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1. Introduction

Consider the tensor eigenvalue complementarity problems of finding (λ, x) ∈ R × Rn
+\{0} such that

0 ≤ x ⊥ (λx −Axm−1) ≥ 0 and x⊤x = 1, (1.1)

where a⊥b means that vectors a, b are perpendicular to each other, and A = (ai1i2...im) ∈ R[m,n] is an
m-th order n-dimensional real tensor, andAxm−1 is the vector in Rn with entries

(Axm−1)i =
∑

i2,...,im∈N

aii2···im xi2 · · · xim , N = {1, . . . , n}.

If (1.1) holds, (λ, x) ∈ R × Rn
+\{0} is called a Pareto Z-eigenpair of tensorA.

Pareto Z-eigenvalue problems of tensors were introduced by Song [17], which can be seen
generalizations of classical tensor (matrix) eigenvalue problems [1, 5, 6, 8, 13, 14, 19–22], have
broad applications in higher-order Markov chains [11] and magnetic resonance imaging [15, 26, 27].
Therefore, Pareto Z-eigenvalue problems of tensors garnered a lot of interest in the literature [4,
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10, 30, 32]. To achieve Pareto Z-eigenvalues of tensor eigenvalue complementarity problems, for
instance, Zeng [32] suggested a semidefinite relaxation approach. Nonetheless, there exist a huge,
potentially endless number of Pareto Z-eigenvalues of tensors [2,32]. Therefore, calculating all Pareto
Z-eigenvalues is difficult. A few scholars have turned to investigating Pareto Z-eigenvalue intervals
to describe the distribution of Pareto Z-eigenvalues [17, 29]. Particularly, Yang et al. [29] proposed
Pareto Z-eigenvalue intervals via key tensor elements, which have a significant impact on the Pareto
Z-eigenvalue estimation. It is crucial to create new Pareto Z-eigenvalue intervals that are independent
of certain tensor constituents. Note that matrices can be viewed as the large elements of tensors,
and the spectral radius has relative stability. Can we use the spectral radius of the related symmetric
matrices instead of tensor elements to accurately characterize the Pareto Z-eigenvalue? Different from
the existing Z-eigenvalue inclusion sets [16,24,25,31], we investigate the relations between the tensor
and its induced matrix and establish Pareto Z-eigenvalue intervals from the spectral radius of the linked
symmetric matrices.

As we know, tensor A is strictly copositive if Axm > 0,∀x ∈ Rn
+\{0}, which has important

applications in vacuum stability of a general scalar potential [9] and polynomial optimization [3, 12].
Song et al. [17] pointed out that symmetric tensor A is strictly copositive if and only if its Pareto Z-
eigenvalues are positive. Therefore, we can identify whether a tensor is copositive by the lower bounds
of Pareto Z-eigenvalues. Inspired by the articles [17, 29], we propose some criteria for judging strict
copositivity via the spectral radius of the symmetric matrices extracted from the given tensor.

The remainder of this paper is organized as follows: In Section 2, crucial definitions and preliminary
results are recalled. In Section 3, we establish two tight Pareto Z-eigenvalue intervals via the spectral
radius of the symmetric matrices. In Section 4, sufficient conditions are proposed for identifying strict
copositivity of symmetric tensors.

2. Preliminaries

In this section, we first introduce important definitions and notations of tensors [2, 13, 29].
The set of all real numbers is denoted by R, and the n-dimensional real Euclidean space is denoted

by Rn. For any a ∈ R, we denote [a]+ := max{0, a} and [a]− := max{0,−a}. For any A ∈ R[m,n], we
define

[A]+ := ([ai1i2···im]+) ∈ R[m,n], [A]− := ([ai1i2···im]−) ∈ R[m,n].

Definition 2.1. LetA = (ai1i2···im) ∈ R[m,n], and σZ(A) be the set of all Pareto Z-eigenvalues ofA.
(i) The maximum Pareto Z-eigenvalue and the minimum Pareto Z-eigenvalue ofA are denoted by

ρZ(A) = max{λ : λ ∈ σZ(A)} and τZ(A) = min{λ : λ ∈ σZ(A)}.

(ii)A is called symmetry if
ai1...im = aiπ(1)...iπ(m) , ∀ π ∈ Γm,

where Γm is the permutation group of m indices.
(iii) δi1i2...im is called the generalized Kronecker symbol:

δi1i2...im =

{
1, i f i1 = i2 = . . . im

0, otherwise.
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We conclude this section with significant results of the symmetric matrices [7] and the bound of
Pareto Z-eigenvalue.

Lemma 2.1. Let P ∈ Rn×n be a symmetric matrix and x ∈ Rn be a unit vector, i.e., x⊤x = 1. µmin(P)
(or µmax(P)) denotes the minimum (maximum) eigenvalue of a square matrix P, and ρ(P) is the spectral
radius of P. Then,

µmin(P) ≤ x⊤Px ≤ µmax(P) and |x⊤Px| ≤ ρ(P).

Lemma 2.2. (Theorem 2 of [29]) LetA ∈ R[m,n] and σ(A) , ∅. Then,

σ(A) ⊆ Ω(A) =
⋃
i∈N

Ωi(A) := {λ ∈ R : |λ| ≤ max{Ri(A)+,Ri(A)−}},

where Ri(A)+ :=
n∑

i2,...,im=1
[aii2···im]+, Ri(A)− :=

n∑
i2,...,im=1

[aii2...im]−.

3. Pareto Z-eigenvalues inclusion intervals

We begin with the bounds of Pareto Z-eigenvalues for a third-order tensor based on the spectral
radius of the symmetric matrix Vi := Ai::+A

⊤
i::

2 .

Theorem 3.1. LetA ∈ R[3,n] with σZ(A) , ∅. Then,

σZ(A) ⊆ Υ(A) :=
{
λ ∈ R : −

√∑
i∈N

(ρ[Vi]−)2 ≤ λ ≤

√∑
i∈N

(ρ[Vi]+)2
}
, (3.1)

where [Vi]+ =
[Ai::]++[Ai::]⊤+

2 , [Vi]− =
[Ai::]−+[Ai::]⊤−

2 andAi:: is the matrix by fixing i indices ofA.

Proof. Suppose that (λ, x) is a Pareto Z-eigenpair of A. On the one hand, since x⊤x = 1 and xi ≥ 0
hold for all i ∈ N, we obtain

λ
∑
i∈N

x2
i = Ax3 ≤ [A]+x3 =

∑
i,i2,i3∈N

[aii2i3]+xixi2 xi3 =
∑
i∈N

(
∑

i2,i3∈N

[aii2i3]+ xi2 xi3)xi

≤

√
(
∑

i2,i3∈N

[a1i2i3]+xi2 xi3)2 + · · · + (
∑

i2,i3∈N

[ani2i3]+xi2 xi3)2 ·

√
x2

1 + · · · + x2
n

=
√

(x⊤[A1::]+x)2 + · · · + (x⊤[An::]+x)2, (3.2)

where the second inequality holds from Cauchy–Schwarz inequality. It follows from the definition of
[Vi]+ and x⊤[Ai::]+x = x⊤[Ai::]⊤+ x that

x⊤[Vi]+x = x⊤
[Ai::]+ + [Ai::]⊤+

2
x = x⊤[Ai::]+x. (3.3)

Since [Vi]+ is a real symmetric matrix, by (3.2), (3.3), and Lemma 2.1, we obtain

λ ≤

√∑
i∈N

(ρ[Vi]+)2. (3.4)
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On the other hand, from x⊤x = 1 and xi ≥ 0 for all i ∈ N, one has

−λ
∑
i∈N

x2
i = −Ax3 ≤ [A]−x3 =

∑
i∈N

(
∑

i,i2,i3∈N

[aii2i3]− xixi2 xi3 =
∑

i,i2,i3∈N

[aii2i3]−xi2 xi3)xi

≤

√
(
∑

i2,i3∈N

[a1i2i3]−xi2 xi3)2 + · · · + (
∑

i2,i3∈N

[ani2i3]−xi2 xi3)2 ·

√
x2

1 + · · · + x2
n

=
√

(x⊤[A1::]−x)2 + · · · + (x⊤[An::]−x)2. (3.5)

It follows from the definition of [Vi]− and x⊤[Ai::]−x = x⊤[Ai::]⊤− x that

x⊤[Vi]−x = x⊤
[Ai::]− + [Ai::]⊤−

2
x = x⊤[Ai::]−x. (3.6)

Taking into account that [Vi]− is a real symmetric matrix, by (3.5), (3.6), and Lemma 2.1, we deduce

λ ≥ −

√∑
i∈N

(ρ[Vi]−)2. (3.7)

Combining (3.4) with (3.7) yields

−

√∑
i∈N

(ρ[Vi]−)2 ≤ λ ≤

√∑
i∈N

(ρ[Vi]+)2,

which implies λ ∈ Υ(A) and σZ(A) ⊆ Υ(A). □

The following example is proposed to test the efficiency of the obtained results.

Example 3.1. Consider a tensorA = (ai jk) ∈ R[3,3] defined by

ai jk =


a111 = 1; a112 = −1; a131 = 1; a133 = 1;
a211 = −1; a222 = 2; a232 = 1;
a311 = 1; a322 = 3; a323 = 1;
ai jk = 0, otherwise.

By calculating, we have

[A1::]+ =


1 0 0
0 0 0
1 0 1

 , [A1::]− =


0 1 0
0 0 0
0 0 0

 ,

[V1]+ =


1 0 0.5
0 0 0

0.5 0 1

 , [V1]− =


0 0.5 0

0.5 0 0
0 0 0

 , ρ([V1]+) = 1.5000, ρ([V1]−) = 0.5000.

Following the similar calculations to the above, one has

ρ([V2]+) = 2.1180, ρ([V2]−) = 0.5000, ρ([V3]+) = 3.0811, ρ([V3]−) = 0.0000.
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According to Theorem 3.1, we obtain

Υ(A) = {λ ∈ R : −

√
2

2
≤ λ ≤ 4.0285}.

Recalling Theorem 1 of [29], we deduce

Ω(A) = {λ ∈ R : −1.0000 ≤ λ ≤ 5.0000},

which implies that the bound of Theorem 3.1 is sharp.
The following example estimates the Pareto Z-eigenvalues to guarantee nonconstant trajectories of

equilibrium systems.

Example 3.2. Consider the following differential equilibrium system:∑
: ẋ1(t) = x2

1 + x1x2; ẋ2(t) = 2x2
2 + x1x3; ẋ3(t) = x2

3 with x2
1 + x2

2 + x3
3 = 1.

Thus,
∑

can be written as ẋ(t) = Ax2,where x = (x1, x2, x3)⊤ with x2
1+x2

2+x3
3 = 1 andA = (ai jk) ∈ R[3,3]

with

ai jk =

{
a111 = a121 = 1; a222 = 2; a231 = a333 = 1;
ai jkl = 0, otherwise.

In order to ensure nonconstant trajectories of the equilibrium system, we need to find (λ, x) ∈
R × Rn

+\{0} such that
0 ≤ x ⊥ (λx −Ax2) ≥ 0 and x⊤x = 1.

Using Algorithm 3.1 of [32], we obtain four Pareto Z-eigenvalues and the associated Pareto Z-
eigenvectors about 3.25 seconds:

λ1 = 0.8944, u1 = (0.0000, 0.4472, 0.8944); λ2 = 1.0000, u2 = (1.0000, 0.0000, 0.0000);
λ3 = 1.4142, u3 = (0.7071, 0.7071, 0.0000); λ4 = 2.0000, u4 = (0.0000, 1.0000, 0.0000).

It follows from Theorem 3.1 that we estimate 0 ≤ λ ≤
√

6.We apply this estimation to Algorithm 3.1
of [32] and can calculate the above Pareto Z-eigenvalues in 2.65 seconds. Therefore, Algorithm 3.1
of [32] could be accelerated by establishing the bound of Pareto Z-eigenvalues.

Using the spectral radius of symmetric matrices extracted from the given tensor, we establish Pareto
Z-eigenvalue intervals of an m-order tensor with m ≥ 4.

Theorem 3.2. LetA ∈ R[m,n] with m ≥ 4, and σZ(A) , ∅. Then,

σZ(A) ⊆ Θ(A) =
⋃
i∈N

Θi(A) :=
{
λ ∈ R : |λ| ≤ max{ρ([Bi]+), ρ([Bi]−)}

}
,

where [Bi]+ =
[Ai]++[Ai]⊤+

2 , [Bi]− =
[Ai]−+[Ai]⊤−

2 and

[Ai]+ =


∑

i2,...,im−2∈N
[aii2...im−211]+ . . .

∑
i2,...,im−2∈N

[aii2...im−21n]+
...

...
...∑

i2,...,im−2∈N
[aii2...im−2n1]+ . . .

∑
i2,...,im−2∈N

[aii2...im−2nn]+

 ,
AIMS Mathematics Volume 9, Issue 11, 30214–30229.
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[Ai]− =


∑

i2,...,im−2∈N
[aii2...im−211]− . . .

∑
i2,...,im−2∈N

[aii2...im−21n]−
...

...
...∑

i2,...,im−2∈N
[aii2...im−2n1]− . . .

∑
i2,...,im−2∈N

[aii2...im−2nn]−

 .
Proof. Suppose that (λ, x) is a Pareto Z-eigenpair ofA. Then,

λx2
i =

∑
i2,...,im∈N

aii2...im xixi2 . . . xim . (3.8)

Denote xp = max
i∈N
{xi}. Then, 0 < xp ≤ 1 as x⊤x = 1. Recalling the p-th equation of (3.8), we obtain

λx2
p =

∑
i2,...,im∈N

api2...im xpxi2 . . . xim .

Taking modulus in the equation above, one has

|λ|x2
p = |

∑
i2,...,im∈N

[api2...im]+xpxi2 . . . xim −
∑

i2,...,im∈N

[api2...im]−xpxi2 . . . xim |

≤ max{
∑

i2,...,im∈N

[api2...im]+xpxi2 . . . xim ,
∑

i2,...,im∈N

[api2...im]−xpxi2 . . . xim}

≤ max{
∑

im−1,im∈N

∑
i2,...,im−2∈N

[api2...im]+x2
pxim−1 xim ,

∑
im−1,im∈N

∑
i2,...,im−2∈N

[api2...im]−x2
pxim−1 xim}

= x2
p max{x⊤[Ap]+x, x⊤[Ap]−x}, (3.9)

where [Ap]+ and [Ap]− are defined in Theorem 3.2. Certainly, x⊤[Ai]+x = x⊤[Ai]⊤+ x and x⊤[Ai]−x =
x⊤[Ai]⊤− x. It follows from the definitions of [Bi]+ and [Bi]− that

x⊤[Bp]+x = x⊤
[Ap]+ + [Ap]⊤+

2
x = x⊤[Ap]+x, x⊤[Bp]−x = x⊤

[Ap]− + [Ap]⊤−
2

x = x⊤[Ap]−x. (3.10)

Since [Bp]+ and [Bp]− are real symmetric matrices, by (3.9), (3.10) and Lemma 2.1, we have

|λ| ≤ max{ρ([Bp]+), ρ([Bp]−)},

which implies λ ∈ Θ(A), and hence σZ(A) ⊆ Θ(A). □

Now, we are in a position to establish tight Pareto Z-eigenvalues inclusion intervals by accurate
classification of index sets.

Theorem 3.3. LetA ∈ R[m,n] with m ≥ 4, and σZ(A) , ∅. Then,

σZ(A) ⊆ M(A) =
⋃
i∈N

⋂
j∈N,i, j

Mi, j(A),

where

Mi, j(A) : =
{
λ ∈ R : (|λ| − ρ([B j

i ]+))|λ| ≤ ρ([Di j]−) max{ρ([B j]+), ρ([B j]−)}
}
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λ ∈ R : (|λ| − ρ([B j

i ]−))|λ| ≤ ρ([Di j]−) max{ρ([B j]+), ρ([B j]−)}
}
,

[B j
i ]+ =

[A j
i ]++[A j

i ]⊤+
2 , [B j

i ]− =
[A j

i ]−+[A j
i ]⊤−

2 and

[A j
i ]+ =


∑

δ ji2 ...im−2=0
[aii2...im−211]+ . . .

∑
δ ji2 ...im−2=0

[aii2...im−21n]+

...
...

...∑
δ ji2 ...im−2=0

[aii2...im−2n1]+ . . .
∑

δ ji2 ...im−2=0
[aii2...im−2nn]+

 ,

[A j
i ]− =


∑

δ ji2 ...im−2=0
[aii2...im−211]− . . .

∑
δ ji2 ...im−2=0

[aii2...im−21n]−

...
...

...∑
δ ji2 ...im−2=0

[aii2...im−2n1]− . . .
∑

δ ji2 ...im−2=0
[aii2...im−2nn]−

 ,

[Di j]+ =
[Ci j]+ + [Ci j]⊤+

2
, [Di j]− =

[Ci j]− + [Ci j]⊤−
2

,

[Ci j]+ =


[ai j... j11]+ . . . [ai j... j1n]+
...

...
...

[ai j... jn1]+ . . . [ai j... jnn]+

 , [Ci j]− =


[ai j... j11]− . . . [ai j... j1n]−
...

...
...

[ai j... jn1]− . . . [ai j... jnn]−

 .
Proof. Let (λ, x) be a Pareto Z-eigenpair of A. Setting 0 < xp = max

i∈N
{xi} and referring to the p-th

equation of (3.8), for any q ∈ N, q , p, we obtain

|λ|x2
p = |

∑
i2,...,im∈N

api2...im xpxi2 . . . xim |

= |
∑

i2,...,im∈N

[api2...im]+xpxi2 . . . xim −
∑

i2,...,im∈N

[api2...im]−xpxi2 . . . xim |

≤ max{
∑

i2,...,im∈N

[api2...im]+xpxi2 . . . xim ,
∑

i2,...,im∈N

[api2...im]−xpxi2 . . . xim}

= max{x⊤[Cpq]+xxpxq + x2
px⊤[Aq

p]+x, x⊤[Cpq]−xxpxq + x2
px⊤[Aq

p]−x}. (3.11)

Clearly,
x⊤[Cpq]+x = x⊤[Cpq]⊤+ x, x⊤[Cpq]−x = x⊤[Cpq]⊤− x,

x⊤[Aq
p]+x = x⊤[Aq

p]⊤+ x, x⊤[Aq
p]−x = x⊤[Aq

p]⊤− x.

With the definitions of [Di j]+, [Di j]−, [B
j
i ]+ and [B j

i ]−, it is easy to verify that

x⊤[Dpq]+x = x⊤[Cpq]+x, x⊤[Dpq]−x = x⊤[Cpq]−x,

x⊤[Bq
p]+x = x⊤[Aq

p]+x, x⊤[Bq
p]−x = x⊤[Aq

p]−x. (3.12)

Since [Dpq]+,[Dpq]−, [B
q
p]+ and [Bq

p]− are real symmetric matrices, by (3.11), (3.12), and Lemma 2.1,
we deduce

|λ|x2
p ≤ max{ρ([Dpq]+)xpxq + x2

pρ([B
q
p]+), ρ([Dpq]−)xpxq + x2

pρ([B
q
p]−)}. (3.13)

AIMS Mathematics Volume 9, Issue 11, 30214–30229.
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Recalling the q-th equation of (3.8), one has

|λ|x2
q = |

∑
i2,...,im∈N

aqi2...im xqxi2 . . . xim |

≤ max{
∑

i2,...,im∈N

[aqi2...im]+xqxi2 . . . xim ,
∑

i2,...,im∈N

[aqi2...im]−xqxi2 . . . xim}

≤ max{
∑

i2,...,im∈N

[aqi2...im]+xqxpxim−1 xim ,
∑

i2,...,im∈N

[aqi2...im]−xqxpxim−1 xim}

= xpxq max{x⊤[Aq]+x, x⊤[Aq]−x} = xpxq max{x⊤[Bq]+x, x⊤[Bq]−x}, (3.14)

where [Bq]+ and [Bq]− are defined in Theorem 3.2. It follows from (3.14) and Lemma 2.1 that

|λ|x2
q ≤ xpxq max{ρ([Bq]+), ρ([Bq]−)}. (3.15)

We now break up the argument into two cases.
Case I. |λ|x2

p ≤ ρ([Dpq]+)xpxq + x2
pρ([B

q
p]+). In this case, if xq > 0, multiplying (3.13) with (3.15)

and dividing x2
px2

q yield

(|λ| − ρ([Bq
p]+))|λ| ≤ ρ([Dpq]+) max{ρ([Bq]+), ρ([Bq]−)},

which implies λ ∈ Mp,q(A).
Otherwise, xq = 0. From (3.13), it holds that

(|λ| − ρ([Bq
p]+))|λ| ≤ 0 ≤ ρ([Dpq]+) max{ρ([Bq]+), ρ([Bq]−)},

which shows that λ ∈ Mp,q(A).
Case II. |λ|x2

p ≤ ρ([Dpq]−)xpxq + x2
pρ([B

q
p]−). Following the similar arguments to the proof of Case I,

we obtain λ ∈ Mp,q(A). Combining Cases I and II, we obtain the desired results. □

In order to illustrate the validity of Theorems 3.2 and 3.3, we employ a running example.

Example 3.3. Consider a tensorA = (ai jkl) ∈ R[4,3] defined by

ai jkl =


a1111 = 0.1; a1112 = −0.2; a1122 = −0.2; a1213 = −0.2; a1222 = 0.1; a1233 = 0.1; a1333 = −0.1;
a2111 = −1; a2131 = 3; a2211 = 1; a2212 = −2; a2222 = 1; a2311 = 2; a2333 = 1;
a3111 = 3; a3112 = −2; a3121 = 2; a3212 = −1; a3222 = 5; a3233 = 2; a3333 = −2;
ai jkl = 0, otherwise.

From Theorem 3.2, we compute

Θ(A) =
⋃
i∈N

Θi(A) = {λ ∈ R : |λ| ≤ 5.4142}.

Recalling Theorem 3.3, one has

M(A) =
⋃
i∈N

⋂
j∈N,i, j

Mi, j(A) = {λ ∈ R : |λ| ≤ 5.1620}.
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From Theorem 2 of [29], we obtain

Ω(A) =
⋃
i∈N

Ωi(A) = {λ ∈ R : |λ| ≤ 12}.

By virtue of Theorem 3 of [29], one has

Φ(A) =
⋃
i∈N

⋂
j∈N,i, j

Φi, j(A) = {λ ∈ R : |λ| ≤ 9.2276}.

It follows from Theorem 4 of [29] that

N(A) =
⋃
i∈N

⋂
j∈N,i, j

Ni, j(A) = {λ ∈ R : |λ| ≤ 7.4686}.

Therefore, the bounds in Theorems 3.2 and 3.3 are sharper than those Theorems 2–4 in [29].

4. Checking the strict copositivity of tensors

In this section, we focus on sufficient conditions for judging strict copositivity via the spectral radius
of the symmetric matrices extracted from the given tensor. For this, we give a necessary condition for
a strictly copositive tensor.

Lemma 4.1. (Proposition 2.1 of [18]) Let A = (ai1i2...im) ∈ R[m,n]. If A is strictly copositive, then
ai...i > 0,∀i ∈ N.

Theorem 4.1. LetA = (ai1i2i3) ∈ R
[3,n] be symmetric with aiii > 0 for all i ∈ N. If

aiii
1
√

n
−

√∑
δii2i3=0

([aii2i3]−)2 > 0,∀i ∈ N, (4.1)

thenA is strictly copositive.

Proof. Suppose that (λ, x) is a Pareto Z-eigenpair of A. Setting 0 < xp = max
i∈N
{xi} and referring to the

p-th equation of (3.8), we obtain

λx2
p =
∑

i2,i3∈N

api2i3 xpxi2 xi3

= apppx3
p +
∑
δpi2i3=0

[api2i3]+xpxi2 xim −
∑
δpi2i3=0

[api2i3]−xpxi2 xi3 .

Further,

λx2
p ≥ apppx3

p −
∑
δpi2i3=0

[api2i3]−xpxi2 xi3

≥ apppx3
p −
∑
δpi2i3=0

[api2i3]−x2
pxi3 . (4.2)
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Dividing both sides by x2
p on (4.2), we have

λ ≥ apppxp −
∑
δpi2i3=0

[api2i3]−xi3

≥ apppxp −

√∑
δpi21=0

([api21]−)2 + . . . +
∑
δpi2n=0

([api2n]−)2 ·

√
x2

1 + . . . + x2
n

≥ apppxp −

√ ∑
δpi2i3=0

([api2i3]−)2. (4.3)

Since xp = max
i∈N
{xi} and x⊤x = 1, we deduce xp ≥

1
√

n . It follows from aiii > 0 and (4.3) that

λ ≥ appp
1
√

n
−

√ ∑
δpi2i3=0

([api2i3]−)2. (4.4)

Combining (4.1) with (4.4), we have λ > 0. Further,A is strictly copositive from Lemma 2.1. □

Theorem 4.2. LetA = (ai1i2...im) ∈ R[m,n] be symmetric with m ≥ 4 and ai...i > 0 for all i ∈ N. If

ai...i(
1
√

n
)m−2 − ρ([Ai]−) > 0,∀i ∈ N, (4.5)

thenA is strictly copositive.

Proof. Let (λ, x) be a Pareto Z-eigenpair of A. Setting 0 < xp = max
i∈N
{xi} and referring to the p-th

equation of (3.8), we obtain

λx2
p =

n∑
i2,...,im=1

api2...im xpxi2 . . . xim

= ap...pxm
p +

∑
δpi2 ...im=0

[api2...im]+xpxi2 . . . xim −
∑

δpi2 ...im=0

[api2...im]−xpxi2 . . . xim .

Further,

λx2
p ≥ ap...pxm

p −
∑

δpi2 ...im=0

[api2...im]−xpxi2 . . . xim

≥ ap...pxm
p −

∑
δpi2 ...im=0

[api2...im]−x2
pxim−1 xim

≥ ap...pxm
p − x2

px⊤[Ap]−x ≥ ap...pxm
p − x2

pρ([Ap]−), (4.6)

where [Ap]− is defined in Theorem 3.2. Dividing both sides by x2
p on (4.6), we deduce

λ ≥ ap...pxm−2
p − ρ([Ap]−). (4.7)

Since xp = max
i∈N
{xi} and x⊤x = 1, we deduce xp ≥

1
√

n . It follows from ai...i > 0 and (4.7) that

λ ≥ ap...p(
1
√

n
)m−2 − ρ([Ap]−). (4.8)

Combining (4.5) with (4.8), we obtain λ > 0. Further,A is strictly copositive from Lemma 2.1. □
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A nice consequence of our results is that Theorems 4.1 and 4.2 are better than that of Theorem 5
of [29].

Lemma 4.2. (Theorem 5 of [29]) Let A = (ai1i2...im) ∈ R[m,n] be symmetric with ai...i > 0 for i ∈ N.
Then,A is strictly copositive, provided that

ai...i(
1
√

n
)m−2 − Ri(A)− > 0, (4.9)

where Ri(A)− =
∑

i2,...,im∈N
[aii2...im]−.

Corollary 4.1. LetA = (ai1i2...im) ∈ R[m,n] be symmetric with ai...i > 0 for i ∈ N. Then,
aiii

1
√

n −
√ ∑
δii2i3=0

([aii2i3]−)2 ≥ aiii
1
√

n − Ri(A)−, if m = 3,

ai...i( 1
√

n )m−2 − ρ([Ai]−) ≥ ai...i( 1
√

n )m−2 − Ri(A)−, otherwise m ≥ 4.

Proof. It follows from ai...i > 0 that Ri(A)− =
∑

δii2 ...im=0

[aii2...im]−.We now break up the argument into two

cases.
Case 1. m = 3. It is clear that √∑

δii2i3=0

([aii2i3]−)2 ≤
∑
δii2i3=0

[aii2i3]− = Ri(A)−.

Further,

aiii
1
√

n
−

√∑
δii2i3=0

([aii2i3]−)2 ≥ aiii
1
√

n
− Ri(A)−.

Case 2. m ≥ 4. We obtain

ρ([Ai]−) ≤ max
1≤im−1≤n

∑
i2,...,im−2,im∈N

[aii2...im]− ≤
∑

i2,...,im∈N

[aii2...im]− = Ri(A)−.

Consequently,

ai...i(
1
√

n
)m−2 − ρ([Ai]−) ≥ ai...i(

1
√

n
)m−2 − Ri(A)−.

Therefore, the desired results hold. □

Identifying the strict copositivity actually necessitates A being symmetric. Therefore, symmetry
may be relatively strict for general tensors. We can solve this issue by symmetrizing the tensors A =
(ai1i2...im) ∈ R[m,n] as follows:

ãi1i2...im =

 ai1i2...im i f i1 = i2 = . . . = im,
1

m!

∑
i2...im∈Γm

ai1i2...im otherwise,

where Ã = (̃ai1i2...im) ∈ R[m,n] is the symmetrization tensor under permutation group Γm.
The following example shows that Theorem 4.1 can verify the strict copositivity more accurately

than that of Theorem 5 of [29] for m = 3 tensors.
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Example 4.1. Consider a tensorA = (ai jk) ∈ R[3,2] defined by

ai jk =

{
a111 =

1
2 ; a112 = −

1
5 ; a121 = −

1
5 ; a122 = 0;

a222 = 1; a211 = −
1
5 ; a212 = 0; a221 = 0.

It is easy to see thatA is symmetric with

a111
1
√

2
−

√ ∑
δ1i2i3=0

([a1i2i3]−)2 =

√
2

20
> 0,

a222
1
√

2
−

√ ∑
δ2i2i3=0

([a2i2i3]−)2 =
5
√

2 − 2
10

> 0,

which means thatA is strictly copositive.
Referring to Theorem 5 of [29], we deduce

a111
1
√

2
− R1(A)− =

5
√

2 − 8
20

< 0.

Therefore, it is impossible to judge the strict copositivity ofA with Theorem 5 of [29].
WhenA is asymmetric, we still identify the strict copositivity of tensors by Theorem 4.1.

Example 4.2. Consider a tensorA = (ai jk) ∈ R[3,2] defined by

ai jk =

{
a111 =

1
2 ; a112 = −

1
10 ; a121 = −

2
5 ; a122 = 0;

a222 = 1; a211 = −
1

10 ; a212 = 0; a221 = 0.

Observe that A is asymmetric from a112 = −
1
10 , a121 = −

2
5 and a211 = −

1
10 . Therefore, we cannot

directly use Theorem 4.1 to judge whetherA is strictly copositive. SymmetrizingA, we obtain Ã with

ãi jk =

{
ã111 =

1
2 ; ã112 = −

1
5 ; ã121 = −

1
5 ; ã122 = 0;

ã222 = 1; ã211 = −
1
5 ; ã212 = 0; ã221 = 0.

It is easy to see that Ã is symmetric with

a111
1
√

2
−

√ ∑
δ1i2i3=0

([a1i2i3]−)2 =

√
2

20
> 0,

a222
1
√

2
−

√ ∑
δ2i2i3=0

([a2i2i3]−)2 =
5
√

2 − 2
10

> 0,

which implies that Ã is strictly copositive. Taking into account that Ax3 = Ãx3 > 0, we deduce that
A is strictly copositive.

In what follows, we reveal that the results of Theorem 4.2 are sharper than those of Theorem 5
of [29] for m ≥ 4 tensors.
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Example 4.3. Consider a tensorA = (ai jkl) ∈ R[4,2] defined by

ai jkl =


a1111 = 36; a1112 = a1121 = a1211 = a2111 = 50;
a2222 = 66; a1122 = a1221 = a1212 = −10;
a2221 = a2212 = a2122 = a1222 = 70;
a2211 = a2121 = a2112 = −20.

First, we rewrite

[A1]− =
[

0 10
10 10

]
, [A2]− =

[
20 20
20 0

]
and compute

a1111(
1
√

2
)2 − ρ([B1]−) = 1.8197 > 0, a2222(

1
√

2
)2 − ρ([B2]−) = 0.6393 > 0,

which means thatA is strictly copositive.
Recalling to Theorem 5 of [29], we obtain

a1111(
1
√

2
)2 − R1(A)− = −12 < 0.

Consequently, we cannot judge the strict copositivity ofA from Theorem 5 of [29].

5. Conclusions

In this paper, we proposed sharp Pareto Z-eigenvalue inclusion intervals for tensor eigenvalue
complementarity problems via the spectral radius of symmetric matrices. Further, we proposed some
criteria to confirm the strict copositivity of real tensors. It may be possible to conduct additional
research to create some algorithms for tensor eigenvalue complementarity problems using Pareto Z-
eigenvalue intervals, such as parametric algorithms and ADMM algorithms [5, 23, 28].
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