Our aim is to introduce the notion of Nb-fuzzy metric space (FMS). We also define quasi N-FMS, and pseudo Nb-FMS with examples and counterexamples and prove a decomposition theorem for pseudo Nb-FMS. We prove various theorems related to the convergence of sequences and analyze topology of symmetric Nb-FMS. At last, we provide an application of q-contraction mapping as a Banach contraction principle (BCP) in the structure of symmetric Nb-FMS and applied it in the solution of integral equations and linear equations.
Citation: Jerolina Fernandez, Hüseyin Işık, Neeraj Malviya, Fahd Jarad. Nb-fuzzy metric spaces with topological properties and applications[J]. AIMS Mathematics, 2023, 8(3): 5879-5898. doi: 10.3934/math.2023296
[1] | Yipeng Qiu, Yingying Xiao, Yan Zhao, Shengyue Xu . Normalized ground state solutions for the Chern–Simons–Schrödinger equations with mixed Choquard-type nonlinearities. AIMS Mathematics, 2024, 9(12): 35293-35307. doi: 10.3934/math.20241677 |
[2] | Yonghang Chang, Menglan Liao . Global well-posedness and scattering of the four dimensional cubic focusing nonlinear Schrödinger system. AIMS Mathematics, 2024, 9(9): 25659-25688. doi: 10.3934/math.20241254 |
[3] | Shulin Zhang . Positive ground state solutions for asymptotically periodic generalized quasilinear Schrödinger equations. AIMS Mathematics, 2022, 7(1): 1015-1034. doi: 10.3934/math.2022061 |
[4] | Xionghui Xu, Jijiang Sun . Ground state solutions for periodic Discrete nonlinear Schrödinger equations. AIMS Mathematics, 2021, 6(12): 13057-13071. doi: 10.3934/math.2021755 |
[5] | Fugeng Zeng, Peng Shi, Min Jiang . Global existence and finite time blow-up for a class of fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity. AIMS Mathematics, 2021, 6(3): 2559-2578. doi: 10.3934/math.2021155 |
[6] | Yang Pu, Hongying Li, Jiafeng Liao . Ground state solutions for the fractional Schrödinger-Poisson system involving doubly critical exponents. AIMS Mathematics, 2022, 7(10): 18311-18322. doi: 10.3934/math.20221008 |
[7] | Meixia Cai, Hui Jian, Min Gong . Global existence, blow-up and stability of standing waves for the Schrödinger-Choquard equation with harmonic potential. AIMS Mathematics, 2024, 9(1): 495-520. doi: 10.3934/math.2024027 |
[8] | Dengfeng Lu, Shuwei Dai . On a class of three coupled fractional Schrödinger systems with general nonlinearities. AIMS Mathematics, 2023, 8(7): 17142-17153. doi: 10.3934/math.2023875 |
[9] | Yingying Xiao, Chuanxi Zhu, Li Xie . Existence of ground state solutions for the modified Chern-Simons-Schrödinger equations with general Choquard type nonlinearity. AIMS Mathematics, 2022, 7(4): 7166-7176. doi: 10.3934/math.2022399 |
[10] | Ramzi Alsaedi . Existence of multiple solutions for a singular p(⋅)-biharmonic problem with variable exponents. AIMS Mathematics, 2025, 10(2): 3779-3796. doi: 10.3934/math.2025175 |
Our aim is to introduce the notion of Nb-fuzzy metric space (FMS). We also define quasi N-FMS, and pseudo Nb-FMS with examples and counterexamples and prove a decomposition theorem for pseudo Nb-FMS. We prove various theorems related to the convergence of sequences and analyze topology of symmetric Nb-FMS. At last, we provide an application of q-contraction mapping as a Banach contraction principle (BCP) in the structure of symmetric Nb-FMS and applied it in the solution of integral equations and linear equations.
In this paper, we consider the existence of standing waves for the following coupled system of biharmonic Schrödinger equations
{i∂tE1−△2E1+|E1|2E1+β|E2|2E1=0,i∂tE2−△2E2+|E2|2E2+β|E1|2E2=0, | (1.1) |
where E1=E1(x,t)∈C, E2=E2(x,t)∈C and β is a constant. This system describes the interaction of two short dispersive waves. By standing waves we mean solutions of type
(E1(x,t),E2(x,t))=(eiλ1tu(x),eiλ2tv(x)), | (1.2) |
where u,v are real functions. This leads us to study the following biharmonic Schrödinger system
{Δ2u+λ1u=u3+βuv2,Δ2v+λ2v=v3+βu2v, | (1.3) |
where (u,v)∈H2(RN)×H2(RN). In this paper we assume that 1≤N≤7,λi>0(i=1,2) and β is a coupling parameter.
In order to describe wave propagation, some models with higher-order effects and variable coefficients, such as the third-, fourth- and fifth-order dispersions, self-steepening and symmetric perturbations, have been proposed in physical literatures (see e.g.[26]). Karpman investigated the stability of the soliton solutions for fourth-order nonlinear Schrödinger equations (see [13,14]). To understand the differences between second and fourth order dispersive equations, one can refer to [11].
Physically, the interaction of the long and short waves can be described by a system of coupled nonlinear Schrödinger and Korteweg-de Vries equations. Recently, a fourth-order version of such system was considered by P. Alvarez-Caudevilla and E. Colorado [5]. Using the method of Nehari manifold, they proved the existence of ground state in radially symmetric space H2r(RN)×H2r(RN). In their proof, the compact embedding of radially symmetric function space is essential. A natural problem is whether there exists a ground state in the Sobolev space H2(RN)×H2(RN).
On the other hand, the second order counterparts of (1.1) and (1.3) are respectively
{i∂tE1−△E1+|E1|2E1+βE1|E2|2=0,i∂tE2−△E2+|E2|2E2+β|E1|2E2=0. | (1.4) |
and
{Δu+λ1u=u3+βuv2,Δv+λ2v=v3+βu2v. | (1.5) |
Since pioneering works of [2,3,4,18,19,22], system (1.5) and its extensions to more general second order elliptic systems have been extensively studied by many authors, e.g. [8,9,12,21,23]. For the similar problem for fractional order elliptic system, one can refer to [7,10,25].
Motivated by the above developments, using techniques of variation principle and concentration-compactness lemma, we consider the existence of ground state for system (1.3). By ground state, we mean a nontrivial least energy solution of the system.
We organize the paper as follows. In Section 2, we give some notations, elementary results and statements of our main theorems. In Section 3, we study some properties of Palais-Smale sequence. In Section 4, we give the proof of our main theorems.
In H2(RN), we define the following norm:
⟨u,v⟩i:=∫RN(Δu⋅Δv+λiuv),‖u‖2i:=⟨u,u⟩i,i=1,2. | (2.1) |
For u∈Lp(RN), we set |u|p=(∫RN|u|p)1p for 1≤p<∞. Accordingly, the inner product and induced norm on
H:=H2(RN)×H2(RN). |
are given by
⟨(u,v),(ξ,η)⟩=∫RN(Δu⋅Δξ+Δv⋅Δη+λ1uξ+λ2vη),‖(u,v)‖2=‖u‖21+‖v‖22. | (2.2) |
The energy functional associated with system (1.3) is
Φ(u)=12‖u‖21+12‖v‖22−14∫RN(u4+v4)−12β∫RNu2v2. | (2.3) |
for u=(u,v)∈H.
Set
I1(u)=12‖u‖21−14∫RNu4,I2(v)=12‖v‖21−14∫RNv4, |
Ψ(u)=Φ′(u)[u]=‖u‖2−∫RN(u4+v4)−2β∫RNu2v2. | (2.4) |
and the Nehari manifold
N={u=(u,v)∈H∖{(0,0)}:Ψ(u)=0}. |
Let
2∗={2NN−4,ifN>4,∞,if1≤N≤4. |
Then we have the following Sobolev embedding:
H2(RN)↪Lp(RN),for{2≤p≤2∗,if N≠4,2≤p<2∗,if N=4. |
Proposition 2.1. Let ΦN be the restriction of Φ on N.The following properties hold.
i) N is a locally smooth manifold.
ii) N is a complete metric space.
iii) u∈N is a critical point of Φ if and only if u is a critical point of ΦN.
iv) Φ is bounded from below on N.
Proof. i) Differentiating expression (2.4) yields
Ψ′(u)[u]=2‖u‖2−4∫RN(u4+v4)−8β∫RNu2v2. | (2.5) |
By the definition of Nehari manifold, for u∈N, Ψ(u)=0 and hence
Ψ′(u)[u]=Ψ′(u)[u]−3Ψ(u)=−2‖u‖2<0. | (2.6) |
It follows that N is a locally smooth manifold near any point u≠0 with Ψ(u)=0.
ii) Let {un}⊂N be a sequence such that ‖un−u0‖→0 as n→+∞. By Gagliardo-Nirenberg-Sobolev inequality and interpolation formula for Lp space, we have |un−u0|p→0 and |vn−v0|p→0 for 2≤p<2∗. It easily follows that Φ′(un)[un]−Φ′(u0)[u0]→0. Since Φ′(un)[un]=0, we have Φ′(u0)[u0]=0.
Claim: There exists ρ>0 such that for all u∈N, ||u||>ρ.
Since un∈N for all n and ‖un−u0‖→0, we get u0≠(0,0). Hence un∈Nand N is a complete metric space.
Proof of the claim: Taking the derivative of the functional Φ in the direction h=(h1,h2), it follows that
Φ′(u)[h]=∫RN(Δuh1+λ1uh1+Δvh2+λ2vh2)−∫RN(u3h1+v3h2)−β∫RN(uv2h1+u2vh2). |
Taking the derivative of Φ′(u)[h] in the direction h again, it follows that
Φ″(u)[h]2=‖h‖2−3∫RN(u2h21+v2h22)−β∫RN(u2h22+v2h21+4uvh1h2). |
Note that [h]2 means [h,h] and h=(h1,h2). Let u=0, we obtain Φ″(0)[h]2=‖h‖2, which implies that 0 is a strict minimum critical point of Φ. In a word, we can deduce that N is a smooth complete manifold and there exists a constant ρ>0 such that
‖u‖2>ρfor allu∈N. | (2.7) |
iii) Assume that (u0,v0)∈N is a critical point of ΦN. Then there is a Lagrange multiplier Λ∈R such that
Φ′(u0,v0)=ΛΨ′(u0,v0). | (2.8) |
Hence
0=(Φ′(u0,v0),(u0,v0))=Λ(Ψ′(u0,v0),(u0,v0)). | (2.9) |
From (2.6) and (2.9), we get Λ=0. Now (2.10) shows that Φ′(u0,v0)=0, i.e. (u0,v0) is a critical point of Φ.
iiii) By (2.3), (2.4) and (2.7), we have
ΦN(u)=14‖u‖2, | (2.10) |
and
Φ(u)≥14ρfor allu∈N. | (2.11) |
Then Φ is bounded from below on N.
Lemma 2.1. For every u=(u,v)∈H∖{(0,0)}, there is a unique number t>0 such that tu∈N.
Proof. For (u,v)∈H∖{(0,0)} and t>0, define
ω(t):=Φ(tu,tv)=12t2‖u‖2−14t4∫RN(u4+v4)−12βt4∫RNu2v2. |
For fixed (u,v)≠(0,0), we have ω(0)=0 and ω(t)≥C′t2 for small t. On the other hand, we have ω(t)→−∞ as t→∞. This implies that there is a maximum point tm>0 of ω(t) such that ω′(tm)=Φ′(tmu)u=0 and hence tmu∈N. Actually, since Φ has special structure, by direct computation we can also get the unique tm.
Lemma 2.2. ([20,page 125])
Let u∈Lq(RN) and Dmu∈Lr(RN) for 1≤r,q≤∞. For 0≤j<m, there exists a constant C>0 such that the following inequalities hold:
‖Dju‖Lp≤C‖Dmu‖αLr‖u‖1−αLq, |
where
1p=jN+(1r−mN)α+1−αq,jm≤α≤1. |
and C=C(n,m,j,q,r,α).
The main results of the present paper are as follows:
Theorem 2.1. There exist two positive numbers Λ− and Λ+, Λ−≤Λ+, such that
(i) If β>Λ+, the infimum of Φ on N is attained at some ˜u=(˜u,˜v) with Φ(˜u)<min{Φ(u1),Φ(v2)} and both ˜u and ˜v are non-zero.
(ii) If 0<β<Λ−, then Φ constrained on N has a mountain pass critical point u∗ with Φ(u∗)>max{Φ(u1),Φ(v2)}.
The definitions of Λ+,Λ−,u1 and v2 will be given in section 4.
Let
c=infNΦ(u). |
Lemma 3.1. There exists a bounded sequence un=(un,vn)⊂N such that Φ(un)→c and Φ′(un)→0 as n→+∞.
Proof. From Proposition 1, Φ is bounded from below on N. By Ekeland's variational principle [24], we obtain a sequence un⊂N satisfying
Φ(un)≤infNΦ(u)+1n,Φ(u)≥Φ(un)−1n‖un−u‖for anyu∈N. | (3.1) |
Since
c+1n≥Φ(un)=14‖un‖2, | (3.2) |
there exists C>0 such that
‖un‖2≤C. | (3.3) |
For any (y,z)∈H with ‖(y,z)‖≤1, denote
Fn(s,t)=Φ′(un+sy+tun,vn+sz+tvn)(un+sy+tun,vn+sz+tvn). | (3.4) |
Obviously, Fn(0,0)=Φ′(un,vn)(un,vn)=0 and
∂Fn∂t(0,0)=(Ψ′(un,vn),(un,vn))=−2‖un‖2<0. | (3.5) |
Using the implicit function theorem, we get a C1 function tn(s):(−δn,δn)→R such that tn(0)=0 and
Fn(s,tn(s))=0,s∈(−δn,δn). | (3.6) |
Differentiating Fn(s,tn(s)) in s at s=0, we have
∂Fn∂s(0,0)+∂Fn∂t(0,0)t′n(0)=0. | (3.7) |
From (2.4) and (2.7), it follows that
|∂Fn∂t(0,0)|=|(Ψ′(un,vn),(un,vn))|=2||un‖2>2ρ. | (3.8) |
By Hölder's inequality and Sobolev type embedding theorem, it yields
|∂Fn∂s(0,0)|=|(Ψ′(un,vn),(y,z))|≤|2((un,vn),(y,z))|+|4∫RN(u3ny+v3nz)|+|4β∫RN(unv2ny+u2nvnz)|≤C1. | (3.9) |
From (3.7)–(3.9), we obtain
|t′n(0)|≤C2. | (3.10) |
Let
(¯y,¯z)n,s=s(y,z)+tn(s)(un,vn),(y,z)n,s=(un,vn)+(¯y,¯z)n,s. | (3.11) |
In view of (3.1), we have
|Φ(y,z)n,s−Φ(un,vn)|≤1n‖(¯y,¯z)n,s‖. | (3.12) |
Applying a Taylor expansion on the left side of (3.12), we deduce that
Φ(y,z)n,s−Φ(un,vn)=(Φ′(un,vn),(¯y,¯z)n,s)+r(n,s)=(Φ′(un,vn),s(y,z))+(Φ′(un,vn),tn(s)(un,vn))+r(n,s)=s(Φ′(un,vn),(y,z))+r(n,s), | (3.13) |
where r(n,s)=o‖(¯y,¯z)n,s‖ as s→0.
From (3.3), (3.10), (3.11) and tn(0)=0, we have
lim sup|s|→0‖(¯y,¯z)n,s‖|s|≤C3, | (3.14) |
where C3 is independent of n for small s. Actually, it follows from (3.10), (3.11) that r(n,s)=O(s) for small s.
From (3.3), (3.12)–(3.14), we have
|(Φ′(un,vn),(y,z))|≤C3n. | (3.15) |
Hence Φ′(un,vn)→0 as n→∞. We complete the proof of the lemma.
From the above lemma, we have a bounded PS sequence such that Φ′(un,vn)→0 and Φ(un,vn)→c. Then, there exists (u0,v0)∈H2(RN)×H2(RN) such that (un,vn)⇀(u0,v0).
Lemma 3.2. Assume that (un,vn)⇀(u0,v0) and Φ′(un,vn)→0 as n→∞. Then Φ′(u0,v0)=0.
Proof. For any {\bf{ \pmb{\mathsf{ ν}}}} = (\varphi, \psi), \varphi, \psi\in C^{\infty}_{0}({\mathbb{R}}^{N}) , we have
\begin{equation} \Phi^{'}(u_{n},v_{n}){\bf{ \pmb{\mathsf{ ν}}}} = \langle(u_{n},v_{n}),(\varphi,\psi)\rangle-\int_{{\mathbb{R}}^{N}}(u_{n}^{3}\varphi+ v_{n}^{3}\psi)-\beta\int_{{\mathbb{R}}^{N}}(u_{n}v_{n}^{2}\varphi-u_{n}^{2}v_{n}\psi). \end{equation} | (3.16) |
The weak convergence \{{\bf{u}}_{n}\} implies that \langle(u_{n}, v_{n}), (\varphi, \psi)\rangle\rightarrow \langle(u_{0}, v_{0}), (\varphi, \psi)\rangle . Let K\subset{\mathbb{R}}^{N} be a compact set containing supports of \varphi, \psi , then it follows that
\begin{equation*} \begin{aligned} &(u_{n},v_{n})\rightarrow (u_{0},v_{0}) \quad \text{in}\; \; L^{p}(K)\times L^{p}(K)\; \; \text{for}\; \; 2\leq p < 2^{\ast}, \\ &(u_{n},v_{n})\rightarrow (u_{0},v_{0}) \quad \text{for a.e.}\; x\in {\mathbb{R}}^{N}. \end{aligned} \end{equation*} |
From [6], there exist a_{K} and b_{K} \in L^{4}(K) such that
\begin{equation*} |u_{n}(x)|\leq a_{K}(x)\quad \text{and} \quad |v_{n}(x)|\leq b_{K}(x)\quad \text{for a.e.}\; x\in K. \end{equation*} |
Define c_{K}(x): = a_{K}(x)+b_{K}(x) for x\in K . Then c_{K}\in L^{4}(K) and
\begin{equation*} |u_{n}(x)|,|v_{n}(x)|\leq|u_{n}(x)|+|v_{n}(x)|\leq a_{K}(x)+b_{K}(x) = c_{K}(x) \quad \\\text{ for a.e.}\; x\in K. \end{equation*} |
It follows that, for a.e. x\in K ,
\begin{equation*} \begin{aligned} &u_{n}v_{n}^{2}\varphi\leq c_{K}^{3}|\varphi|, \\ &u_{n}^{2}v_{n}\psi\leq c_{K}^{3}|\psi|, \end{aligned} \end{equation*} |
and hence
\begin{equation*} \begin{aligned} &\int_{K}c_{K}^{3}|\varphi|dx\leq |c_{K}\chi_{K}|^{3}_{4}|\varphi \chi_{K}|_{4}, \\ &\int_{K}c_{K}^{3}|\psi|dx\leq |c_{K}\chi_{K}|^{3}_{4}|\psi\chi_{K}|_{4}. \end{aligned} \end{equation*} |
By Lebesgue's dominated convergence theorem, we have
\begin{equation} \begin{aligned} \int_{K}u_{n}v_{n}^{2}\varphi dx\rightarrow \int_{K}u_{0}v_{0}^{2}\varphi dx, \\ \int_{K}u_{n}^{2}v_{n}\psi dx\rightarrow \int_{K}v_{0}u_{0}^{2}\psi dx. \end{aligned} \end{equation} | (3.17) |
Similarly, there exists d_{K}(x)\in L^{4}(K) such that |u_{n}|\leq d_{K}(x)\; \text{for a.e.}\; x\in K and
\begin{equation*} u_{n}^{3}\varphi\leq|u_{n}|^{3}|\varphi|\leq d_{K}(x)^{3}|\varphi| \quad for \; a.e.\; x\in K. \end{equation*} |
By Lebesgue's dominated convergence theorem, it yields
\begin{equation} \int_{K}u_{n}^{3}\varphi dx\rightarrow \int_{K}u_{0}^{3}\varphi dx. \end{equation} | (3.18) |
By (3.16)–(3.18), we obtain
\begin{equation} \Phi^{'}(u_{n},v_{n})(\varphi,\psi)\rightarrow \Phi^{'}(u_{0},v_{0})(\varphi,\psi) \end{equation} | (3.19) |
and \Phi^{'}(u_{0}, v_{0}) = 0 . Thus (u_{0}, v_{0}) is a critical point of \Phi .
Lemma 3.3. ([24,Lemma 1.21])If u_{n} is bounded in H^{2}({\mathbb{R}}^{N}) and
\begin{equation} \sup\limits_{z\in{\mathbb{R}}^{N}}\int_{B(z,1)}|u_{n}|^{2}dx\rightarrow 0 \; \; \mathit{\text{as}}\; \; n\rightarrow \infty, \end{equation} | (3.20) |
then u_{n}\rightarrow 0 in L^{p}({\mathbb R}^N) for 2 < p < 2^{\ast} .
Lemma 3.4. Assume that \{{\bf{u}}_{n}\} is a PS sequence constrained on \mathcal{N} and
\begin{equation} \sup\limits_{z\in{\mathbb{R}}^{N}}\int_{B(z,1)}|{\bf{u}}_{n}|^{2}dx = \sup\limits_{z\in{\mathbb{R}}^{N}}(\int_{B(z,1)}|u_{n}|^{2}dx+\int_{B(z,1)}|v_{n}|^{2}dx) \rightarrow 0. \end{equation} | (3.21) |
Then \|{\bf{u}}_{n}\|\rightarrow 0 .
Proof. Since \{{\bf{u}}_{n}\}\in\mathcal N and thus
\begin{equation*} \|{\bf{u}}_{n}\| = \int_{{\mathbb{R}}^{N}}(u_{n}^{4}+v_{n}^{4})+2\beta\int_{{\mathbb{R}}^{N}}u_{n}^{2}v_{n}^{2}. \end{equation*} |
From Lemma 3.3, we have that u_{n}\rightarrow 0, v_{n}\rightarrow 0 in L^{p}({\mathbb{R}}^{N}) for 2 < p < 2^{\ast} . By Hölder's inequality, it follows that
\begin{equation*} \int_{{\mathbb{R}}^{N}}(u_{n}^{4}+v_{n}^{4})+2\beta\int_{{\mathbb{R}}^{N}}u_{n}^{2}v_{n}^{2}\rightarrow0, \end{equation*} |
and hence \|{\bf{u}}_{n}\|\rightarrow0 .
System (1.3) has two kinds of semi-trivial solutions of the form (u, 0) and (0, v) . So we take {\bf{u}}_{1} = (U_{1}, 0) and {\bf{v}}_{2} = (0, V_{2}) , where U_{1} and V_{2} are respectively ground state solutions of the equations
\triangle^{2}f+\lambda_{i}f = f^{3},\; \; i = 1,2 |
in H^{2}({\mathbb{R}}^{N}) which are radially symmetric(see [15]). Moreover, if we denote w a ground state solution of (4.1)
\begin{equation} \triangle^{2}w+w = w^{3}, \end{equation} | (4.1) |
by scaling we have
\begin{equation} U_{1}(x) = \sqrt{\lambda_{1}} \; w(\sqrt[4]{\lambda_{1}}\; x), \quad V_{2}(x) = \sqrt{\lambda_{2}} \; w(\sqrt[4]{\lambda_{2}}\; x). \end{equation} | (4.2) |
Thus two kinds of semi-trivial solutions of (1.3) are respectively {\bf{u}}_{1} = (U_{1}, 0) and {\bf{v}}_{2} = (0, V_{2}) .
Definition 4.1. We define the two constants related to U_{1} and V_{2} as follows:
\begin{equation} S_{1}^{2}: = \inf\limits_{\varphi\in H^2(\mathbb R^N)\backslash\{0\}}\frac{\|\varphi\|_{2}^{2}}{\int_{{\mathbb{R}}^{N}}U_{1}^{2}\varphi^{2}}, \quad S_{2}^{2}: = \inf\limits_{\varphi\in H^2(\mathbb R^N)\backslash\{0\}}\frac{\|\varphi\|_{1}^{2}}{\int_{{\mathbb{R}}^{N}}V_{2}^{2}\varphi^{2}}, \end{equation} | (4.3) |
and
\begin{equation*} \Lambda^{+} = \max\{S_{1}^{2},S_{2}^{2}\},\ \Lambda^{-} = \min\{S_{1}^{2},S_{2}^{2}\}. \end{equation*} |
Proposition 4.1. i). If 0 < \beta < \Lambda^{-} , then {\bf{u}}_{1}, {\bf{v}}_{2} are strict local minimum elements of \Phi constrained on \mathcal{N} .
ii). If \beta > \Lambda^{+} , then {\bf{u}}_{1}, {\bf{v}}_{2} are saddle points of \Phi constrained on \mathcal{N} . Moreover
\begin{equation} \inf\limits_{\mathcal{N}}\Phi({\bf{u}}) < \min\{\Phi({\bf{u}}_{1}),\Phi({\bf{v}}_{2})\}, \end{equation} | (4.4) |
Proof. Since the proof is similar to [5], we omit it.
Next, we will see that the infimum of \Phi constrained on the Nehari manifold \mathcal{N} is attained under appropriate parameter conditions. We also give the existence of a mountain pass critical point.
Proof. We first give the proof of Theorem 2.1 (i) .
By Lemma 3, there exists a bounded PS sequence \{{\bf{u}}_{n}\}\subset \mathcal{N} of \Phi , i.e.
\begin{equation*} \Phi({\bf{u}}_{n}) \rightarrow c: = \inf\limits_{\mathcal{N}}\Phi \; \; \text{and} \; \; \Phi^{'}_{\mathcal{N}}({\bf{u}}_{n})\rightarrow 0. \end{equation*} |
We can assume that the sequence \{{\bf{u}}_{n}\} possesses a subsequence such that
\begin{equation*} \begin{aligned} &{\bf{u}}_{n}\rightharpoonup \widetilde{{\bf{u}}} \; \; \text{in}\; \mathbb H, \\ &{\bf{u}}_{n}\rightarrow \widetilde{{\bf{u}}} \; \; \text{in}\; L_{loc}^{p}({\mathbb{R}}^{N})\times L_{loc}^{p}({\mathbb{R}}^{N}) \; \text{for}\; 2\leq p < 2^{\ast}, \\ &{\bf{u}}_{n}\rightarrow \widetilde{{\bf{u}}} \; \; \text{for a.e.}\; x\in {\mathbb{R}}^{N}. \end{aligned} \end{equation*} |
Suppose that
\begin{equation*} \sup\limits_{z\in{\mathbb{R}}^{N}}\int_{B(z,1)}|{\bf{u}}_{n}|^{2}dx = \sup\limits_{z\in{\mathbb{R}}^{N}}(\int_{B(z,1)}|u_{n}|^{2}dx+\int_{B(z,1)}|v_{n}|^{2}dx) \rightarrow 0. \end{equation*} |
From Lemma 3.4, we have {\bf{u}}_{n}\rightarrow 0 . This contradicts with {\bf{u}}_{n}\in\mathcal{N} . In view of Lions' Lemma, there exists y_{n}\subset{\mathbb{R}}^{N} such that
\begin{equation*} \liminf\limits_{n\rightarrow \infty}\int_{B(y_{n},1)}|u_{n}|^{2}dx > \delta \; \; \text{or}\; \; \liminf\limits_{n\rightarrow \infty}\int_{B(y_{n},1)}|v_{n}|^{2}dx > \delta. \end{equation*} |
Without loss of generality, we assume that
\begin{equation*} \liminf\limits_{n\rightarrow \infty}\int_{B(y_{n},1)}|u_{n}|^{2}dx > \delta. \end{equation*} |
For each y_{n}\subset{\mathbb{R}}^{N} , we can find z_{n}\subset{\mathbb{\mathbb{Z}}}^{N} such that {B(y_{n}, 1)}\subset B(z_{n}, 1+\sqrt{N}) , and thus
\begin{equation} \liminf\limits_{n\rightarrow \infty}\int_{B(z_{n},1+\sqrt{N})}|u_{n}|^{2}dx \geq\liminf\limits_{n\rightarrow \infty}\int_{B(y_{n},1)}|u_{n}|^{2}dx > \delta. \end{equation} | (4.5) |
If z_{n} is bounded in {\mathbb{Z}}^{N} , by u_{n}\rightarrow \widetilde{u} in L_{loc}^{2}({\mathbb{R}}^{N}) , it follows that \widetilde{u}\neq0 . We assume that z_{n} is unbounded in {\mathbb{Z}}^{N} . Define \overline{u}_{n} = u_{n}(\cdot+z_{n}) and \overline{v}_{n} = v_{n}(\cdot+z_{n}) . For any compact set K , up to a subsequence, we have
\begin{equation*} \begin{aligned} &\overline{{\bf{u}}}_{n}\rightharpoonup \overline{{\bf{u}}} \; \; \text{in}\; \mathbb H,\\ &\overline{{\bf{u}}}_{n}\rightarrow \overline{{\bf{u}}}\; \; \text{in}\; L^{p}(K)\times L^{p}(K) \; \text{for}\; 2\leq p < 2^{\ast},\\ &\overline{{\bf{u}}}_{n}\rightarrow \overline{{\bf{u}}}\; \; \text{for a.e.}\; x\in {\mathbb{R}}^{N}, \end{aligned} \end{equation*} |
where \overline{{\bf{u}}} = (\overline{u}, \overline{v}) . From (4.5), we have that
\begin{equation*} \liminf\limits_{n\rightarrow \infty}\int_{B(0,1+\sqrt{N})}|\overline{u}_{n}|^{2}dx > \delta, \end{equation*} |
and thus \overline{{\bf{u}}} = (\overline{u}, \overline{v})\neq (0, 0) .
From Lemmas 3.1 and 3.2, we notice that \overline{{\bf{u}}}_{n}, \overline{{\bf{u}}}\in\mathcal{N} and {\bf{u}}_{n} is PS sequence for \Phi on \mathcal{N} . Moreover, by Fatou's Lemma, we obtain the following:
\begin{equation*} c = \liminf\limits_{n\rightarrow \infty}\Phi({\bf{u}}_{n}) = \liminf\limits_{n\rightarrow \infty}\Phi_{\mathcal{N}}({\bf{u}}_{n})\geq \Phi_{\mathcal{N}}({\bf{\overline{u}}}) = \Phi({\bf{\overline{u}}}). \end{equation*} |
Hence \Phi(\overline{u}, \overline{v}) = c and (\overline{u}, \overline{v})\neq(0, 0) is a ground state solution of the system (1.3).
In addition, we can conclude that both components of \overline{{\bf{u}}} are non-trivial. In fact, if the second component \overline{v}\equiv 0 , then \overline{{\bf{u}}} = (\overline{u}, 0) . So \overline{{\bf{u}}} = (\overline{u}, 0) is the non-trivial solution of the system (1.3). Hence, we have
\begin{equation*} I_{1}(\overline{u}) = \Phi(\overline{{\bf{u}}}) < \Phi({\bf{u}}_{1}) = I_{1}(U_{1}). \end{equation*} |
However, this is a contradiction due to the fact that U_{1} is a ground state solution of \triangle^{2}u+\lambda u = u^{3} . Similarly, we conclude that the first component \overline{u}\neq0 . From Proposition 4.1-(ii) and \beta > \Lambda^{+} , we have
\begin{equation} \Phi(\overline{{\bf{u}}}) < \min\{\Phi({\bf{u}}_{1}),\Phi({\bf{v}}_{2})\}. \end{equation} | (4.6) |
Next we give the proof of Theorem 2.1 (ii) .
From Proposition 4.1-(i), we obtain that {\bf{u}}_{1}, {\bf{v}}_{2} are strict local minima \Phi of on \mathcal{N} . Under this condition, we are able to apply the mountain pass theorem to \Phi on \mathcal{N} that provide us with a PS sequence {\bf{v}}_{n}\in\mathcal{N} such that
\begin{equation*} \Phi({\bf{v}}_{n})\rightarrow c: = \inf\limits_{\gamma\in\Gamma} \ \max\limits_{0\leq t\leq 1}\Phi(\gamma(t)), \end{equation*} |
where
\begin{equation*} \Gamma: = \{\gamma:[0,1]\rightarrow \mathcal{N}\; |\; \gamma \text{ is continuous and } \gamma(0) = {\bf{u}}_{1}, \gamma(1) = {\bf{v}}_{2}\}. \end{equation*} |
From Lemmas 3.1 and 3.2, we have that c = \Phi({\bf{u}}^{\ast}) and thus {\bf{u}}^{\ast} is a critical point of \Phi .
In this paper, using Nehari manifold method and concentration compactness theorem, we prove the existence of ground state solution for a coupled system of biharmonic Schrödinger equations. Previous results on ground state solutions are obtained in radially symmetric Sobolev space. We consider ground state solutions in the space without radially symmetric restriction, which can be viewed as extension of previous one.
Yanhua Wang was partially supported by NSFC (Grant No.11971289, 11871071).
There is no conflict of interest of the authors.
[1] |
S. Gähler, 2-metrische Räume ihre topologische Struktur, Math. Nachr., 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109 doi: 10.1002/mana.19630260109
![]() |
[2] | B. C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc., 84 (1992), 329–336. |
[3] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. |
[4] |
M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl., 2012 (2012), 201. https://doi.org/10.1186/1687-1812-2012-210 doi: 10.1186/1687-1812-2012-210
![]() |
[5] | S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesn., 64 (2012), 258–266. |
[6] |
L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems for contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
![]() |
[7] |
J. Fernandez, N. Malviya, B. Fisher, The asymptotically regularity and sequences in partial cone b-metric spaces with application, Filomat, 30 (2016), 2749–2760. https://doi.org/10.2298/FIL1610749F doi: 10.2298/FIL1610749F
![]() |
[8] |
J. Fernandez, G. Modi, N. Malviya, Some fixed point theorems for contractive maps in N-cone metric spaces, Math. Sci., 9 (2015), 33–38. https://doi.org/10.1007/s40096-015-0145-x doi: 10.1007/s40096-015-0145-x
![]() |
[9] |
J. Fernandez, N. Malviya, Z. D. Mitrović, A. Hussain, V. Parvaneh, Some fixed point results on Nb-cone metric spaces over Banach algebra, Adv. Differ. Equ., 2020 (2020), 529. https://doi.org/10.1186/s13662-020-02991-5 doi: 10.1186/s13662-020-02991-5
![]() |
[10] | N. Malviya, B. Fisher, N-cone metric space and fixed points of asymptotically regular maps, Filomat, 11 (2013). |
[11] | I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37. |
[12] |
Y. Rohen, T. Dosenović, S. Radenović, A note on the paper "A fixed point theorems in Sb-metric spaces", Filomat, 31 (2017), 3335–3346. https://doi.org/10.2298/FIL1711335R doi: 10.2298/FIL1711335R
![]() |
[13] | S. Sedghi, A. Gholidahneh, T. Dosenović, J. Esfahani, S. Radenović, Common fixed point of four maps in S_b -metric spaces, J. Linear Topol. Algebra, 5 (2016), 93–104. |
[14] |
N. Souayan, N. Mlaiki, A fixed point theorem in S_b -metric spaces, J. Math. Comput. Sci., 16 (2016), 131–139. https://doi.org/10.22436/JMCS.016.02.01 doi: 10.22436/JMCS.016.02.01
![]() |
[15] | O. Kramosil, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 326–334. |
[16] |
A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
![]() |
[17] |
K. A. Khan, Generalized fuzzy metric spaces with an application to colour image filtering, Global J. Pure Appl. Math., 13 (2017), 3601–3616. https://doi.org/10.37622/GJPAM/13.7.2017.3601-3616 doi: 10.37622/GJPAM/13.7.2017.3601-3616
![]() |
[18] |
N. M. Ralević, M. V. Paunović, B. D. Iričanin, Fuzzy metric space and applications in image processing, Math. Montisnigri, 48 (2020), 103–117. https://doi.org/10.20948/mathmontis-2020-48-9 doi: 10.20948/mathmontis-2020-48-9
![]() |
[19] | F. Mehmood, R. Ali, C. Ionescu, T. Kamram, Extended fuzzy b-metric spaces, J. Math. Anal., 8 (2017), 124–131. |
[20] |
S. Nǎdǎban, Fuzzy b-metric spaces, Int. J. Comput. Commun. Control, 11 (2016), 273–281. https://doi.org/10.15837/ijccc.2016.2.2443 doi: 10.15837/ijccc.2016.2.2443
![]() |
[21] |
D. Rakić, A. Mukheimer, T. Došenović, Z. D. Mitrović, S. Radenović, On some new fixed point results in fuzzy b-metric spaces, J. Inequal. Appl., 2020 (2020), 99. https://doi.org/10.1186/s13660-020-02371-3 doi: 10.1186/s13660-020-02371-3
![]() |
[22] | G. Sun, K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. Eng. Technol., 2 (2010), 673–678. |
[23] | M. Jeyaraman, D. Poovaragavan, S. Sowndrarajan, S. Manrod, Fixed point theorems for dislocated quasi G-fuzzy metric spaces, Commun. Nonlinear Anal., 1 (2019), 23–31. |
[24] |
N. Malviya, The N-fuzzy metric spaces and mappings with application, Fasc. Math., 55 (2015), 133–151. https://doi.org/10.1515/fascmath-2015-0019 doi: 10.1515/fascmath-2015-0019
![]() |
[25] |
M. Zhou, X. Liu, N. A. Secelean, Fixed point theorems for generalized Kannan-type mappings in a new type of fuzzy metric space, J. Math., 2020 (2020), 1712486. https://doi.org/10.1155/2020/1712486 doi: 10.1155/2020/1712486
![]() |
[26] | B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314–334. |
[27] | A. Sharma, M. Tiwari, R. Bhardwaj, Pseudo-S-metric spaces and pseudo-S-metric product spaces, Int. J. Theoret. Appl. Sci., 8 (2016), 139–141. |
[28] |
A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531–536. https://doi.org/10.1155/S0161171202007524 doi: 10.1155/S0161171202007524
![]() |
[29] |
M. S. Ashraf, R. Ali, N. Hussain, Geraghty type contractions in fuzzy b-metric spaces with application to integral equations, Filomat, 34 (2020), 3083–3098. https://doi.org/10.2298/FIL2009083A doi: 10.2298/FIL2009083A
![]() |
[30] |
M. S. Ashraf, R. Ali, N. Hussain, New fuzzy fixed point results in generalized fuzzy metric spaces with application to integral equations, IEEE Access, 8 (2020), 91653–91660. https://doi.org/10.1109/ACCESS.2020.2994130 doi: 10.1109/ACCESS.2020.2994130
![]() |
1. | Muhammad Sajid Iqbal, M. S. Hashemi, Rishi Naeem, Muhammad Akhtar Tarar, Misbah Farheen, Mustafa Inc, Construction of solitary wave solutions of bi-harmonic coupled Schrödinger system through \phi ^6-methodology, 2023, 55, 0306-8919, 10.1007/s11082-023-04683-2 |