.6, and condition (F), there exists
C > 0 such that

~ Ayt — A = —u — "2+ (L * Fa) f(u) < CQuP 20 + [uf2u).

Set I(u) = C(Iulzﬁ‘zu + |u|*~%u). By a classical bootstrapping argument for subcritical local problems
in [33], we infer that u € Wfo’f(RN ) for every ¢ > 1, and hence we have u € C’ py BRN) forany 0 < B < 1
by the Sobolev embedding theorem. Under the classical strategy used in [25, Theorem 3], one can

show that
N-2

THMHZDI,Z(RN) + E”u”LZ(RN) + TH“”DI p(RN) ||u||ip(RN)
N+
== 0‘ f (I * Fa))F ()d.

R

This completes the proof of Theorem 1.1. O

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by virtue of the PohoZaev manifold method and a generalized
version of a Lions-type theorem.
Under condition (), Eq (1.1) turns into a (p, 2)-Laplacian equation as follows:

—Ayu—Au+u+ lulP~2u = [Ia * [—ﬁlulzﬁ + 2—*|u|2")] (Iulzi_zu + /llulz‘*_zu), xeRY. D)
2 @

a

Then, the corresponding energy functional of Eq (D) can be defined as

J(u) = ||u||

DIZ(RN) ||u||L2(RN) ||u||D1p(RN) ;”M”Z(RN)

A2 c
- I, * |u|2a |u|2‘*dx - f I, # |ul*)ul**dx
2. (2?,)2 fRN( ) 2-(2,)? RN( )

A *
- f (I * P )luPedx.
2?, - 2% JrY

It is easy to check J € C!(E,R). Obviously, the critical points of J are weak solutions of Eq (D) and
satisfy the following Pohozaev identity:

N —
P(l/l) :T”u”%l,Z(RN) + EHMHLZ(RN) ||u||D1p(RN) Ilu”Lp(RN)
N+a 211 2 /IZ(N + CY)
Y iy f (Lo * ul™)ul™dx — ———- 2 2y f (Lo * Jul**)luf*dx
/1(N + @)
— f (I, * |ul? )|u| odx.
2.

We define the Pohozaev manifold and its minimum as follows:

P = {u € E\(0)|P) = 0} and m = inf J(u).
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Lemma 4.1. Assume that all conditions described in Theorem 1.2 are satisfied. Let Ci,C,,C3 > 0.
Define a function k : R* — R as

k(1) = Cit" 2 + CotV + G317 — Cyt™*.
Then, k(t) has a unique critical point which corresponds to its maximum.
Proof. By the definition of k(-), we have
K(t) = Ci(N = 2" + CoNIY ! + C3(N = p)tV P71 — C4(N + a)fVo !,

From the above expression, it is easy to see that k’(¢#) > 0 for # > 0 small, and k’(¢) < O for # > 0O large.
This yields that k() possesses at least one maximum point. Next, we claim that the maximun point
corresponding to k(?) is unique. Otherwise, we suppose that there exists #; # #, > 0 such that

K(t) = Ci(N =2t + CoNEY ™ + C3(N = p)t) 7™ = CuN + )Y ™' = 0
1

and
k' (t,) = C{(N — 2)1“;\’—3 + CgNtlz\’—l + C3(N — p)té"—p—l _CyN + a/)ré\]ﬂy—l ~0

Combining the above two equalities, it holds that
Ci(N =2)(t;” = ,°) + C3(N = p)(t,” = 1,") = C4(N + )t} - 15),
which further gives #; = ;. The proof is complete. O

Lemma 4.2. Assume that all conditions described in Theorem 1.2 are satisfied. Then, for every u € E,
there exists a unique t, > 0 such that P(u,,) = 0, where u, = u (’f) Moreover, J(u,,) = m%x J(u,).
>

Proof. For every u € E\{0}, one has

N 2 N-p
J(ut) - ||u||D1 Z(RN) ||u|lL2(RN) p ”uHDl p(RN) ||u||Lp(RN)
tN+a f " " /12tN+a
- (L 0l ) el dox — - f (Lo 0l ) el dox
2. 2%y Jev 2-(2:)°
/UN+a .
- f (T PPy
2?, 2% JRY
and Vo v
(N = 2)t (N — p)yiN-7 N
P(ut) _—” ||D1 Z(RN) || ||L2(RN) —” ”D] p(RN) ”u”LP(RN)
N + tN+(y /12 N + tN+0z
- ¢f (Ia*lulzi)lulzﬁdx ( a)2 f (L  luaf )Iul2 dx
2.4 Jry 2-(2)

AN + a)tV+e
&f (] *lulz")lulz dx.

Combining the above two formulas, it is easy to see that P(u,) = tJ'(4;) = 0. By Lemma 4.1, we
complete the proof. O
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Lemma 4.3. Suppose that all conditions described in Theorem 1.2 are satisfied. Then, m > 0.

Proof. For every u € P, it follows from Proposition 2.1 that

N-2
THMHZDLZ(RN) + E”l’t”iZ(RN) ||u||D1p(RN) ”u”LP(RN)
2
= e+ T s P
2.2k Jr 2.2 J
L AN+ o)
e MR LR
(07

22n 2,+2n
<Cllully™ + Cllully ™ + Cllul;>,

which implies that |lul|z > C. Then, it holds that

J(u) — LP(H)

N+a
a+?2 a 5
2(N—+)|| ”DIZ(RN) 2(N )” ||L2(RN) (41)
a+p
+p(N )” ”DII(RN) p( )” ”LP(RN)
>Cllullz > 0.
The proof is complete. O

Lemma 4.4. Assume that all conditions described in Theorem 1.2 are satisfied. Then, we have

IRR]
% Fa a+2
I 72N+ )

2 -1 zr
271
(Y

2

(2;)*(N - 2)
2(N + @)

N‘ 2712
0 <m<m" =min a [ (22)

2IN+a)| N+a

Proof. From A < A, we can easily get

71 *
70 2y

N- (2%
N+«

a
2(N + )

IR
a2 [P0 -2)
! 2IN+a)| 22N +a)

where A is defined in Threorem 1.2.
The extremal function of inequalities (2.1) can be defined as

o=

B Co
(02 +x2)T

Let ¢, > O satisfy
J(Wo)r,) = max J((ue),)-

By the definition of m, it is easy to see that
0 <m < J((uo),)-
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A straightforward calculation shows that

zﬁ

||lu0'||L2(RN) ”ﬂllle(RN) f (I * |/’l1| )|/l]| adx = f (I * |/l0'| )l/’l(Tl Qd-x - 2 -

Moreover, we can compute

f Yy Pdx = o2 f Vs Pdx, f Vg Pdx = o 5P f Vi [Pdx
RN RN RN RN

and
f |:u0'|pdx = 0'(22’)[\/ f |,Lt] |”dx
RN RN
and
[ oot = 2% [« PP
RN RN
and

B * ok # «
f (Ia * |,ua'|2a)|/10'|2”dx =0 % f (Ia * |,ul|2")|p1|2“dx.
RN RN

It follows that

0 :P((ﬂfr)ta)
(N =2)o2ty=2 Nt (N + o)V 5
= 7 “ﬂl”DLZ(RN) + 2 - ) (Zﬁ )2 ||/'ll||L2(RN)
2-p)N N— @-pN N
(N_ P)U' 2 o b 2
+ ||l’ll||1;l,p(RN) + T”ﬂl”LP(RN) (4‘2)

(N + a)o 2N+

. (Lo * [ty )|y [P dx
2-(21)? fR v

AN + 0/)0"2%5“’ f .
- % o fN(Ia * |,u1|2")|,u1|2“dx.
a ; R

Taking the limit superior as o — oo in (4.1), we further obtain

o

2
2 ”lul”Dl,Z(RN) + TO-H#IHLZ(RN)

lim sup

g—00

[(N ) [ M NtV

@-pN
DN N

p
”lJl”DLP(RN) + T”ﬂlllLl’(RN)]

N — o
+( po

. 4.3
i (N + oz)tN @ (N + a)g > 2afNra SN (4.3)
= lglﬁsol;lp || 1||L2(RN) 9. (22)2 RN(I(I * |/Jl| )lﬂll X
AN + a)o"zzty*“ : .
+ ; f (Lol )y [P x|
25 - 2% RN
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Let so, = limsup?,. We can prove 0 < ¢, < co. Otherwise, we suppose #, = co. Then,

, (N =2)02V=2 A
lllgl_iljp 2 ”,ul”DI,Z(RN) + _HIJIHLZ(RN)
(N — p)o3-rf- ) No "5
+ ||IJI||D],p(RN) + T”/JIHLV(RN)
. v |V + o)y
<limsup #," —II,u1||Lz E&Y)
T 2. (24
, (N + a)yy* A2(N + @)o 22N+ oo
< lim sup | ————Z—||uy|1? + < Ly = | [7)|pg [ dx
o | 2ol R 2-(2;) o el
AN + @) 2t
p AN f (o * P Pedix|
25 - 2%

This yields a contradiction with (4.3).

Now, we show s, > 0. Arguing by contradiction, we assume s, = 0. Therefore, there exists 6 > 0

large such that s; > 0 small enough. Then,

(N =2)672s)~ 2 ) N . N - p)& Cop _”sg » )
2 ||/’l1||Dl,2(RN) + 2 ||#1 ||L2(RN) + ||ﬂ]||Dl,p(RN)
NGHE SN
b bl
N
>_O—||#l||iZ(RN)
N+a)sg (N + )62 N
> PSR - Ia @ ed
S 5. (2 )2 ”,ul“LZ(RN) 7 (2*)2 fRN( * |/Jl| )l,ull X
AN + @)672 as
* 2% 2 f (1o * |ﬂ1|2")|,l11|2”dx}
(N +a)si™ (N + )52+ L
e Mt T Gy fRN(’a* Pl P dx
AN + @)% shte . )
; f (I * |1 )y [P,
25 - 2% RN

which contradicts with (4.2). Hence, we get 0 < s, < oo.
In view of 0 < s, < co and taking the limit superior as o — oo in (4.2) again, it holds that

Nt (N + o)V
- ||/ll||L2 RN = 0
2z TP

lim sup

g—00

Then, we have

Q\—

N(2)2
N+a |

(o)
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Applying this for any & > 0 large, it follows that

=—2 SN—Z N N+a
a a

=L P e + | 22— 2 |l
2 1 DI,Z(RN) 2 2(231’)2 1 LZ(RN)

_ (272p)1v_p I_V—p _ (275)1\/ N

J((/J(?)Sﬁ—)

p
||ﬂ1||D1,p(RN) + T”/’ll””(RN)

/12 22, S1y+(t

- Tf (Lo * i P ar o doe (4.4)
ZUSI_V+a

- f(l *|,U1| )|,U1|"dx

SN SN+(1/
— = ——— 2 -
2 2. (2ﬁ )2 ®RY)

a

<max
>0

Set
tN tN+(Z

h(t) = 5~ 2.(2@2.

Then, we know /’'(s) = 0 and s, is the unique maxium point of 4(-). By (4.4), one has

8
2q

1

i
e
1

N N+a

J((IJO')SD—) l% - (2 )2} ||/Jl||L2(RN) 2(Na+ O()

N - (2h)?
N+ «a

The proof is completed. O

Lemma 4.5. Suppose that all conditions described in Theorem 1.2 hold. Let {u,} be a bounded
minimizing sequence of J satisfying

Jw,) » m and P(u,) — 0, asn — oo.
Then, we have
lim f lu,’dx > 0 and lim f |u,|* dx > 0.
n—oo RN n—oo RN

Proof. First, we show lim j];{N |u,|*dx > 0. Otherwise, we suppose
n—oo

lim |u,|*dx = 0. 4.5)

n—co Jpn

Combining Proposition 2.1 and (4.5), we have

Em [ (I # ) dx < hcha(f |un|2dx) =0
RN R

n—oo

and

N+a N+a

2N 2N
lim f (Lo * litn Pt dx < Tim Ciyg ( f |un|2dx) ( f |u,,|2*dx) =0.
n—oo RN n—oo RN RN
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Combining the above two inequalities, one has

m + On(l) - ”un”Dl Z(RN) ”un”LZ(RN) ”un”Dll(RN) ||un||L[)(RN)

-3 (2*)2 f (T # ot )l P

and N-2 N N
_- 2 2 -p p
On(l) - 2 ”un”Dl,Z(RN) + Ellu"IILZ(RN) + p ||un||D1p(RN) ;”unHLp(RN)
A2(N + a)

2 2
3y o, e Pl

Combining (4.6) and (4.7), it follows that

+2
m+ o0,(1) > ¢

(N+ )” n”Lp(RN)
S a+?2
/MHMHHDI,Z(RN)-

It follows from (2.2) and (4.7) that

(N + a)
N = Dl 0y < f (Lo # iP5t Pl
22N +a)
<(2T S_ || l’l”DlZ(RN)
@ 2

This implies
(23)2(1\[ - 2) %t 2(, 1
[m S < ||Mn||D| 2(RN)*

In view of (4.8) and (4.9), we can derive

i

71 %
5
271

2

(2)*(N - 2)
A2(N + @)

a+2
2(N + )

m+o0,(1) >

This yields a contradiction with Lemma 4.4.
Next, we show lim fRN lu,/* dx > 0. On the contrary, it suffices to show
n—oo

lim lu,|* dx = 0.
n—oo JpN

From Proposition 2.1 and (4.10), we have

N+a
N

lim | (I, * |u,*)u,>dx < hmcwa(f|MFdﬁ =0
RN R

n—o00 N

2 a 2 a +
2(N + Cx)llunllDl,Z(RN) + Z(N + a)Hun”LZ(RN) + p( )” I’l”Dlp(RN)

(4.6)

4.7)

(4.8)

4.9)

(4.10)
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and

) t .
lim f (I, * | 1ty **dx
n—oo Jpn

N+a

<mncm4jﬁmﬁﬂﬂ ([|%ng =0.
n—oo RN RN

Together with the above two expressions, we get

m+ On(l) - ”un”D] Z(RN) ||un”L2(RN) ||un||D1 p(RN)

f (L 10,2 20+ dx

2(ﬁ
and N2 N
0u(1) ==l e, + ||un||L2<RN) e /A
A2(N +
S ENED [y Py P
2.2 Jav

From (4.11) and (4.12), we get that

o 2
m+ o,(1) > m”%”Lz(RN)-

Observe that, by (2.1) and (4.12), we have

/12(N +a) : :
” n”LZ(RN) —ﬁ f (Ia * |Mn|2¢,)|l/ln|2(tdx
N-@2hy Jav

M (_) Il ”2 2

Ny \S) ey
This shows
i 2@
N-QO? |5 35
S <l
A2(N + a) ®%)
Combining (4.13) and (4.14), we infer that
2
ms N - (24 2“ E
2N +a) | 2N +a) !

This contradicts with Lemma 4.5, the proof is complete.
We now can conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. Let {u,} be a minimizing sequence of J satisfying

J(u,) > m and P(u,) —» 0, asn — oo.

el e,

p ||un||Lp(RN)

(4.11)

(4.12)

(4.13)

(4.14)
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It is easy to verify {u,} is bounded in E. Taking into account Lemmas 4.4 and 4.5 and Proposition 2.2,
we deduce that {u,} converges weakly and a.e. to u # 0 in Lzoc(RN ). Using the Brézis-Lieb lemma [35],
we obtain

m< Jw) = J(u) — ﬁP(u) < ,}1_{?0 (J(un) — ﬁP(un)) = 31_)1{10 J(u,) =m

which implies J(u) = m. Moreover, we can choose u > 0. Therefore, u is a nonnegative ground state
solution of Eq (D).

Let u be a nonnegative ground state solution of Eq (). In order to show u is radial, it suffices to
prove m = m,,q, Where

Praa = {1 € Ead\0)|P0) = 0}

and

Myaq = inf J(u).
UEF rad

On one hand, by E,,; C E, it follows that m < m,,,. On the other hand, for any v € P, by J being even,
we know |v| € P. Let |v|* be the decreasing rearrangement of |v|. In view of [19, Theorem 3.7], one has

”lvl*”%)I,Z(RN) < ”lvlll%l,Z(RN) and |||v|*”22(RN) < ”v”iZ(RN) (415)
and
and # # # #
24 24 124 *|24,
f f v(x)l |vg()l| dxdy <f f vl ”fv(_ya)l | dxdy 4.17)
gV Jryv X =)l RN JRN lx =yl
and
2 2 *2, 12
f [v(x)l IngI dxdy < f [v(x)l"] ”:/(_yzl | dxdy (4.18)
gy Jry o X =)l RN JRN lx =yl
and
2 2 |2, |25
f [v(x)l Ivlg()ll dxdy < f [v()l"] IIfV(_ya)l | dxdy 4.19)
ryv Jrv o [x =) RN JRN lx =yl

From (4.15)—(4.19), for any ¢ > 0, it follows that

J((V):) < J((V]).- (4.20)

By Lemma 4.2, there exists ¢, > 0 such that (|v[*);, € . We have

(N-22 N_riv - (N-pu "

SV e, + IV e, + VI oy + |||v| [

N + @)+ LA N + @)Vt .
W+ (1 s« IVl )V e dox ( ah (I, * IIVI*IZ“)IIVI*IZ(’dx
T i
2-(2,)? 2;; RN

(N + a)zyw

I o) [v]* P dx.
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From the above and |v| € P, it is easy to observe ¢, € (0, 1]. In view of (4.20), one has
m < J((V'))y,) < J((VD)y,) < max J((VDr) = J(vD.
Therefore, for any |v| € P, there exists t, > 0 such that #,|v|* € $ and

J((WI),) < J(vD-

This implies m,,; < m. Hence, we have m,,; = m. This means u is a radially symmetric ground state
solution of Eq (9). The proof is complete. O
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