Research article

Ostrowski type inequalities for exponentially s-convex functions on time scale

  • Received: 01 October 2021 Revised: 19 November 2021 Accepted: 21 November 2021 Published: 24 December 2021
  • MSC : 26A51, 26D10, 46N50

  • In this paper we establish some new inequalities of Ostrowski type for exponentially s-convex functions and s-convex functions on time scale. We also make comparison of our new results with already existing results by imposing some conditions.

    Citation: Anjum Mustafa Khan Abbasi, Matloob Anwar. Ostrowski type inequalities for exponentially s-convex functions on time scale[J]. AIMS Mathematics, 2022, 7(3): 4700-4710. doi: 10.3934/math.2022261

    Related Papers:

  • In this paper we establish some new inequalities of Ostrowski type for exponentially s-convex functions and s-convex functions on time scale. We also make comparison of our new results with already existing results by imposing some conditions.



    加载中


    [1] A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Commentarii Mathematici Helvetici, 10 (1937), 226–227. http://dx.doi.org/10.1007/bf01214290 doi: 10.1007/bf01214290
    [2] D. S. Mitrinovíc, J. E. Pecaríc, A. M. Fink, Inequalities involving functions and their integrals and derivatives, 1 Eds., Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3562-7
    [3] M. Bohner, T. Matthews, Ostrowski inequalities on time scales, Journal of Inequalities in Pure and Applied Mathematics, 9 (2008), 6.
    [4] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aeq. Math., 48 (1994), 100–111. http://dx.doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981
    [5] N. Mehreen, M. Anwar, Hermite–Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the secondsense with applications, J. Inequal. Appl., 2019 (2019), 92. http://dx.doi.org/10.1186/s13660-019-2047-1 doi: 10.1186/s13660-019-2047-1
    [6] M. Bohner, A. Peterson, Dynamic equations on time scales, 1 Eds., Boston, M A: Birkhäuser Boston Inc., 2001. http://dx.doi.org/10.1007/978-1-4612-0201-1
    [7] M. Alomari, q-Bernoulli inequality, Turkish Journal of Science, 3 (2018), 32–39.
    [8] A. Ekinci, Inequalities for convex functions on time scales, TWMS J. App. Eng. Math., 9 (2019), 64–72.
    [9] A. A. El-Deeb, S. Rashid, On some new double dynamic inequalities associated with Leibniz integral rule on time scales, Adv. Differ. Equ., 2021 (2021), 125. http://dx.doi.org/10.1186/s13662-021-03282-3 doi: 10.1186/s13662-021-03282-3
    [10] M. Z. Sarıkaya, New weighted Ostrowski and Chebyshev type inequalities on time scales, Comput. Math. Appl., 60 (2010), 1510–1514. http://dx.doi.org/10.1016/j.camwa.2010.06.033 doi: 10.1016/j.camwa.2010.06.033
    [11] U. M. Ozkan, M. Z. Sarıkaya, H. Yıldırım, Extensions of certain integral inequalities on time scales, Appl. Math. Lett., 21 (2008), 993–1000. http://dx.doi.org/10.1016/j.aml.2007.06.008 doi: 10.1016/j.aml.2007.06.008
    [12] M. E. Ozdemir, New refinements of Hadamard integral inequality via k-fractional integrals for p-convex function, Turkish Journal of Science, 6 (2021), 1–5.
    [13] S. Rashid, M. A. Noor, K. I. Noor, F. Safdar, Y. M. Chu, Hermite-Hadamard type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 956. http://dx.doi.org/10.3390/math7100956 doi: 10.3390/math7100956
    [14] J. M. Shen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, Certain novel estimates within fractional calculus theory on time scales, AIMS Mathemaics, 5 (2020), 6073–6086. http://dx.doi.org/10.3934/math.2020390 doi: 10.3934/math.2020390
    [15] S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential s-convex functions, Turkish Journal of Science, 5 (2020), 140–146.
    [16] N. Mahreen, M. Anwar, Ostrowski type inequalities via some exponen-tially convex functions with applications, AIMS Mathematics, 5 (2020), 1476–1483. http://dx.doi.org/10.3934/math.2020101 doi: 10.3934/math.2020101
    [17] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. http://dx.doi.org/10.1016/j.aml.2010.04.038 doi: 10.1016/j.aml.2010.04.038
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1728) PDF downloads(75) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog