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1. Introduction

In recent years, determining the dimensions of the hulls of generalized Reed-Solomon (GRS) codes
has become a hot research topic. One of the principal reasons is that the hulls of linear codes play
an important role in the so-called entanglement-assisted quantum error-correcting codes (EAQECCsS).
For a linear code C, let C* be the dual code of C with respect to some inner product. The hull of C is
defined as C( C*.

Luo et al. [1] presented several classes of GRS codes, extended GRS codes with Euclidean hulls of
arbitrary dimensions, and constructed some families of maximum distance separable (MDS)
EAQECCs. Fang et al. [2] obtained several new families of MDS EAQECCs with flexible parameters
from GRS codes and extended GRS codes, where they can determine the dimensions of their
Euclidean hulls or Hermitian hulls. Fang et al. [3] constructed MDS codes with Euclidean hulls of
arbitrary dimensions from self-orthogonal codes. Cao [4] gave a necessary and sufficient condition
under which a codeword of a GRS code or an extended GRS code belongs to its £-Galois dual code,
generalizing both the Euclidean case and Hermitian case in the literature; eleven families of MDS
codes with £-Galois hulls of arbitrary dimensions were constructed explicitly. Some problems relating
hulls of linear codes were also considered; see [5—7]. Very recently, Chen et al. [8] determined the
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dimensions of the hulls of all RS codes via an algebraic geometry approach. The paper concludes
with a problem of how to extend the main result of [8] to all GRS codes.

The purpose of this paper is to address the aforementioned problem posed in [8]. By further
exploring the methods in Luo et al. [1] and Chen et al. [8], we manage to find the dimensions of the
hulls of all GRS codes under the Euclidean inner product. Consequently, our results contain the main
result of [8]. As a corollary, we also give a new approach to generate all self-dual RS codes. More
explicitly, we obtain the following result.

Theorem 1.1. Assume that GRS (@, v) is a k-dimensional GRS code over F, asscociated with @ =

(a1,...,a)andv = (vy,...,v,). Let
h=]le-a
i=1

and let I denote the derivative of h. Let u(z) € F,[z] be a polynomial satisfying u(a;) = vi(1 <i < n)
and deg u(z) = n. By polynomial long division,

uw’h’ = Qoh + Ry
with degRy < n. Using polynomial long division repeatedly,
h=0Qi1Ry+ R,
with degR, < degR, and
Ri = Qis2Ri1 + Risa
with degR;,, < degR;,; for i > 0, we have

min{k,n — k — deg Ry}, ifdegRy <n—k,

dim (GRS(a, v) ﬂ GRSy (e, U)l) ={min{s,_,n —k —degR,}, ifa > 1 isthe smallestinteger
satisfying degR, <n—kand degR,., =n—k+ s,.; >n—k.

This paper is organized as follows. Definitions and preliminary facts about rational function fields
and algebraic geometry codes are reviewed in Section 2. In Section 3, we present a proof for
Theorem 1.1, which is broken into a series of lemmas. In Section 4, we derive some corollaries of
Theorem 1.1. Lastly, Section 5 concludes this paper.

2. Preliminaries

In this section, after reviewing some basic facts about rational function fields and algebraic
geometry codes, we restate that GRS codes can be viewed as a particular subclass of algebraic
geometry codes. For the details or the general theory of algebraic function fields and algebraic
geometry codes, interested readers may refer to [9] for the details.

Throughout this paper, let IF, be the finite field of order g and let z be a transcendental element
over F,. Let F,[z] be the polynomial ring in variable z over F,. The extension field F,(z)/F, is called a
rational function field, where F,(z) denotes the set of all rational functions, i.e.,

f@

[0 s@ Bl g0 # 0}.

Fy(2) = {
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In this paper, we always use F to denote F,(z). A valuation ring of F/F, is aring O satisfying
F,COCF

and, for any x € F, either x € O or x™! € O. It turns out that O is a local ring, i.e., O has a unique
maximal ideal (see [9, Proposition 1.1.5]). A place P of the rational function field F/F, is the
maximal ideal of some valuation ring O of F/F,. The set of all places of F/F, is denoted by Pf.
By [9, Theorem 1.2.2], one has

Pr = {Pp(z)

p(z) is a monic irreducible polynomial over Fq} U {Ps},

where P, and P, are defined in [9]. The degree of the monic irreducible polynomial p(z) is equal
to the degree of the place P, and the degree of P, is equal to 1 (for the definition of the degree of
a place, see [9, Definition 1.1.14]). For each a € F,, the places P,_, (P, for short) and P, are called
rational places of F/F,. A divisor G of F/F, is a formal sum

G = Z vp(G)P
PePrp

with vp(G) being integers and only finitely many vp(G) being nonzero when P runs over Pr. The
support of G is a subset of P defined as

supp(G) = {P € Br [vo(G) # o} .

The degree of the divisor
G= ) ve(GP,

PePrp

denoted by deg G (or deg(G)), is defined to be
degG = Z vp(G)deg P,
PePr
where for a place P € P, deg P is the degree of P. Two divisors
G = Z vp(G)P and G’ = Z vp(G')P
PePr PePr

are added coeflicient-wise
G+G = Z vp(G) + vp(G')P.

PePr
Div(F) = {G ‘ G is a divisor of F/qu}
is a group according to the above addition. A partial ordering on Div(F) is defined by

G, <Gy & vp(G)) <vp(G,) forall P e Pp.
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Let
G, = Z vp(G)P and G, = Z vp(Go)P

PePr PePp

be two divisors of F'/F,. The intersection G| () G, of G| and G, is defined to be a divisor of F'/F, given
by

Gi[ )Gz = ) min{vp(Gy).ve(G2) P

PEPF

The union G, | G, of G| and G, is defined to be
G UGz = Z max {vp(G), vp(G2)} P.
PePrp

It is easily seen that

deg(Gy [ )| Ga) + deg(G1 |_] Go) = deg(G)) + deg(G). 2.1)

Suppose that a nonzero polynomial f(z) € F,[z] has the canonical irreducible factorization

f@=a| | pter
i=1

with a being a nonzero element of F,, r; > 0 being positive integers, and p;(z) being pairwise distinct
monic irreducible polynomials over F, for 1 <i < s. The divisor

N

> 1Py — (deg )P

i=1
of F/F, is denoted by (f). Generally, for a nonzero rational function

8(2)
the principal divisor (h) is defined as (f)—(g); after combing like terms in (f)—(g), (k) can be uniquely

written as
(h) = Z mpP — Z noQ

PeS Q€R

h € Fy(2),

with mp > O for any P € S and ny > 0 for any Q € R. The divisor };,.¢ mpP 1s called the zero divisor
of h, which is denoted by (h); the divisor ZQeR noQ is called the pole divisor of h, which is denoted by

(h)- Using such terminologies, every principal divisor can be uniquely expressed as (h) = (h)p—(h)e. It
is well-known that deg(h), = deg(h)., (see [9, Theorem 1.4.11]), and, particularly, all principal divisors
have degree zero.

For a divisor G of F/F,, the Riemann-Roch space asscociated to G (denoted by .Z(G)) is defined
by

.Z(G):{heF\{O}'(h)+G20}U{0}.

For any divisor G, .Z(G) is a finite dimensional linear space over F,. The dimension of .Z(G) is
denoted by €(G) or dim(.Z(G)). We will frequently use the following lemmas.
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Lemma 2.1. ([9, Corollary 1.4.12, Theorem 1.5.17]) Let G € Div(F,(2)). If deg G < —1, then £(G) = 0.
Ifdeg G > -1, then
{(G) =degG + 1.

Lemma 2.2. ([10, Lemma 2.6]) Let G, G, € Div(IF,(z)), then

LGN LG = LG [ G
Remark 2.3. Ifdeg(G, N G,) < —1, then £ (G) + Z(G,) is a direct sum.
Lemma 2.4. ([8, Lemma 7(1)]) Let G\, G, € Div(F,(2)). If deg(G, ( G») > —1, then
L(G) +Z(Gy) = L(Gi|_]Go.
We are now ready to present the .Z’-construction of algebraic geometry codes.
Definition 2.5. Let Py, ..., P, be pairwise distinct rational places of F/F, and let
D=P+...+P,.

Let G be a divisor of F|F, satisfying

supp(G) ﬂ supp(D) = 0.

The algebraic geometry code C (D, G) associated with the divisors D and G is defined as the image
of the evaluation map evp: Z(G) — F} given by

evp(f) = (f(PD), ..., f(P) € Fy forany f e Z(G),
namely,
C2(D,G) = evo(L(G) = {(f(P), ... f(Pa) | f € 2@}
The next lemma is useful in calculating the dimension of the Euclidean hull of GRS (e, v).

Lemma 2.6. (/9, Proposition 2.3.2] Let C (D, G) be a k-dimensional algebraic geometry code of
length n over Fy, as given in Definition 2.5, then k = n if and only if degG > n — 1.

For 1 < k < n, the k-dimensional GRS code of length n associated with a = (a4, a»,...,®,) and
v =(v,Vs,...,V,) is defined to be

GRSk(a’ V) = {(Vlf(al)’ v2f(a/2)’ SRR vnf(an)) f(X) € IF‘q[)(]’ deg f(X) <k- 1}

The following result is useful in this paper, which represents the GRS codes in terms of the divisors of
the rational function field F/F,,.

Lemma 2.7. ([9, Propositions 2.2.10 and 2.3.5, Lemma 2.3.6]) Consider the rational function field
F/F,and ay, ... ,a,, vy, ... v, € Fy, where ay, . .., a, are pairwise distinct. Let

h= l:[(z —a;) and Pi=P.,
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be the places corresponding to the irreducible polynomials z—a;for 1 <i < n. Let D = P,+...+P,. For
the k-dimensional GRS code GRS, (a,v) associated with a@ = (ay,...,a,) andv = (vy,...,v,), we
have

GRS (@, v) = C4(D, (k— 1)Ps — (1)), GRS j(@,v)" = Cx(D,(n —k — 1)Ps, + (u) + (1)),

where I/ € F[z] is the derivative of the polynomial h and, u € F,[z] satisfies u(a;) = v; (1 <i < n),
and degu = n.

From now on, we fix the notation and conditions in Lemma 2.7 and define
G =k-1)Py—(), Ga=(n—k—=1Ps+ W)+ ), andr=n—1—degh’.
3. Proof of Theorem 1.1

The main purpose of this section is to present a proof for Theorem 1.1. Our ultimate goal is to find
the exact value of the dimension of

GRS (@, v) N GRS i (a, v)*.
By linear algebra, we have
dim (GRS (@, v) N GRS (@, v)") = n — dim (GRS (@, v) + GRS ;(a,v)"). (3.1)

We first need the next lemma.

Lemma 3.1. Let the notations be the same as before, then dim (GRS ((a, v) + GRS (a, v)*) is equal to
dim (Z(G)) + Z(G,) + Z(G, UG, — D)) —dim (Z(G, U G,)) +dim (C»(D,G; U G))).
Proof. Note that G; < G; U G,, i = 1,2, then
Z(G;) C Z(G,UG,), Cy(D,G;) CCyx(D,G1UG,), i=1,2,
and, thus,
Z(G)) + Z(Gy) € Z(G, U G,), C4(D,Gy) + C4(D,Gy) € Cy(D,G U Gy).
Consider the F,-linear map
evp : L(GLUG,) - F, x> (x(Py),...,x(P),)).
It is easily verified that
Ker(evp) = Z(G, UG, — D), Im(evp) = C»(D,G; U G,).
Hence, we have an F,-linear isomorphism,

Z(G, UG/ ZL(G1 UG, — D) = Cy(D,G, U Gy),
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which implies
dim(Z (G, U G, — D)) = dim(Z(G; U G,)) — dim(C »(D, G, U G»)).
On the other hand, we have

eVp(ZL(G1) + Z(G2) + Z(G1 U G, - D)) = evp(Z(G1)) + evp(Z(Ga)) + evp(L(G1 U G, = D))
= C‘z/(D, G]) + Cg(D, GZ)’

which yields an F,-linear isomorphism,

ZL(G) + Z(Gy) + £(G, UG, - D)

2(G,UG,-D) = C¢(D,Gy) + C2(D,Gy). (3.2)

Therefore, the dimension of C »(D, G) + C #(D, G,) is equal to
dim(Z(G)) + Z(Gy) + £(G1 U G, — D)) —dim(Z (G, U Gy)) + dim(C ¢(D, G U Gy)).
Using Lemma 2.7, the proof is done. O
According to Eq (3.1) and Lemma 2.7, it is enough for us to determine
dim(Z(G; U Gy)), dim(C#(D, G U G»))

and
dim(Z(G,)) + Z(G,y) + Z(G, UG, — D)).

It is easy to calculate dim(-Z (G, U G,)) and dim(C #(D,G; U G,)). More explicitly, we have the
following lemma.

Lemma 3.2. Let the notations be the same as before. We have
dim(Z(G,UGy) =3n+k—-r—-1, dim(Cg(D,G,UG,)) =n. (3.3)
Proof. We note thatn+k—1> —n—k + r, then

GlUGZ:(n+k—1)Poo+(u)o+(h’)0
=@Bn+k—-r—-2)Py+ )+ M),

which implies
deg(GiUG,) =3n+k—-—r—-2>max{-1, n—1}.

According to Lemmas 2.1 and 2.6, we have
dim(Z (G, UG,)) =deg(GiUGy)+1=3n+k—-r-1

and
dim(C «(D, G, U G»)) = n.

O
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Now, we are going to determine dim(-Z(G,) + -Z(G,) + Z(G, U G, — D)). To this end, we have
to find an F;-basis of Z(G,), £(G»), and £ (G, U G, — D), respectively. Indeed, we have the next
lemma.

Lemma 3.3. With our notation, we have:

1) The set {u, uz,..., uzk‘l} is an Fy-basis of £ (G));

uh/’uh”"" uh

2) The set { } is an F,-basis of £ (G,);

2n+k—r— Zh
uhl’

3) Theset{ zh Zhoooz

uh’’ ul’’ ul’’

} is an F,-basis of £ (G, U G, — D).
Therefore, £(G) + £(G,) + (G, UG, — D) is equal to the F,-linear space

1 1 z Zn—k—l h zh Z2h Z2n+k—r—2h >

U, uz,...,uz ) ’ 9oy s T 4 0 1,9 7,0
< ul’” uh’ ul/ ~ul’ uh’ ul’ uh’

Proof. (1) Recall that

Gy = (k= 1)Ps — (u).
By

degG, =k-12>-1
and Lemma 2.1,

dim(Z(G,)) =deg(Gy) + 1 =k

It is easily seen that the set {u, Uz, ..., uzk“} is linearly independent over F,, so it is enough to show
uz’ € £(Gy), j=0,1,...,k—1.Indeed, forany 0 < j < k-1,

wz) + Gy = () + j(@) + (k = )Ps — ()
= j(Po — Ps) + (k= 1)Pq
= jPo+(k—1- j)Ps > 0.

Hence, uz/ € Z(G)), j=0,1,...,k—1.
(2) Since
Go=(n—k—1)Psx + () + (K).

Then by
degG, =k-12>-1

and Lemma 2.1,
dim(Z(G,)) = deg(G,) + 1 =n —k.

Obviously, the set {uh IR %} is linearly independent over FF,. On the other hand, for any 0 <

j<n-k-1,wehave

() +Ga= j(2) = (u) = (W) + (n =k + P + (u) + ()
= j(Po = Po) + (n —k = 1)Pq
=jPo+(n—k-1-jPs
> 0.
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Hence, < € Z(G,), j=0,1,...,n—k— 1. The proof of (2) is complete.

b Mh/

(3) Note that we have proved

dm(Z (G, UG, -D)=2n+k—-r—-1

. . 2 2n+k—r-2
in Lemma 3.2. Obviously, {ﬁ Lf—;‘,, i—h},’, - %

show %eg(GlUGZ—D),foranyO§j§2n+k—r—2. Sincen+k—-1>-n—k+r,

} is linearly independent over F,, so it is enough to

GIUG,=(n+k—1Ps+ o+ H)=0CBn+k—r—2)Ps+ )+ (I).

Thus,
GiUG,-D=0CBn+k—-r=-2)P+(w)+ )= (P +...+P)).
ForanyO0< j<2n+k—-r-2,
(%)+G1 UG, -D=j@+hW—-w)—W)+@Bn+k-r—2)P+w)+H)—(Py+...+ P,
= j(Py—P)+ (P +...+P)—nP+@Bn+k—-—r—2)P,— (P +...+ P,)
=jPo+(2n+k—-r—-2-jP,
> 0.
Therefore,ft%€$(G1UGZ—D)foranyOSj§2n+k—r—2. O
The next lemma determines dim(.Z(G,) + -Z(G,) + -£(G, U G, — D)) completely.

Lemma 3.4. Let the notations be the same as before. By polynomial long division,
w’h’ = Qoh + Ry

with deg Ry < n — 1. Using polynomial long division repeatedly, h = Q1R + R, with deg R, < degR,,
and
Ri = QiraRis1 + Riva

with deg Ri, < deg R,y fori > 0. We have

dim(Z(Gy) + Z(G») + L(G, UG, — D))
max{3n—r—1, 2n+2k—r—1+ degRy}, ifdegRy < n-—k,
S\max{3n+k—r—1—s,1, 2n+2k—r—1+degR,}, ifa>1isthe smallest integer (3.4)
satisfying degR, <n—kand degR, , =n—k+ s,.; >n—k.

Proof. By Lemma 3.3, we have

dim(Z(Gy) + Z(Gy) + £(G, U G, — D))

k-1 1 Z 271 h o zh 2k zz"+k""2h>

,uh/’uhlﬂ"" uhl ’uh/7uh/’uh/5"'7 uh/

= dim<u,uz,...,uz

=dim (u2h' 120z, .. WP Lz hzh, L 2R,
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For convenience, we use V to denote the F,-linear space
<u2h', wh'z,. . W2 1,2, .., 27 hzh, . z2n+k_r_2h> )
By polynomial long division, u*h’ = Qyh + Ry with deg Ry < n — 1. It is readily seen that
V= <R0,Roz, RN,z R bk, z2”+k"‘2h>
= Z((k—DPew—(R))+ Z(n—k—-1)Ps) + L((2n+k —r—2)Py — (h)),
where the first equality holds because
Qohz’ € (h.zh,....2""*"2h) and Wh'7/ = Qohz’ + Rt/ , VO < j<k—1.

We distinguish the following cases:
(1)degRy < n—k.
In this case, we claim
ZL((k—= 1Py —(Ry) + L(n—k—-1)Py) = L(max {degRy + k— 1,n—k — 1} P).

Indeed,
(k= 1DPs — (Ryg) = (deg Ry + k — 1)Pe — (Ro)o

leading to

(m—k-—1)P,N({(k=1)Py—(Ry))=min{n—k—1, degRy + k — 1} P, — (Rp)o
=min{n —k—1-degRy,k— 1} P, — (Ry),

and then by deg Ry < n -k,
deg ((n = k= DP [ (k= NP = (Ro))) = minfn — k = 1 - degRo, k= 1} > -1.
By Lemma 2.4, we have

ZL((k = 1DPe = (Ro)) + Z((n =k = DP) = ZL(((k = 1)Po — (Rp)) U ((n — k = )P))
= Z(max{degRy +k—1,n—k— 1} Py).

On the other hand, we show that
ZL(max{degRy+k—1,n—k—-1}P.)+ L((2n+k—-r—-2)P, — (h))
18 a direct sum. Indeed,
2Cn+k-r—2)P—(h) = Bn+k—r—-2)P,—(h)y and max{degRy+k—-1l,n—k—-1}<3n+k—-r-2,

S0,
max {degRy+k—1l,n—k -1} PN ((2n + k —r—2)P, — (h))
=max {degRy+k— 1,n—k— 1} P, — (h)o
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= max {degRy—n+k—1,-k— 1} P, — (h),
and
deg(max{degRy+ k — 1,n—k — 1}P, ﬂ((Zn +k—r—2)P,— (h)))
= max{degRy—-n+k—-1,-k -1}
<-1
By Remark 2.3, we arrive at the above direct sum. Therefore

dimV = dim(Z(max {degRy + k — 1,n — k — 1} Py,)) + dim(Z(2n + k — r — 2)Ps, — (h)))
=max {degRy+ k,n—k}+2n+k—-r—1
=max{3n—r—1, 2n+ 2k +degRy—r— 1}.
(2)degRy > n — k.
By polynomial long division, & = Q;Ry + R; with degR; < degR,. For convenience, let sy =

deg Ry — (n — k), then 1 < 5y < k. It is easily seen that

V= <R0,Roz, LR,z 2k zh, . .zs°_1h> o> <z‘y0h, ... ,zz"”‘_’_zh) ,

since
degRoz' <n—k+so+k—1=n+sy—1<degz®h (0<i<k-1)
and
degz/h < degz®h (0 < j < 5o — 1).
Thus, we get

dimV = dim(RO,Roz, Rz 2 g, .z“°’1h> +on+k—r—1-s.
On the other hand, forany 0 < j < sy — 1, we have
Zh=72Q\Ry+z/R, and degz/Q, =j+k—-so<k—1,

SO
<R0’ROZ’ R Lz, R zh, ‘z30‘1h>
:<RO’R0Z’ s aROZk_l, 1,z,... ’Zn_k_l,Rl,ZRl, . -ZS0_1R1>

Hence, it is enough to determine the dimension of the sum of the above Riemann-Roch spaces.
We still need to discuss the degree of R;.

(a)degR; <n—k.

In this case, we claim:

ZL((n—k—-1DPx) + Z((so = DPw — (R1)) = ZL((n — k = 1)Ps U ((s0 = 1)Ps = (R1)))
= Y(max{n—k—1,s0— 1 +degR,} P).
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By Lemma 2.4, we only need to show

deg((n —k = DPs N ((so = DPsx = (R1))) = —1.
Indeed,

(so = DPo — (R1) = (5o — I +deg Ry)Pc — (R1)o,

SO
(n—k—=1)PsN((so— DPsx = (R1))=(n—k—1)Ps N ((so — 1 + deg R)Pe — (R1)o)
= min{n—k— 1,50 —1 +ngR1}PDO —(Ry)o
=min{n—k—1-degRy, so— 1} P, — (Ry),

the degree of which is not less than -1.
On the other hand, we show that
ZL((k= 1Py —(Ry) + L(max{n—k—-1,s0— 1 +degR;} Ps,)
is a direct sum. Indeed,
degRy>n—k, degR; <n—-k and degRy=n—k+ so,
SO
n—k—1-degRy<-1 and so—1+degR; —degRy=degR,—1—-(n—-k)<-1.

Therefore,

deg(((k — 1)Po — (Ro)) N (max {(n —k — 1), 50 — 1 + deg R} Ps))

= deg(((k — 1 + deg Ry)P — (Ro)o) N (max {(n — k — 1), 5o — 1 + deg R} Pov))

= deg(min {k — 1 + deg Ry, max {(n —k — 1), s — 1 + deg R;}} Poo — (Ro)0)

= deg(min {k — 1,max {n —k — 1 —deg Ry, so — 1 + deg R; — deg Ry}} P, — (Ry))
<-1,

and, thus, we get the above direct sum by Remark 2.3. Hence, we have

dim(Z((k — )P = (Ro)) + Z((n — k = 1)Ps) + Z((s0 — DPs — (R1)))
= dim(ZL((k - 1)Pw — (Ry)) ® L (max {(n — k — 1), 5o — | + deg R} P.o))
= dim(Z((k — 1)Ps — (Ry))) + dim(Z(max {(n —k — 1), 50 — 1 + deg R} P,))
=k + max {n — k, so + deg R},
which yields
dimV=max{3n+k—-r—1-s9, 2n+2k—r—1+degR;}.
(b)yn — k < deg R, < degRy.

Using polynomial long division repeatedly (if necessary),

Ri = Qix2Riz1 + Riso
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with
degR;,, <degR;y, i=0,1,2,....
Let a > 1 be the smallest integer such that
Ro2 = QuRa1 + R,
with deg R, < n — k. Suppose that
s, =degR,—(n—k), b=0,1,...,a—-1.
It is the same as in the cases (1) and (a). We obtain
dim V = dim (Ro, Roz. ..., Roz ', 1,z,..., " L R, 2R, ... IR )+ 2n bk —r—2— 50+ 1
= dim ((Ro. Roz. ... Rz ™" Lz,.... 2" M Ri 2Ry, .2 'R ) @ (Roz. ... Rod ™))
+2n+k—-r—1-ys
= dim (Ro, Rz, ... Roz" ™, 1,2, ..., 2" KL Ry 2Ry, .27 Ry ) + (k= 51)
+2n+k—-—r—1-ys
= dim (Ro. Roz. ..., Roz" ™, L.z, " " Ry 2Ry, .. 27 'R ) 4+ 2n+ 2k =7 = 1 = 5 — s
= dim (Ry, Rz, ..., Roz" ™, 1,20, 2L Ry 2Ry, 20 Ry Y+ 2n 4 2k =7 = 1= 59 = s
= dim ((Ry, Roz. ..., Roz" ' Lz, 2L R 2Ry .27 IR @ (2R, .., 297 'Ry )
+2n+2k—r—1-1s59— 89
= dim <R2,R2z, e R Lz, 2 R 2R, . .z”‘lR1> + (S0 — 52)
+2n+2k—r—1-50— 5
= dim <R2,R2z, e R,z 2 RS 2R, .z52‘1R3> +2n+2k—-r—-1—s1— 95

= dim (Ro_, Ruci2 .. Rooiz>7 Lz, 27 Ry 2R, 2R, )
+2n+2k—r—1—5,0— S,

= dim (Z((s42 = DPe + (Ry-1)) + L(n =k = 1)Ps) + L((s4-1 — P — (Ry)))
+2n+2k—r—1— 5,0 — 541

=dim(Z((s4-2 — DPo + (R-1)) ® L (max{n —k—1,5,1 — 1 + degR,} Ps)
+2n+2k—r—1— 5,0 — 541

=s,o+max{n—k,s, 1 +degR,}+2n+2k—r—1—1s,2— 5.1

=max{3n+k—-r—1-s5,1,2n+2k—r—1+degR,}.

Combining the above lemmas, we have finished the proof of Thoerem 1.1.

4. Corollaries of Theorem 1.1

In this section, we derive several corollaries of Theorem 1.1. In [8], the authors considered a special
class of GRS codes, ie.,v=(1,...,1) € (IF"Z)". Let

u@ = |e-ap+1.
i=1
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We have Ry = /' in the equation
w’h' = Qoh + Ry with degRy<n—1.

Thus we get the next corollary, which coincides with the main result in [8].

Corollary 4.1. Let RS (@) be a k-dimensional RS code over F, associated with « = (a, ..., a,). Let

h=] Je-a
i=1

and let h' denote the derivative of h. Let u(z) = h(z) + 1. Using polynomial long division repeatedly,
h=Qh+R, with degR, <degh’,

and
R; = Qi+2R,‘+1 + R, with degR,-+2 < degR,-+1 for i>0,

where Ry := I, we have
min{k,n — k — degh'}, ifdegh’ <n—k,
dim (RS, (@) ﬂ RSk(a')l) =Ymin{s,_;,n — k —degR,}, if a > 1 is the smallest integer
satisfying degR, <n—k and degR,.1 =n—k+ s,.; >n—k.

In Theorem 1.1, if deg Ry < n — 2k, then deg Ry < n—k and k < n — k — deg Ry. By the first case in
Theorem 1.1, we have
dim (GRS i(a,v) N GRS (@, v)*) = k,

which implies that GRS (e, v) is self-orthogonal. Hence, we have the next corollary.

Corollary 4.2. Let GRSi(a, v) be a k-dimensional GRS code over F, associated with @ = (ay, ..., a,)

andv = (vy,...,v,). Let
h=]lec-a
i=1

and let i’ denote the derivative of h. Let u(z) € F,[z] be a polynomial satisfying u(a;) = v; (1 <i <n)
and degu(z) = n. By polynomial long division, u*h’ = Qyh + Ry with deg Ry < n. Using polynomial
long division repeatedly, h = Q1Ry+ R; with deg R, < deg Ry, and R; = Q;2R;11 + Ry, with degR;» <
degR;y1 fori>0.If degRy < n — 2k, then GRS \(a, v) is self-orthogonal.

The work [8, Corollary 19] gives a sufficient and necessary condition for an RS code to be a
self-duality: Suppose RSi(a) is a k-dimensional RS code of length n over F, associated with

a = (a,...,q,). Let
h=||c-a
i=1
and let 4’ be the derivative of h, then RS;() is self-dual if and only if n = 2k and degh’ = O, or,
equivalently, &’ is a nonzero constant function. The following result suggests a new way to generate

self-dual RS codes.
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Corollary 4.3. Let F, be the finite field with characteristic p and let

h=ag+ax+bx" +byx* + ...+ b,x"
be a polynomial over F,. Assume further that F is the splitting field of h with roots {a,, ..., apn}. If
pm is even, then RSy(«a) is a self-dual RS code over Fy, where k = pm/2 and a = (ay, ..., apy).

Example 4.4. Take g = 9 in Theorem 1.1 and let 6 be a generator of g given by groups, algorithms and
programming (GAP) [11]. Take @ = (8,6, 6%,6*,6°,6%),v = (6,6,6,0,6,6), and k = 4 in Theorem 1.1,
namely, we consider the GRS code GRS4(«, v) of length 6 over Fy. Using GAP directly, one has

dim (GRS4(e,v) [ | GRS (av)") = 1.
On the other hand, Theorem 1.1 says that

dim (GRS4(e,») [ | GRS (e, »)") = 1.
5. Conclusions and future work

Let GRSy(a, v) be a k-dimensional GRS code over F, associated with @ = (ay,...,@,) and v =
(vy,...,vy). Let

@ = |-
i=1

be a polynomial in variable z. In this paper, we determine the dimension of the Euclidean hull
GRS (a,v) NGRS (a,v)*

in terms of the degree of the derivative of A(z) and some relevant polynomials (see Theorem 1.1). The
conclusion of our main result extends the main result of [8].

A possible direction for future work is to study the dimensions of the Hermitian hulls of GRS codes.
It would also be interesting to find a new way to generate self-dual GRS codes.

Denote by GRS (@, v) a k-dimensional GRS code over F, with parameters @ = (a1,...,a,) and
v=(vq,...,U,), and let

W@ = |-
i=1

represent a polynomial in z. This study focuses on determining the dimension of the intersection
between the Euclidean hull
GRS (a,v) NGRS (a,v)*

based on the degree of the derivative of h(z). The main result discussed in this paper builds upon the
findings of [8].

A potential avenue for future research includes exploring the dimensions of the Hermitian hulls
of GRS codes. Additionally, investigating novel methods for generating self-dual GRS codes could
present an intriguing research direction.
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