In this paper we establish some new inequalities of Ostrowski type for exponentially s-convex functions and s-convex functions on time scale. We also make comparison of our new results with already existing results by imposing some conditions.
Citation: Anjum Mustafa Khan Abbasi, Matloob Anwar. Ostrowski type inequalities for exponentially s-convex functions on time scale[J]. AIMS Mathematics, 2022, 7(3): 4700-4710. doi: 10.3934/math.2022261
[1] | Naila Mehreen, Matloob Anwar . Ostrowski type inequalities via some exponentially convex functions with applications. AIMS Mathematics, 2020, 5(2): 1476-1483. doi: 10.3934/math.2020101 |
[2] | Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via (α−s) exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364 |
[3] | Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized n-fractional polynomial s-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163 |
[4] | Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for s-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310 |
[5] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially (α,h−m)-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[6] | Muhammad Tariq, Soubhagya Kumar Sahoo, Jamshed Nasir, Hassen Aydi, Habes Alsamir . Some Ostrowski type inequalities via n-polynomial exponentially s-convex functions and their applications. AIMS Mathematics, 2021, 6(12): 13272-13290. doi: 10.3934/math.2021768 |
[7] | Attazar Bakht, Matloob Anwar . Hermite-Hadamard and Ostrowski type inequalities via α-exponential type convex functions with applications. AIMS Mathematics, 2024, 9(4): 9519-9535. doi: 10.3934/math.2024465 |
[8] | Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon . Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for s-convex functions in the second sense with applications. AIMS Mathematics, 2021, 6(12): 13327-13346. doi: 10.3934/math.2021771 |
[9] | Praveen Agarwal, Miguel Vivas-Cortez, Yenny Rangel-Oliveros, Muhammad Aamir Ali . New Ostrowski type inequalities for generalized s-convex functions with applications to some special means of real numbers and to midpoint formula. AIMS Mathematics, 2022, 7(1): 1429-1444. doi: 10.3934/math.2022084 |
[10] | Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787 |
In this paper we establish some new inequalities of Ostrowski type for exponentially s-convex functions and s-convex functions on time scale. We also make comparison of our new results with already existing results by imposing some conditions.
Ostrowski formulate a formula in 1938 to calculate the deviation of differentiable functions from its integral mean which is discussed in [1] and known as Ostrowski inequality given by
|ξ(v)−1l2−l1∫l2l1ξ(u)du|≤supl1≤v≤l2|ξ′(v)|(l2−l1)[(v−(l1+l2)2)2(l2−l1)2+14] | (1.1) |
can be proved by Montgomery identity as shown in [2] but this identity on time scale was discussed by M. Bohner and T. Matthews in [3] which is given as
Lemma 1.1. Let l1,l2,u,v∈T,l1<l2 and ξ:[l1,l2]→R be differentiable. Then
ξ(v)=1l2−l1∫l2l1ξσ(u)Δu+1l2−l1∫l2l1χ(v,u)ξΔ(u)Δu | (1.2) |
Where
χ(v,u)={u−l1,l1≤u<vu−l2,v≤u≤l2 | (1.3) |
Definition 1.1. ([4]) Let s∈(0,1]. A function ξ:I⊆R0→R0, where R0=[0,∞), is said to be s-convex function in second sense if
ξ(kl1+(1−k)l2)≤ksξ(l1)+(1−k)sξ(l2) |
for all l1,l2∈I.
Definition 1.2. ([5]) Let s∈(0,1]. A function ξ:I⊆R→R is said to be exponentially convex if
ξ(kl1+(1−k)l2)≤ksξ(l1)eαl1+(1−k)sξ(l2)eαl2 |
for l1,l2∈I with l1<l2, k∈[0,1] and α∈R.
Our aim of this paper is to discuss Hermite Hadamard inequality and Ostrowski type inequalities on time scale for exponentially s-convex, s-convex functions.
Definition 2.1. Time scale is defined as a non-empty close subset of real numbers.
The most important examples are R (set of real numbers) and Z (set of integers). For u,v∈T where T is a time scale, forward and backward jumped operators σ and ρ respectively are defined as σ(v)=inf{k∈T:k>v}∈T, ρ(v)=sup{k∈T:k<v}∈T. Supplemented by infϕ=supT and supϕ=infT.
A point v is said to be right scattered and left scattered if σ(v)>v and ρ(v)<v respectively. If a point v is both right and left scattered then it is isolated. If σ(v)=v then v is called right dense and it is said to be left dense if ρ(v)=v. If the point v is left and right dense both then it is called dense.
Suppose ζ1∈T is right scattered minimum, then Tk=T−{ζ1} otherwise Tk=T. Suppose ζ2∈T is left scattered maximum, then Tk=T−{ζ2}, otherwise Tk=T. Moreover Tkk=Tk∩Tk.
Definition 2.2. Delta derivative of function ξ:T→R at v∈Tk is defined to be the number ξΔ(v) (if it exists) satisfying the property that, for any ϵ>0 there is a neighbourhood U of v such that
|[ξ(σ(v))−ξ(u)]−ξΔ(v)[σ(v)−u]|<ϵ|σ(v)−u| | (2.1) |
for all u∈U.
Definition 2.3. A function ξ:T→R is continuous at right dense points of T and its left-sided limit exist at left dense points of T, then ξ is known to be rd-continuous. Denoted by ξ∈Crd.
Theorem 2.1. Let ξ:T→R be an rd-continuous function. Then f has an anti-derivative Ξ satisfying ΞΔ=ξ.
Proof. See [6,Theorem 1.74].
Definition 2.4. If ξ:T→R is an rd-continuous function and l1∈T, then we define the integral Ξ(v)=∫vl1ξ(k)Δk for v∈T.
Therefore for ξ∈Crd we have Ξ(l2)−Ξ(l1)=∫l2l1ξ(k)Δk. Where ΞΔ=ξ.
Theorem 2.2. If l1,l2,l3∈T,β∈R and ξ1,ξ2∈Crd, then
(i) ∫l2l1(ξ1(v)+ξ2(v))Δv=∫l2l1ξ1(v)Δv+∫l2l1ξ2(v)Δv,
(ii) ∫l2l1βξ1(v)Δv=β∫l2l1ξ1(v)Δv,
(iii) ∫l2l1ξ1(v)Δv=−∫l1l2ξ1(v)Δv,
(iv) ∫l2l1ξ1(v)Δv=∫l3l1ξ1(v)Δv+∫l2l3ξ1(v)Δv,
(v) ∫l1l1ξ1(v)Δv=0,
(vi)∫l2l1ξ1(v)ξΔ2(v)Δv=(ξ1ξ2)(l2)−(ξ1ξ2)(l1)−∫l2l1ξΔ1(v)ξ2(σ(v))Δv,
(vii)∫l2l1ξ1(v)ξΔ2(v)=(ξ1ξ2)(l2)−(ξ1ξ2)(l1)−∫l2l1ξΔ1(v)ξ2(σ(v))Δv.
Proof. See [6,Theorem 1.77].
Theorem 2.3. Let l1,l2∈T and ξ1,ξ2:T→R be rd-continuous. Then
∫l2l1|ξ1(v)ξ2(v)|Δv≤(∫l2l1|ξ1(v)|pΔv)1p(∫l2l1|ξ2(v)|qΔv)1q. | (2.2) |
where p, q>1 and 1p+1q=1.
Proof. See [66.Theorem 6.13].
Keeping in mind the integral inequalities and inequalities on time scale [7,8,9,10,11,12,13,14,15] first we prove the Hermite Hadamard inequality for exponentially s-convex functions on time scale. Throughout this section K=[l1,l2]⊆T.
Theorem 3.1. Let T be a time scale and K=[l1,l2]. Let ξ:K→R is exponentially s-convex function in the second sense on K0 and Δ-integrable as well. Then for l1,l2∈K with l1<l2 and α∈R, we have
s−1ξ(l1+l22)≤1l2−l1∫l2l1ξ(w)eαwΔw≤ξ(l1)eαl2∫10kseα(kl1+(1−k)l2)Δk+ξ(l2)eαl2∫10(1−k)seα(kl1+(1−k)l2)Δk. | (3.1) |
Proof. Using the definition of exponential s-convexity of ξ we have
2sξ(x+y2)≤ξ(x)eαx+ξ(y)eαy. |
Making use of change of variable x=kl1+(1−k)l2 and y=(1−k)l1+kl2 and taking Δ-integral with respect to k∈[0,1] we get
2sξ(l1+l22)≤2l2−l1∫l2l1ξ(w)eαwΔw |
and
2s−1ξ(l1+l22)≤1l2−l1∫l2l1ξ(w)eαwΔw. | (3.2) |
Now, we prove second inequality
ξ(kl1+(1−k)l2)eα(kl1+(1−k)l2)≤ksξ(l1)eαl1+(1−k)sξ(l2)eαl2eα(kl1+(1−k)l2). |
Taking Δ-integral w.r.t k∈[0,1] we get
1l2−l1∫10ξ(w)eαwΔw≤ξ(l1)eαl1∫10rseα(kl1+(1−k)l2)Δk+ξ(l2)eαl2∫10(1−k)seα(kl1+(1−k)l2)Δk. | (3.3) |
Combining (7) and (8) we get (6).
Corollary 3.1.1. For T=R we get the Hermite Hadamard inequality for exponentially s-convex functions [5,Theorem 3.2].
Now, we will discuss Ostrowski inequality for exponentially s-convex function on time scale.
Theorem 3.2. Let T be a time scale and K⊆T. Let ξ:K→R be a differentiable function on K0 such that ξΔ∈K for l1,l2∈K where l1<l2. If ξΔ is exponentially s-convex in second sense on [l1,l2] for s∈(0,1] and supl1≤v≤l2|ξΔ(v)|=M, v∈[l1,l2]. Then following inequality holds:
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤M(v−l1)2l2−l1∫10(ks+1eαv+k(1−k)seαl1)Δk+M(v−l2)2l2−l1∫10(ks+1eαv+k(1−k)seαl2)Δk. | (3.4) |
Proof. Using Montgomery identity
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|=|1l2−l1∫l2l1χ(v,u)ξΔ(u)Δu|≤1l2−l1(∫tl1(u−l1)|ξΔ(u)|Δu+∫l2v(u−l2)|ξΔ(u)|Δu). |
Making use of change of variables we get
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤1l2−l1∫10(v−l1)2k|ξΔ(kv+(1−k)l1)|Δk+1l2−l1∫10(v−l2)2k|ξΔ(kv+(1−k)l2)|Δk. |
Using exponential s-convexity of ξΔ we get
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤(v−l1)2l2−l1∫10(k(ks|ξΔ(v)|eαv)+k((1−k)s|ξΔ(l1)|eαl1))Δk+(v−l2)2l2−l1∫10(k(ks|ξΔ(v)|eαv)+k((1−k)s|ξΔ(l2)|eαl2))Δk |
≤M(v−l1)2l2−l1∫10(ks+1eαv+k(1−k)seαl1)Δk+M(v−l2)2l2−l1∫10(ks+1eαv+k(1−k)seαl2)Δk. |
Corollary 3.2.1. If T=R, then we obtain Theorem 2.1 given in [16].
Theorem 3.3. Suppose that ξ:K→R be a differentiable mapping on K0 such that ξΔ∈K for l1,l2∈K with l1<l2. If |ξΔ|q is exponentially s-convex in the second sense on [l1,l2] for some s∈(0,1], p,q>1 and 1p+1q=1 and supl1≤v≤l2|ξΔ(v)|=M,v∈[l1,l2], then the following inequality holds:
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤M(v−l1)2l2−l1(∫10kpΔk)1p(∫10(kseαv+(1−k)seαl1)Δk)1q+M(v−l2)2l2−l1(∫10kpΔk)1p(∫10(kseαv+(1−k)seαl2)Δk)1q. | (3.5) |
Proof. By Montgomery identity we have
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|=|1l2−l1∫l2l1χ(v,u)ξΔ(u)Δu|≤1l2−l1(∫tl1(u−l1)|ξΔ(u)|Δu+∫l2v(u−l2)|ξΔ(u)|Δu). |
Making use of change of variables we obtain
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤1l2−l1∫10(v−l1)2k|ξΔ(kv+(1−k)l1)|Δk+1l2−l1∫10(v−l2)2k|ξΔ(kv+(1−k)l2)|Δk. |
Using (5) we get
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤(v−l1)2l2−l1(∫10kpΔk)1p(∫10|ξΔ(kv+(1−k)l1)|qΔk)1q+(v−l2)2l2−l1(∫10kpΔk)1p(∫10|ξΔ(kv+(1−k)l2)|qΔk)1q. |
Using the definition of exponential s-convexity of |ξΔ|q we have
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤(v−l1)2l2−l1(∫10kpΔk)1p(∫10(ks|ξΔ(v)|qeαv+(1−k)s|ξΔ(v)|qeαl1)Δk)1q+(v−l2)2l2−l1(∫10kpΔk)1p(∫10(ks|ξΔ(v)|qeαv+(1−k)s|ξΔ(v)|qeαl2)Δk)1q≤M(v−l1)2l2−l1(∫10kpΔk)1p(∫10(kseαv+(1−k)seαl1)Δk)1q+M(v−l2)2l2−l1(∫10kpΔk)1p(∫10(kseαv+(1−k)seαl2)Δk)1q. |
Corollary 3.3.1. If T=R then we obtain Theorem 2.2 given in [16].
Theorem 3.4. Let us consider a differentiable mapping ξ:K→R on K0 such that ξΔ∈K for l1,l2∈K with l1<l2. If |ξΔ|q is exponentially s-convex in the second sense on [l1,l2] for some s∈(0,1], q>1 and supl1≤v≤l2|ξΔ(v)|=M, v∈[l1,l2], then the following inequality holds:
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤M(v−l1)2l2−l1(∫10kpΔk)1−1q(∫10(ks+1eαv+k(1−k)seαl1)Δk)1q+M(v−l1)2l2−l1(∫10ks+1Δk)1−1q(∫10(ks+1eαv+k(1−k)seαl2)Δk)1q. | (3.6) |
Proof. By Montgomery identity we have
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|=|1l2−l1∫l2l1χ(v,u)ξΔ(u)Δu|≤1l2−l1(∫tl1(u−l1)|ξΔ(u)|Δu+∫l2v(u−l2)|ξΔ(u)|Δu). |
Making use of change of variables we obtain
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤(1l2−l1)[∫10(v−l1)2k|ξΔ(kv+(1−k)l1)|Δk+∫10(v−l2)2k|ξΔ(kv+(1−k)l2)|Δk] |
It follows that
|ξ(v)−1l2−l1∫l1l1ξσ(u)Δu|≤(v−l1)2l2−l1(∫10kΔk)1−1q(∫10k|ξΔ(kv+(1−k)l1)|qΔk)1q+(v−l2)2l2−l1(∫10kΔk)1−1q(∫10|ξΔ(kv+(1−k)l2)|qΔk)1q |
Using the definition of exponential s-convexity of |ξΔ|q we have
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤(v−l1)2l2−l1(∫10kΔk)1−1q(∫10(ks+1|ξΔ(v)|qeαv+k(1−k)s|ξΔ(v)|qeαl1)Δk)1q+(v−l2)2l2−l1(∫10kΔk)1−1q(∫10(ks+1|ξΔ(t)|qeαv+k(1−k)s|ξΔ(v)|qeαl2)Δk)1q |
≤M(v−l1)2l2−l1(∫10kΔk)1−1q(∫10(ks+1eαv+k(1−k)seαl1)Δk)1q+M(v−l2)2l2−l1(∫10kΔk)1−1q(∫10(ks+1eαv+k(1−k)seαl2)Δk)1q. |
Corollary 3.4.1. If T=R then we obtain Theorem 2.3 given in [16].
Theorem 3.5. Let ξ:K→R be a differentiable mapping on K0 such that ξΔ∈K for l1, l2∈K with l1<l2. If |ξΔ|q is exponentially s-concave on [l1,l2], p>1, 1p+1q=1, then the following inequality holds:
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤(∫10kpΔk)1p(v−l1)2l2−l12s−1q|ξΔ(v+l12)|+(∫10kpΔk)1p(v−l2)2l2−l12s−1q|ξΔ(v+l22)|. | (3.7) |
Proof. Using Montgomery identity and making use of variables we get
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤1l2−l1∫10(v−l1)2k|ξkv+(1−k)l1)|Δk+1l2−l1∫10(v−l2)2k|ξΔ(kv+(1−k)l2)|Δk≤(v−l1)2l2−l1(∫10kpΔk)1p(∫10|ξΔ(kv+(1−k)l1)|qΔk)1q+(v−l2)2l2−l1(∫10kpΔk)1p(∫10|ξΔ(kv+(1−k)l2)|qΔk)1q. | (3.8) |
Since |ξΔ|q is exponentially s-concave, by (6) we have
(∫10|ξΔ(kv+(1−k)l1)|qΔk)1q≤2s−1|ξΔ(v+l12)|q | (3.9) |
and
(∫10|ξΔ(kv+(1−k)l2)|qΔk)1q≤2s−1|ξΔ(v+l22)|q. | (3.10) |
Using (14) and (15) in (13) we get the conclusion.
Corollary 3.5.1. If T=R then we obtain Theorem 2.4 given in [16].
Now we discuss some results for s-convex functions.
Theorem 3.6. Let T be a time scale and K=[l1,l2]⊆T such that l1<l2∈T. Let ξ:K→R be a delta differentiable on K0 such that ξΔ∈K, for l1,l2∈K with l1<l2. If |ξΔ| is s-convex on K for some fixed s∈(0,1] and supl1≤v≤l2|ξΔ(v)|=M for v∈K, then following inequality holds:
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤M(v−l1)2l2−l1∫10([ks+1+k(1−k)s])Δk+M(v−l2)2l2−l1∫10([ks+1+k(1−k)s])Δk. | (3.11) |
Proof. The proof is analogous to Theorem 3.2 only difference is to use definition of s-convex function |ξΔ| instead of exponentially s-convexity.
Corollary 3.6.1. If T=R, then we obtain Theorem 2 given in [17].
Theorem 3.7. Let T be a time scale and K=[l1,l2]⊆T such that l1<l2∈T. Let ξ:K→R be a delta differentiable on K0 such that ξΔ∈K, for l1,l2∈K with l1<l2. If |ξΔ|q is s-convex on K for some fixed s∈(0,1], p, q>1, 1p+1q=1 and supl1≤v≤l2|ξΔ(v)|=M for v∈K, then following inequality holds:
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤M(v−l1)2l2−l1(∫10kpΔk)1p×(∫10[ks+(1−k)s]Δk)1q+M(v−l2)2l2−l1(∫10kpΔk)1p(∫10[ks+(1−k)s]Δk)1q. | (3.12) |
Proof. Proof is analogous to Theorem 3.3 but in place of definition of exponential s-convexity we use s-convexity of |ξΔ|q.
Corollary 3.7.1. If T=R, then we obtain Theorem 3 given in [17].
Theorem 3.8. Let T be a time scale and K=[l1,l2]⊆T such that l1<l2∈T. Let ξ:K→R be a delta differentiable on K0 such that ξΔ∈K for l1, l2∈K with l1<l2. If |ξΔ|q is s-convex in second sense on K for some fixed s∈(0,1], q>1 and supl1≤v≤l2|ξΔ(v)|=M for v∈K, then following inequality holds:
|ξ(v)−1l2−l1∫l2l1ξσ(u)Δu|≤M(v−l1)2l2−l1(∫10kpΔk)1−1q(∫10[ks+(1−k)s]Δk)1q+M(v−l2)2l2−l1(∫10kpΔk)1−1q(∫10[ks+(1−k)s]Δk)1q. | (3.13) |
Proof. Proof is analogous to Theorem 3.4 but we use definition of s-convexity of |ξΔ|q instead of exponential s-convexity.
Corollary 3.8.1. If T=R, then we obtain Theorem 4 given in [17].
From Theorem 3.1 we obtain the Hermite-Hadamard inequality for exponentially s-convex functions on time scale. From Theorems 3.2–3.5 we obtain Ostrowski type inequalities for exponentially s-convex functions on time scale. From Theorems 3.6–3.8 we obtain Ostrowski type inequalities for s-convex functions on time scale.
This research article is supported by National University of Sciences and Technology(NUST), Islamabad, Pakistan.
The authors declare that there is no interest regarding the publication of this paper.
[1] |
A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Commentarii Mathematici Helvetici, 10 (1937), 226–227. http://dx.doi.org/10.1007/bf01214290 doi: 10.1007/bf01214290
![]() |
[2] | D. S. Mitrinovíc, J. E. Pecaríc, A. M. Fink, Inequalities involving functions and their integrals and derivatives, 1 Eds., Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3562-7 |
[3] | M. Bohner, T. Matthews, Ostrowski inequalities on time scales, Journal of Inequalities in Pure and Applied Mathematics, 9 (2008), 6. |
[4] |
H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aeq. Math., 48 (1994), 100–111. http://dx.doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981
![]() |
[5] |
N. Mehreen, M. Anwar, Hermite–Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the secondsense with applications, J. Inequal. Appl., 2019 (2019), 92. http://dx.doi.org/10.1186/s13660-019-2047-1 doi: 10.1186/s13660-019-2047-1
![]() |
[6] | M. Bohner, A. Peterson, Dynamic equations on time scales, 1 Eds., Boston, M A: Birkhäuser Boston Inc., 2001. http://dx.doi.org/10.1007/978-1-4612-0201-1 |
[7] | M. Alomari, q-Bernoulli inequality, Turkish Journal of Science, 3 (2018), 32–39. |
[8] | A. Ekinci, Inequalities for convex functions on time scales, TWMS J. App. Eng. Math., 9 (2019), 64–72. |
[9] |
A. A. El-Deeb, S. Rashid, On some new double dynamic inequalities associated with Leibniz integral rule on time scales, Adv. Differ. Equ., 2021 (2021), 125. http://dx.doi.org/10.1186/s13662-021-03282-3 doi: 10.1186/s13662-021-03282-3
![]() |
[10] |
M. Z. Sarıkaya, New weighted Ostrowski and Chebyshev type inequalities on time scales, Comput. Math. Appl., 60 (2010), 1510–1514. http://dx.doi.org/10.1016/j.camwa.2010.06.033 doi: 10.1016/j.camwa.2010.06.033
![]() |
[11] |
U. M. Ozkan, M. Z. Sarıkaya, H. Yıldırım, Extensions of certain integral inequalities on time scales, Appl. Math. Lett., 21 (2008), 993–1000. http://dx.doi.org/10.1016/j.aml.2007.06.008 doi: 10.1016/j.aml.2007.06.008
![]() |
[12] | M. E. Ozdemir, New refinements of Hadamard integral inequality via k-fractional integrals for p-convex function, Turkish Journal of Science, 6 (2021), 1–5. |
[13] |
S. Rashid, M. A. Noor, K. I. Noor, F. Safdar, Y. M. Chu, Hermite-Hadamard type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 956. http://dx.doi.org/10.3390/math7100956 doi: 10.3390/math7100956
![]() |
[14] |
J. M. Shen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, Certain novel estimates within fractional calculus theory on time scales, AIMS Mathemaics, 5 (2020), 6073–6086. http://dx.doi.org/10.3934/math.2020390 doi: 10.3934/math.2020390
![]() |
[15] | S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential s-convex functions, Turkish Journal of Science, 5 (2020), 140–146. |
[16] |
N. Mahreen, M. Anwar, Ostrowski type inequalities via some exponen-tially convex functions with applications, AIMS Mathematics, 5 (2020), 1476–1483. http://dx.doi.org/10.3934/math.2020101 doi: 10.3934/math.2020101
![]() |
[17] |
M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. http://dx.doi.org/10.1016/j.aml.2010.04.038 doi: 10.1016/j.aml.2010.04.038
![]() |
1. | Kin Keung Lai, Shashi Kant Mishra, Vandana Singh, Ostrowski Type Inequalities via Some Exponentially s-Preinvex Functions on Time Scales with Applications, 2023, 15, 2073-8994, 410, 10.3390/sym15020410 | |
2. | YONGFANG QI, GUOPING LI, FRACTIONAL OSTROWSKI TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION WITH APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23501281 |