In this paper we establish some new inequalities of Ostrowski type for exponentially s-convex functions and s-convex functions on time scale. We also make comparison of our new results with already existing results by imposing some conditions.
Citation: Anjum Mustafa Khan Abbasi, Matloob Anwar. Ostrowski type inequalities for exponentially s-convex functions on time scale[J]. AIMS Mathematics, 2022, 7(3): 4700-4710. doi: 10.3934/math.2022261
In this paper we establish some new inequalities of Ostrowski type for exponentially s-convex functions and s-convex functions on time scale. We also make comparison of our new results with already existing results by imposing some conditions.
[1] | A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Commentarii Mathematici Helvetici, 10 (1937), 226–227. http://dx.doi.org/10.1007/bf01214290 doi: 10.1007/bf01214290 |
[2] | D. S. Mitrinovíc, J. E. Pecaríc, A. M. Fink, Inequalities involving functions and their integrals and derivatives, 1 Eds., Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3562-7 |
[3] | M. Bohner, T. Matthews, Ostrowski inequalities on time scales, Journal of Inequalities in Pure and Applied Mathematics, 9 (2008), 6. |
[4] | H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aeq. Math., 48 (1994), 100–111. http://dx.doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981 |
[5] | N. Mehreen, M. Anwar, Hermite–Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the secondsense with applications, J. Inequal. Appl., 2019 (2019), 92. http://dx.doi.org/10.1186/s13660-019-2047-1 doi: 10.1186/s13660-019-2047-1 |
[6] | M. Bohner, A. Peterson, Dynamic equations on time scales, 1 Eds., Boston, M A: Birkhäuser Boston Inc., 2001. http://dx.doi.org/10.1007/978-1-4612-0201-1 |
[7] | M. Alomari, q-Bernoulli inequality, Turkish Journal of Science, 3 (2018), 32–39. |
[8] | A. Ekinci, Inequalities for convex functions on time scales, TWMS J. App. Eng. Math., 9 (2019), 64–72. |
[9] | A. A. El-Deeb, S. Rashid, On some new double dynamic inequalities associated with Leibniz integral rule on time scales, Adv. Differ. Equ., 2021 (2021), 125. http://dx.doi.org/10.1186/s13662-021-03282-3 doi: 10.1186/s13662-021-03282-3 |
[10] | M. Z. Sarıkaya, New weighted Ostrowski and Chebyshev type inequalities on time scales, Comput. Math. Appl., 60 (2010), 1510–1514. http://dx.doi.org/10.1016/j.camwa.2010.06.033 doi: 10.1016/j.camwa.2010.06.033 |
[11] | U. M. Ozkan, M. Z. Sarıkaya, H. Yıldırım, Extensions of certain integral inequalities on time scales, Appl. Math. Lett., 21 (2008), 993–1000. http://dx.doi.org/10.1016/j.aml.2007.06.008 doi: 10.1016/j.aml.2007.06.008 |
[12] | M. E. Ozdemir, New refinements of Hadamard integral inequality via k-fractional integrals for p-convex function, Turkish Journal of Science, 6 (2021), 1–5. |
[13] | S. Rashid, M. A. Noor, K. I. Noor, F. Safdar, Y. M. Chu, Hermite-Hadamard type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 956. http://dx.doi.org/10.3390/math7100956 doi: 10.3390/math7100956 |
[14] | J. M. Shen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, Certain novel estimates within fractional calculus theory on time scales, AIMS Mathemaics, 5 (2020), 6073–6086. http://dx.doi.org/10.3934/math.2020390 doi: 10.3934/math.2020390 |
[15] | S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential s-convex functions, Turkish Journal of Science, 5 (2020), 140–146. |
[16] | N. Mahreen, M. Anwar, Ostrowski type inequalities via some exponen-tially convex functions with applications, AIMS Mathematics, 5 (2020), 1476–1483. http://dx.doi.org/10.3934/math.2020101 doi: 10.3934/math.2020101 |
[17] | M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. http://dx.doi.org/10.1016/j.aml.2010.04.038 doi: 10.1016/j.aml.2010.04.038 |