Research article

On inequalities of Hermite-Hadamard type via $ n $-polynomial exponential type $ s $-convex functions

  • Received: 18 February 2022 Revised: 30 April 2022 Accepted: 12 May 2022 Published: 01 June 2022
  • MSC : 26D15, 26D10, 26A33, 34B27

  • In this paper, a new class of Hermite-Hadamard type integral inequalities using a strong type of convexity, known as $ n $-polynomial exponential type $ s $-convex function, is studied. This class is established by utilizing the Hölder's inequality, which has several applications in optimization theory. Some existing results of the literature are obtained from newly explored consequences. Finally, some novel limits for specific means of positive real numbers are shown as applications.

    Citation: Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon. On inequalities of Hermite-Hadamard type via $ n $-polynomial exponential type $ s $-convex functions[J]. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787

    Related Papers:

  • In this paper, a new class of Hermite-Hadamard type integral inequalities using a strong type of convexity, known as $ n $-polynomial exponential type $ s $-convex function, is studied. This class is established by utilizing the Hölder's inequality, which has several applications in optimization theory. Some existing results of the literature are obtained from newly explored consequences. Finally, some novel limits for specific means of positive real numbers are shown as applications.



    加载中


    [1] C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, 1 Ed., New York: CMC Books in Mathematics, 2004. https://doi.org/10.1007/978-3-319-78337-6
    [2] J. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, 1 Ed., New York: Academic Press, 1992. http://dx.doi.org/10.1016/s0076-5392(08)x6162-4
    [3] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM Rev. R. Acad. A, 114 (2020), 96. https://doi.org/10.1007/s13398-020-00825-3 doi: 10.1007/s13398-020-00825-3
    [4] D. Baleanu, M. Samraiz, Z. Perveen, S. Iqbal, K. S. Nisar, G. Rahman, Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function, AIMS Math., 6 (2021), 4280–4295. https://doi.org/10.3934/math.2021253 doi: 10.3934/math.2021253
    [5] S. Wu, S. Iqbal, M. Aamir, M. Samraiz, A. Younus, On some Hermite-Hadamard inequalities involving $k$-fractional operators, J. Inequal. Appl., 2021 (2021), 32. https://doi.org/10.1186/s13660-020-02527-1 doi: 10.1186/s13660-020-02527-1
    [6] M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111–124. https://doi.org/10.1007/s40315-020-00298-w doi: 10.1007/s40315-020-00298-w
    [7] X. M. Hu, J. F. Tian, Y. M. Chu, Y. X. Lu, On Cauchy-Schwarz inequality for $N$-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 8. https://doi.org/10.1186/s13660-020-2283-4 doi: 10.1186/s13660-020-2283-4
    [8] M. A. Latif, S. Rashid, S. S. Dragomir, Y. M. Chu, Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 317. https://doi.org/10.1186/s13660-019-2272-7 doi: 10.1186/s13660-019-2272-7
    [9] S. Khan, M. A. Khan, S. I. Butt, Y. M. Chu, A new bound for the Jensen gap pertaining twice differentiable functions with applications, Adv. Differ. Equ., 2020 (2020), 333. https://doi.org/10.1186/s13662-020-02794-8 doi: 10.1186/s13662-020-02794-8
    [10] R. J. Gardner, The Brunn-Minkowski inequaity, Bull. Amer. Math. Soc., 39 (2002), 355–405. https://doi.org/10.1090/S0273-0979-02-00941-2 doi: 10.1090/S0273-0979-02-00941-2
    [11] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Gao, Hermite-Hadamard type inequalities via $n$-polynomial exponential type convexity and their applications, Adv. Differ. Equ., 2020 (2020), 508. https://doi.org/10.1186/s13662-020-02967-5 doi: 10.1186/s13662-020-02967-5
    [12] W. Gao, A. Kashuri, S. I. Butt, M. Tariq, A. Aslam, M. Nadeem, New inequalities via $n$-polynomial harmonically exponential type convex functions, AIMS Math., 5 (2020), 6856–6873. https://doi.org/10.3934/math.2020440 doi: 10.3934/math.2020440
    [13] S. I. Butt, A. Kashuri, M. Umar, A. Aslam, W. Gao, Hermite-Jensen-Mercer type inequalities via $\psi$-Riemann-Liouville $k$-fractional integrals, AIMS Math., 5 (2020), 5193–5220. https://doi.org/10.3934/math.2020334 doi: 10.3934/math.2020334
    [14] G. Alirezaei, R. Mathar, On exponentially concave functions and their impact in information theory, IEEE Xplore, 2018 (2018), 1–10. https://doi.org/10.1109/ITA.2018.8503202 doi: 10.1109/ITA.2018.8503202
    [15] S. Pal, T. K. L. Wong, Exponentially concave functions and a new information geometry, Ann. Probab., 46 (2018), 1070–1113. https://www.jstor.org/stable/26402375
    [16] T. Antczak, On $(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355–379. https://doi.org/10.1006/jmaa.2001.7574 doi: 10.1006/jmaa.2001.7574
    [17] S. S. Dragomir, I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babes-Bolyai Math., 60 (2015), 527–534.
    [18] M. A. Noor, K. I. Noor, On exponentially convex functions, J. Orissa Math. Soc., 38 (2019), 33–51.
    [19] N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially $p$-convex functions and exponentially $s$-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92. https://doi.org/10.1186/s13660-019-2047-1 doi: 10.1186/s13660-019-2047-1
    [20] M. Tariq, S. K. Sahoo, J. Nasir, H. Aydi, H. Alsamir, Some Ostrowski type inequalities via $n$-polynomial exponentially $s$-convex functions and their applications, AIMS Math., 6 (2021), 13272–13290. https://doi.org/10.3934/math.2021768 doi: 10.3934/math.2021768
    [21] K. Mehrez, P. Agarwal, New Hermite-Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math., 350 (2019), 274–285. https://doi.org/10.1016/j.cam.2018.10.022 doi: 10.1016/j.cam.2018.10.022
    [22] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1519) PDF downloads(87) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog