
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(1): 821–839.
DOI:10.3934/math.2022049
Received: 04 June 2021
Accepted: 13 October 2021
Published: 18 October 2021

Research article

Nonisotropic symplectic graphs over finite commutative rings

Songpon Sriwongsa1 and Siripong Sirisuk2,∗

1 Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology
Thonburi (KMUTT), Bangkok 10140, Thailand

2 Department of Mathematics and Statistics, Faculty of Science and Techonology, Thammasat
University, Pathum Thani 12120, Thailand

* Correspondence: Email: siripong@mathstat.sci.tu.ac.th.

Abstract: In this paper, we study two types of nonisotropic symplectic graphs over finite commutative
rings defined by nonisotropic free submodules of rank 2 and McCoy rank of matrices. We prove that
the graphs are quasi-strongly regular or Deza graphs and we find their parameters. The diameter
and vertex transitivity are also analyzed. Moreover, we study subconstituents of these nonisotropic
symplectic graphs.

Keywords: local ring; McCoy rank, nonisotropic subspace; symplectic space
Mathematics Subject Classification: 05C25, 13H05

1. Introduction

Throughout the paper, all rings are assumed to be with identity 1 , 0. Let V be a symplectic space
over a finite commutative ring R of rank 2ν. Define

K =

(
0 Iν
−Iν 0

)
,

where Iν is the ν × ν identity matrix. A free submodule X of V is called totally isotropic if XKXT = 0
and is called nonisotropic if det(XKXT ) is a unit in R.

The relation between the geometry of classical groups over finite fields have been widely explored.
The earliest record mention for the collinearity graphs of finite classical polar spaces was by Hubaut [1]
and also in [2]. Graphs arising from symplectic spaces over finite fields, namely sympletic graphs were
studied in [3–6]. A special case of these graphs is related to simple Lie algebras [7]. These symplectic
graphs have 1-dimensional subspaces as its vertices and two vertices Fq~x and Fq~y are adjacent if and
only if ~xK~y , 0. One can see that all one dimensional subspaces are totally isotropic. The graphs were
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classified and their parameters were found. Later, Meemark and Prinyasart studied symplectic graphs
over the ring of integers modulo n in [8] in the same manner of [3]. After that, these graphs were
generalized to general finite local ring and finite commutative ring cases in [9] and [10], respectively.
Many related works of graphs on symplectic spaces were announced (see [11], [12], [13] ). All of these
graphs are concerned with totally isotropic subspaces.

Recently, Su et al. studied a symplectic graph constructed from nonisotropic subspaces of a
symplectic space over a finite field [14]. Since all 1-dimensional subspaces are totally isotropic, a
nonisotropic subspace must be of dimension at least 2. The authors defined the vertex set of this graph
to be the set of all 2-dimensional nonisotropic subspaces and two vertices X and Y are adjacent if and
only if dim(X ∩ Y) = 1. We observe that for any two distinct 2-dimensional nonisotropic subspaces X
and Y of V , dim(X ∩ Y) is either 0 or 1. Thus, a graph whose vertex set is the same as above while the
adjacency condition is replaced by dim(X ∩ Y) = 0 can also be considered. It is natural to generalize
these graphs to cases over finite commutative rings. In this paper, we define two types of nonisotropic
symplectic graphs over finite commutative rings using the McCoy rank of matrices for the adjacency
condition. Then we find their graph parameters and we study some of their properties.

One concept of generalization from rank of matrices over fields to the rank of matrices over
commutative rings were introduced by McCoy [15] as follows. Let R be a commutative ring with
identity. For an ideal I of R, the annihilator of I is the ideal AnnR I = {r ∈ R | ra = 0 for all a ∈ I}. Let
A be an m × n matrix over R. Define I0 = R and Is(A) the ideal of R generated by the s × s minors of A
for 1 ≤ s ≤ min{m, n}. We have

{0} = AnnR I0(A) ⊆ AnnR I1(A) ⊆ · · · ⊆ AnnR Imin{m,n}(A).

The rank of A, denoted by rank A, is the largest integer s such that

AnnR Is(A) = {0}.

Note that if R is a field, then rank A is the usual rank.
Let R be a finite commutative ring with identity. For each s = 1, 2, the nonisotropic symplectic

graph of type s of V , denoted by Γs(R), is the graph whose vertices are nonisotropic free submodules
of V of rank 2 and

X is adjacent to Y if and only if rank
(
X
Y

)
= 2 + s,

for any two distinct vertices X and Y . Note that for R = Fq and two subspaces X and Y of V , rank
(
X
Y

)
=

2 + s if and only if dim(X ∩ Y) = 2 − s. Thus, the graph Γ1(Fq) is the graph studied in [14].
The rest of the paper is organized as follows. In Section 2, we study the graphs Γs, s = 1, 2 over

finite fields, finite local rings and finite commutative rings by computing their parameters. We also
consider their diameter and vertex transitivity. Finally, we work on subconstituents of these graphs.

2. Nonisotropic symplectic graphs

We first recall definitions of a strongly regular graph, a quasi-strongly regular graph, a Deza graph
and vertex transitivity.
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A strongly regular graph with parameters (n, k, λ, µ) is a k-regular graph on n vertices such that for
every pair of adjacent vertices there are λ vertices adjacent to both, and for every pair of nonadjacent
vertices there are µ vertices adjacent to both. A k-regular graph G on n vertices such that for every pair
of adjacent vertices there are λ vertices adjacent to both is called a quasi-strongly regular graph with
parameters (n, k, λ; c1, . . . , cd) if every pair of nonadjacent vetices of G has c1, . . . , cd common adjecent
vertices for some d ≥ 2. A t-Deza graph with parameter (n, k, {d1, . . . , dt}) is a k-regular graph of n
vertices in which every pair of distinct vertices has d1, . . . , dt common adjacent vertices.

A graph G is vertex transitive if its automorphism group acts transitively on the vertex set. For
convenience, we denoteV(G) the vertex set of G.

2.1. Over finite fields

Su et. al. studied the type of graph Γ1(Fq) and found its parameters as follows.

Theorem 2.1. [14] The graph Γ1(Fq) is a quasi-strongly regular graph with parameters

n =
q2ν−2(q2ν − 1)

q2 − 1
,

k = q2ν−1 + q2ν−2 − q − 1,
λ = q2ν−2 + q2 − q − 2,

c1 = q2 + q,

c2 = q2,

c3 = 0.

Moreover, the graph Γ1(Fq) is a vertex transitive graph with diameter 3.

Indeed, the numbers c1, c2 and c3 of common neighbors of two nonadjacent vertices occur in three
cases according to the proof of Theorem 2.7 in [14] shown in the following theorem.

Theorem 2.2. [14] If X and Y are two nonadjacent vertices of Γ1(Fq), then the number of common
neighbors of X and Y is 

c1 = q2 + q if dim(X⊥ ∩ Y) = 0,
c2 = q2 if dim(X⊥ ∩ Y) = 1,
c3 = 0 if dim(X⊥ ∩ Y) = 2.

We remark that for two distinct subspaces X and Y of V of dimension 2,

X is adjacent to Y in Γ2(Fq)⇐⇒ dim(X ∩ Y) = 0
⇐⇒ dim(X ∩ Y) , 1
⇐⇒ X is not adjacent to Y in Γ1(Fq). (2.1)

Thus, the graph Γ2(Fq) is the complement graph of Γ1(Fq) and they both have the same vertex set. We
find the parameters of Γ2(Fq) in the following theorem.
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Theorem 2.3. The graph Γ2(Fq) is a 4-Deza graph with parameters
(n, k, {d1, d2, d3, d4}) where

n =
q2ν−2(q2ν − 1)

q2 − 1
,

k =
q2ν−2(q2ν − 1)

q2 − 1
− q2ν−1 − q2ν−2 + q,

d1 =
q2ν−2(q2ν − 1)

q2 − 1
− 2q2ν−1 − q2ν−2 + q2 + q,

d2 =
q2ν−2(q2ν − 1)

q2 − 1
− 2q2ν−1 − 2q2ν−2 + q2 + 3q,

d3 =
q2ν−2(q2ν − 1)

q2 − 1
− 2q2ν−1 − 2q2ν−2 + q2 + 2q,

d4 =
q2ν−2(q2ν − 1)

q2 − 1
− 2q2ν−1 − 2q2ν−2 + 2q.

Proof. Let X be any vertex in Γ2(Fq). From the valency of Γ1(Fq), we have |{Y ∈ V(Γ2(Fq)) | dim(X ∩
Y) = 1}| = q2ν−1 + q2ν−2 − q − 1. This implies that the number of vertices Y such that dim(X ∩ Y) = 0
equals

q2ν−2(q2ν − 1)
q2 − 1

− 1 − (q2ν−1 + q2ν−2 − q − 1).

We obtain the parameter k.
Next, let X and Y be any two nonadjacent vertices in Γ2(Fq). Then X and Y are adjacent in Γ1(Fq).

Let A = {Z ∈ V(Γ2(Fq)) | dim(Z ∩ X) = 1} and B = {Z ∈ V(Γ2(Fq)) | dim(Z ∩ Y) = 1}. It is clear that
Y ∈ A and X ∈ B. By Theorem 2.1, |A| = |B| = q2ν−1 + q2ν−2 − q − 1 and |A ∩ B| = q2ν−2 + q2 − q − 2.
Thus the inclusion-exclusion principle gives the number of common neighbors of X and Y in Γ2(Fq)
which is the number of vertices Z such that dim(Z ∩ X) = dim(Z ∩ Y) = 0, and it equals

d1 = n − |A ∪ B|

=
q2ν−2(q2ν − 1)

q2 − 1
− 2(q2ν−1 + q2ν−2 − q − 1) + (q2ν−2 + q2 − q − 2).

Finally, let X and Y be two adjacent vertices in Γ2(Fq). Then X and Y are nonadjacent in Γ1(Fq). By
Theorem 2.2, the number of common neighbors of X and Y in Γ1(Fq) which is the number of vertices
Z such that dim(Z ∩ X) = 1 and dim(Z ∩ Y) = 1 is q2 + q if dim(X⊥ ∩ Y) = 0, is q2 if dim(X⊥ ∩ Y) = 1
and is 0 if dim(X⊥ ∩ Y) = 2. Therefore, the number of common neighbors of X and Y in Γ2(Fq) which
is the number of vertices Z such that dim(Z ∩ X) = 0 and dim(Z ∩ Y) = 0 is

d2 =
q2ν−2(q2ν − 1)

q2 − 1
− 2 − 2(q2ν−1 + q2ν−2 − q − 1) + (q2 + q) if dim(X⊥ ∩ Y) = 0,

d3 =
q2ν−2(q2ν − 1)

q2 − 1
− 2 − 2(q2ν−1 + q2ν−2 − q − 1) + q2 if dim(X⊥ ∩ Y) = 1,

d4 =
q2ν−2(q2ν − 1)

q2 − 1
− 2 − 2(q2ν−1 + q2ν−2 − q − 1) if dim(X⊥ ∩ Y) = 2,

by the inclusion-exclusion principle. Note that the term −2 is due to the fact that Z , X and Z , Y . �
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Remark. The complete graph Kn where n =
q2ν−2(q2ν − 1)

q2 − 1
can be decomposed into two 4-Deza graphs

Γ1(Fq) and Γ2(Fq).

Since the complement graph of a vertex transitive graph is also vertex transitive, we immediately
have the following theorem.

Theorem 2.4. The graph Γ2(Fq) is vertex transitive.

Theorem 2.3 shows that any two vertices of Γ2(Fq) always have a common neighbor. So we obtain
the diameter of Γ2(Fq).

Corollary 2.5. The diameter of the graph Γ2(Fq) is 2.

2.2. Over finite local rings

Let R be a finite local ring with the nontrivial maximal ideal M, i.e. R is not a finite field. Then
R r M is the group of units of R and the quotient ring k = R/M is the field which we call the residue
fields. Moreover, we have the canonical map π : R → R/M given by π(r) = r + M for all r ∈ R. The
rank of matrices over R can be obtained by the following lemma.

Lemma 2.6. [16] If A is a matrix over R, then the rank of A equals the rank of π(A) over its residue
field k = R/M.

Lemma 2.7. For s = 1, 2,

1. if X is a vertex in Γs(R), then there are |M|4(ν−1) many vertices in Γs(R) which are lifted from the
vertex π(X) of Γs(k), i.e.

|{Y ∈ V(Γs(R)) | π(Y) = π(X)}| = |M|4(ν−1),

2. X is adjacent to Y in Γs(R) if and only if π(X) is adjacent to π(Y) in Γs(k),
3. if π(X) = kπ(~x1) ⊕ kπ(~x2) is adjacent to π(Y) = kπ(~y1) ⊕ kπ(~y2) in Γs(k), then X = R(~x1 + ~m1) ⊕

R(~x2 + ~m2) is adjacent to Y = R(~y1 + ~n1) ⊕ R(~y2 + ~n2) in Γs(R) for all ~m j, ~n j ∈ M2ν.

Proof. To show (1), let X be a vertex in Γs(R). Then X = R~x1⊕R~x2 is a free submodule of V of rank 2 in
which det(XKXT ) is a unit in R. By Theorem 1.8 of [11], we have π(X) = kπ(~x1)⊕kπ(~x2) is a subspace
of V ′ = k2ν of dimension 2. Since det(XKXT ) is a unit in R, it follows that π(X)Kπ(X)T = π(XKXT )
is nonsingular. So π(X) is a vertex of Γs(k). On the other hand, Theorem 1.8 of [11] implies that the
subspace π(X) can be lifted to |M|4(ν−1) free submodules of V of rank 2 which are of the form Y =

R(~x1 + ~m1)⊕R(~x2 + ~m2) where ~m1, ~m2 ∈ M2ν and π(Y) = π(X). Since det π(YKYT ) = det π(XKXT ) , 0,
it implies that det(YKYT ) is a unit in R. Thus, Y is a vertex of Γs(R). Therefore, all such |M|4(ν−1) free
submodules are lifts of the vertex π(X). For (2) we apply Lemma 2.6 to obtain that X is adjacent to Y in

Γs(R) if and only if rank
(X
Y

)
= 2 + s if and only if rank

(π(X)
π(Y)

)
= 2 + s if and only if dim(π(X)∩π(Y)) =

2 − s if and only if π(X) is adjacent to π(Y) in Γs(k). Finally, (3) follows from (2). �

Now, we can classify and find the parameters of Γ1(R) and Γ2(R).
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Theorem 2.8. The graph Γ1(R) is a quasi-strongly regular graph with parameters (n, k, λ; c1, c2, c3, c4)
where

n =
|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

,

k = |M|2ν−3(|R| + |M|)(|R|2ν−2 − |M|2ν−2),
λ = (|M||R|)2ν−2 + |M|4ν−6|R|2 − |M|4ν−5|R| − 2|M|4ν−4,

c1 = |M|4ν−6|R|2 + |M|4ν−5|R|,

c2 = |M|4ν−6|R|2,

c3 = 0,
c4 = |M|2ν−3(|R| + |M|)(|R|2ν−2 − |M|2ν−2).

Proof. From Theorem 2.1, the graph Γ1(k) is a quasi-strongly regular with parameters

n =
|k|2ν−2(|k|2ν − 1)
|k|2 − 1

,

k = |k|2ν−1 + |k|2ν−2 − |k| − 1,
λ = |k|2ν−2 + |k|2 − |k| − 2,

c1 = |k|2 + |k|,
c2 = |k|2,
c3 = 0.

By Lemma 2.7 (1), each vertex of Γ1(k) can be lifted to |M|4(ν−1) vertices of Γ1(R). Thus, the number
of vertices of Γ1(R) is

(|M|4(ν−1))
|k|2ν−2(|k|2ν − 1)
|k|2 − 1

=
|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

.

Let X be any vertex of Γ1(R). Then π(X) is a vertex of Γ1(k). Since the graph Γ1(k) is regular, it follows
from Lemma 2.7 that X has degree

(|M|4(ν−1))(|k|2ν−1 + |k|2ν−2 − |k| − 1) = |M|2ν−3(|R| + |M|)(|R|2ν−2 − |M|2ν−2).

This implies that the graph Γ1(R) is regular. Next, the parameter λ of Γ1(k) together with Lemma 2.7
(3) implies that for any two adjacent vertices of Γ1(R), there are

(|M|4(ν−1))(|k|2ν−2 + |k|2 − |k| − 2)
= (|M||R|)2ν−2 + |M|4ν−6|R|2 − |M|4ν−5|R| − 2|M|4ν−4

common neighbors.
We next consider two nonadjacent vertices of Γ1(R). Suppose that X and Y are two nonadjacent

vertices of Γ1(R). We divide this into 2 cases. The first case is that π(X) , π(Y). This can be divided
into three subcases according to Theorem 2.2 . We also apply Lemma 2.7 (3) to show the results of
these subcases.
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(i) If dim(π(X)⊥ ∩ π(Y)) = 0, then there are |k|2 + |k| common neighbors in Γ1(k). Thus, the number
of common neighbors of X and Y is (|M|4(ν−1))(|k|2 + |k|) = |M|4ν−6|R|2 + |M|4ν−5|R|.

(ii) If dim(π(X)⊥ ∩ π(Y)) = 1, then there are |k|2 common neighbors in Γ1(k). Thus, the number of
common neighbors of X and Y is (|M|4(ν−1))|k|2 = |M|4ν−6|R|2.

(iii) If dim(π(X)⊥ ∩ π(Y)) = 2, then there are no common neighbors in Γ1(k). Thus, there are no
common neighbors of X and Y in this case.

For the second case which is π(X) = π(Y), Lemma 2.7 implies that all lifts of the vertices in Γ1(k)
adjacent to π(X) are common neighbors of X and Y . Thus there are (|M|4(ν−1))(|k|2ν−1 + |k|2ν−2−|k|−1) =

|M|2ν−3(|R| + |M|)(|R|2ν−2 − |M|2ν−2) common neighbors in this case. �

Example 1. The graph Γ1(Z4) is a quasi-strongly regular graph with parameters
(320, 144, 64; 32, 64, 0, 144)

Note that by Lemma 2.7 the diameter of Γ1(k) and the diameter of Γ1(R) are identical.

Corollary 2.9. The diameter of the graph Γ1(R) is 3.

Remark. The distance between any two distinct vertices X and Y in Γs(R), s = 1, 2 such that π(X) =

π(Y) is equal to 2.

Theorem 2.10. The graph Γ2(R) is a 5-Deza graph with parameters
(n, k, {d1, d2, d3, d4, d5}) where

n =
|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

,

k =
|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

− |M|2ν−3|R|2ν−1 − (|M||R|)2ν−2 + |M|4ν−5|R|,

d1 =
|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

− 2|M|2ν−3|R|2ν−1 − (|M||R|)2ν−2 + |M|4ν−6|R|2 + |M|4ν−5|R|,

d2 =
|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

− 2|M|2ν−3|R|2ν−1 − 2(|M||R|)2ν−2 + |M|4ν−6|R|2 + 3|M|4ν−5|R|,

d3 =
|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

− 2|M|2ν−3|R|2ν−1 − 2(|M||R|)2ν−2 + |M|4ν−6|R|2 + 2|M|4ν−5|R|,

d4 =
|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

− 2|M|2ν−3|R|2ν−1 − 2(|M||R|)2ν−2 + 2|M|4ν−5|R|,

d5 =
|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

− |M|2ν−3|R|2ν−1 − (|M||R|)2ν−2 + |M|4ν−5|R|.

Proof. Clearly, the number of vertices of Γ2(R) equals that of Γ1(R). We know from Theorem 2.3 that
the graph Γ2(k) is a 4-Deza graph with parameters

k =
|k|2ν−2(|k|2ν − 1)
|k|2 − 1

− |k|2ν−1 − |k|2ν−2 + |k|

d1 =
|k|2ν−2(|k|2ν − 1)
|k|2 − 1

− 2|k|2ν−1 − |k|2ν−2 + |k|2 + |k|,

d2 =
|k|2ν−2(|k|2ν − 1)
|k|2 − 1

− 2|k|2ν−1 − 2|k|2ν−2 + |k|2 + 3|k|,

AIMS Mathematics Volume 7, Issue 1, 821–839.
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d3 =
|k|2ν−2(|k|2ν − 1)
|k|2 − 1

− 2|k|2ν−1 − 2|k|2ν−2 + |k|2 + 2|k|,

d4 =
|k|2ν−2(|k|2ν − 1)
|k|2 − 1

− 2|k|2ν−1 − 2|k|2ν−2 + 2|k|.

Thus, if X is any vertex of Γ2(R), then the degree of π(X) is k. Moreover, for any two vertices X and Y
in Γ2(R), if π(X) , π(Y), then the number of common neighbors of π(X) and π(Y) in Γ2(k) can possibly
be d1, d2, d3 or d4. By Lemma 2.7, each vertex π(X) of Γ2(k) can be lifted to |M|4(ν−1) vertices of Γ2(R)
with preserving the adjacency. Thus, we obtain the desired parameters k, d1, d2, d3 and d4 of Γ2(R) as
follows:

k = |M|4(ν−1)( |k|2ν−2(|k|2ν − 1)
|k|2 − 1

− |k|2ν−1 − |k|2ν−2 + |k|
)
,

d1 = |M|4(ν−1)( |k|2ν−2(|k|2ν − 1)
|k|2 − 1

− 2|k|2ν−1 − |k|2ν−2 + |k|2 + |k|
)
,

d2 = |M|4(ν−1)( |k|2ν−2(|k|2ν − 1)
|k|2 − 1

− 2|k|2ν−1 − 2|k|2ν−2 + |k|2 + 3|k|
)
,

d3 = |M|4(ν−1)( |k|2ν−2(|k|2ν − 1)
|k|2 − 1

− 2|k|2ν−1 − 2|k|2ν−2 + |k|2 + 2|k|
)
,

d4 = |M|4(ν−1)( |k|2ν−2(|k|2ν − 1)
|k|2 − 1

− 2|k|2ν−1 − 2|k|2ν−2 + 2|k|
)
.

Substituting |k| = |R|
|M| , these parameters become the numbers in the statement.

Next, let X and Y be two vertices in Γ2(R) such that π(X) = π(Y). By the same argument of the last
paragraph in the proof of Theorem 2.8, Lemma 2.7 gives the parameter

d5 = |M|4(ν−1)( |k|2ν−2(|k|2ν − 1)
|k|2 − 1

− |k|2ν−1 − |k|2ν−2 + |k|
)

This completes the proof. �

We have seen that the numbers of common neighbors of any two vertices of Γ2(R) are not zero. This
implies the diameter of the graph.

Corollary 2.11. The diameter of Γ2(R) is 2.

Moreover, we have vertex transitivity for Γs(R), s = 1, 2.

Theorem 2.12. The graph Γs(R) is vertex transitive for all s = 1, 2.

Proof. Note that a permutation of vertices can be regarded as an automorphism of Γs(R). By the
description in [14] and Theorem 2.4, the graph Γs(k) is vertex transitive. The composition of an
automorphism of Γs(k) and permutations give vertex transitivity for Γs(R). �

2.3. Over finite commutative rings

Let R be a finite commutative ring. It is well-known that R can be decomposed as

R � R1 × R2 × · · · × Rt
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where Ri is a finite local ring with unique maximal ideal Mi for all i = 1, 2, . . . , t. Moreover, we have
the projection map

Pi : r = (r1, r2, . . . , rt) 7→ ri

for all i ∈ {1, 2, . . . , t}. Furthermore, the group of units of R (denoted by R×) is the direct product of
groups of units of Ri’s, that is,

R× � R×1 × R×2 · · · × R×t .

Next, let A be a matrix over R. We can consider A as

P1(A) × P2(A) × · · · × Pt(A)

where Pi(A) is a matrix over Ri for all i = 1, 2, . . . , t. If A is a square matrix, you can write det A =

(detP1(A), detP2(A), . . . , detPt(A)). To compute the rank of matrices over R, we use the following
lemma.

Lemma 2.13. [17] If A is an m × n matrix over R, then

rank A = min
1≤i≤t
{rankPt(A)}.

Let V be a symplectic space over R of rank 2ν. Then V induces the symplectic space Vi over Ri of
rank 2ν. Note that X is a free submodule of V over R if and only if P(X) is a free submodule of Vi

over Ri. Indeed, X � P1(X) × P2(X) × · · · × Pt(X). Moreover, det(XKXT ) is a unit in R if and only
if det

(
Pi(X)KPi(X)T ) is a unit in Ri for all i = 1, 2, . . . , t. This implies that X is a nonisotropic free

submodule of V of rank 2 over R if and only if Pi(X) is a nonisotropic free submodule of Vi of rank 2
over Ri for all i = 1, 2, . . . , t. This allows us to consider a vertex X of the graph Γs(R) as

(P1(X),P2(X), . . . ,Pt(X))

where Pi(X) is a vertex of the graph Γs(Ri). In other words,

V(Γs(R)) = V(Γs(R1)) ×V(Γs(R2)) × · · · × V(Γs(Rt)).

Thus, we have the following theorem.

Theorem 2.14. The number of vertices of the graph Γs(R) is

t∏
i=1

|Ri|
2ν−2(|Ri|

2ν − |Mi|
2ν)

|Ri|
2 − |Mi|

2 .

Since the decomposition of vertices of Γs(R), more properties of Γs(R) can be determined by the
tensor product and a decomposition of graphs. For two graphs G and H with vertex sets V(G) and
V(H), respectively, the tensor product of G and H, denoted by G ⊗ H, is the graph whose vertex set is
V(G)×V(H) and two vertices (g, h) and (g′, h′) are adjacent if g is adjacent to g′ in G and h is adjacent
to h′ in H. A decomposition of G is a family of subgraphs H1,H2, . . . ,Hl that partition the edges of G
withV(G) = V(Hi), i = 1, 2, . . . , l.
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We first focus on the graph Γ1(R). Let X = (P1(X),P2(X), . . . ,Pt(X)) and Y =

(P1(Y),P2(Y), . . . ,Pt(Y)) be two vertices of Γ1(R). Then

X is adjacent to Y in Γ1(R)⇐⇒ rank
(
X
Y

)
= 3⇐⇒ min

1≤i≤t

{
rank

(
Pi(X)
Pi(Y)

) }
= 3.

With this relation, we prove the following decomposition of Γ1(R).

Theorem 2.15. The graph Γ1(R) can be decomposed into a family of vertex transitive subgraphs

Γs1(R1) ⊗ Γs2(R2) ⊗ · · · ⊗ Γst(Rt)

where si = 1 or 2 for all i = 1, 2, . . . , t but (s1, s2, . . . , st) , (2, 2, . . . , 2).

Proof. Let si = 1 or 2 for all i = 1, 2, . . . , t but s1 = s2 = · · · = st = 2. We first consider the graph
G = Γs1(R1)⊗ Γs2(R2)⊗ · · · ⊗ Γst(Rt). Clearly, the vertex set of this graph is that of the graph Γ1(R). Let
X = (P1(X),P2(X), . . . ,Pt(X)) and Y = (P1(Y),P2(Y), . . . ,Pt(Y)) be two adjacent vertices of G. Then

Pi(X) is adjacent to Pi(Y) in Γsi(Ri) for all i = 1, 2, . . . , t. This implies rank
(
Pi(X)
Pi(Y)

)
= 2 + si for all

i = 1, 2, . . . , t. Since there is no the case s1 = s2 = · · · = st = 2, it follows that rank
(
Pi(X)
Pi(Y)

)
= 2 + 1 = 3

for some i = 1, 2, . . . , t. Thus, min1≤i≤t

{
rank

(
Pi(X)
Pi(Y)

) }
= 3. So X is adjacent to Y in Γ1(R). This implies

that G is a subgraph of Γ1(R). Moreover, it is easy to see that

Aut
(
Γs1(R1)

)
× Aut

(
Γs2(R2)

)
× · · · × Aut

(
Γst(Rt)

)
⊆ Aut(G).

By Theorem 2.12, the graph Γsi(Ri) is vertex transitive for all i = 1, 2, . . . , t. Thus, G is a vertex
transitive subgraph of Γ1(R).

Next, let G = Γs1(R1)⊗Γs2(R2)⊗· · ·⊗Γst(Rt) and G′ = Γs′1
(R1)⊗Γs′2

(R2)⊗· · ·⊗Γs′t (Rt) be two distinct
subgraphs in the family. Suppose that

X = (P1(X),P2(X), . . . ,Pt(X)) and Y = (P1(Y),P2(Y), . . . ,Pt(Y))

are adjacent in both G and G′. Then for each i = 1, 2, . . . , t, we have 2 + si = rank
(
Pi(X)
Pi(Y)

)
= 2 + s′i , so

that si = s′i . Thus, G = G′ which is a contradiction. Therefore, G and G′ have disjoint edge sets.
Next, let X = (P1(X),P2(X), . . . ,Pt(X)) and Y = (P1(Y),P2(Y), . . . ,Pt(Y)) be two adjacent vertices

of Γ1(R). Then for each i = 1, 2, . . . , t, we have

min
1≤i≤t

{
rank

(
Pi(X)
Pi(Y)

) }
= 3.

So rank
(
Pi(X)
Pi(Y)

)
= 2+ si where si = 1 or 2 but (s1, s2, . . . , st) , (2, 2, . . . , 2). Thus, X and Y are adjacent

in some subgraphs in the family. This follows that the graph Γ1(R) can be decomposed into the family
of tensor products of graphs. �
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Once we can decompose Γ1(R), we can compute the degree of a vertex of the graph. It suffices to
show this for the case R � R1 × R2 where R1 and R2 are finite local rings. From Theorem 2.15, the
graph Γ1(R) can be decomposed into 3 subgraphs

Γ1(R1) ⊗ Γ1(R2), Γ1(R1) ⊗ Γ2(R2) and Γ2(R1) ⊗ Γ1(R2).

From Theorem 2.8 and 2.10, we have the valencies k(1,R1) of Γ1(R1), k(2,R1) of Γ2(R1), k(1,R2) of
Γ1(R2) and k(2,R2) of Γ2(R2). Let X = (P1(X),P2(X)) be any vertex of Γ1(R). If Y = (P1(Y),P2(Y)) is
a vertex adjacent to X in Γ1(R), then Y is adjacent to X in one of the three subgraphs. This implies that
the degree of X in Γ1(R) is equal to the sum of the degree of X in each subgraph. Since the degree of
X = (P1(X),P2(X)) in Γs1(R1) ⊗ Γs2(R2) is the product of the degree of P1(X) in Γs1(R1) and the degree
of P2(X) in Γs2(R2), the degree of X in Γ1(R) is

k(1,R1)k(1,R2) + k(1,R1)k(2,R2) + k(2,R1)k(1,R2).

Similarly, if R � R1 × R2 × · · · × Rt where Ri is a finite local ring for all i, then the degree of a vertex in
Γ1(R) is ∑

s1,s2,...,st∈{1,2}
(s1,s2,...,st),(2,2,...,2)

t∏
i=1

k(si,Ri)

where k(si,Ri) is the degree of a vertex in Γsi(Ri). Indeed,

k(si,Ri) =


|Mi|

2ν−3(|Ri| + |Mi|)(|Ri|
2ν−2 − |Mi|

2ν−2) if si = 1
|Ri|

2ν−2(|Ri|
2ν − |Mi|

2ν)
|Ri|

2 − |Mi|
2 − |Mi|

2ν−3|Ri|
2ν−1

−(|Mi||Ri|)2ν−2 + |Mi|
4ν−5|Ri| if si = 2.

Moreover, the parameters of common neighbors can also be computed from the decomposition in a
similar way.

For the graph Γ2(R), we observe that for two vertices X,Y of Γ1(R) where X =

(P1(X),P2(X), . . . ,Pt(X)) and Y = (P1(Y),P2(Y), . . . ,Pt(Y)), we have

X is adjacent to Y in Γ2(R)

⇐⇒ rank
(
X
Y

)
= 4

⇐⇒ min
1≤i≤t

{
rank

(
Pi(X)
Pi(Y)

) }
= 4

⇐⇒ rank
(
Pi(X)
Pi(Y)

)
= 4 for all i = 1, 2, . . . , t

⇐⇒ Pi(X) is adjacent to Pi(Y) in Γ2(Ri) for all i = 1, 2, . . . , t.

With this relation, we prove the next theorem.

AIMS Mathematics Volume 7, Issue 1, 821–839.



832

Theorem 2.16. Let R be a finite commutative ring decomposed as R = R1 × R2 × · · · × Rt where Ri is a
finite local ring for all i = 1, 2, . . . , t. Then

Γ2(R) = Γ2(R1) ⊗ Γ2(R2) ⊗ · · · ⊗ Γ2(Rt).

Moreover, Γ2(R) is vertex transitive and so it is regular of degree

t∏
i=1

( |Ri|
2ν−2(|Ri|

2ν − |Mi|
2ν)

|Ri|
2 − |Mi|

2 − |Mi|
2ν−3|Ri|

2ν−1 − (|Mi||Ri|)2ν−2 + |Mi|
4ν−5|Ri|

)
.

Proof. By the above discussion, it implies that the graph Γ2(R) is the tensor product of the graphs
Γ2(R1),Γ2(R2), . . . ,Γ2(Rt), i.e.,

Γ2(R) = Γ2(R1) ⊗ Γ2(R2) ⊗ · · · ⊗ Γ2(Rt).

Since Γ2(Ri) is vertex transitive for all i = 1, 2, . . . , t by Theorem 2.12, it follows that Γ2(R) is vertex
transitive and so regular. Moreover, this tensor product of graphs gives the degree of a vertex of Γ2(R)
which is equal to the product of the degrees of a vertex of Γ2(Ri) for all i = 1, 2, . . . , t. This completes
the proof. �

Remark. From Theorem 2.15 and 2.16, the tensor product

Γs1(R1) ⊗ Γs2(R2) ⊗ · · · ⊗ Γst(Rt)

of nonsymplectic graphs over finite local rings is either a subgraph of Γ1(R) or a certain graph Γ2(R)
depending on each si where i = 1, 2, . . . , t. Indeed, if (s1, s2, . . . , st) , (2, 2, . . . , 2), then it is a subgraph
of Γ1(R). On the other hand, if (s1, s2, . . . , st) = (2, 2, . . . , 2), then it actually is Γ2(R). Furthermore, we
can say that

Γ1(R) =
⋃

s1,s2,...,st∈{1,2}
(s1,s2,...,st),(2,2,...,2)

Γs1(R1) ⊗ Γs2(R2) ⊗ · · · ⊗ Γst(Rt)

Γ2(R) = Γ2(R) = Γ2(R1) ⊗ Γ2(R2) ⊗ · · · ⊗ Γ2(Rt).

3. Subconstituents

Let R be a finite local ring with the maximal ideal M and its residue field k = R/M and let X0 =

R~e1⊕R~eν+1 where ~ei is the standard vector having 1 in the ith position and 0 elsewhere. From Corollary
2.9 and 2.11, the distance d(X,Y) between any two vertices X and Y of Γ1(R) and Γ2(R) are at most 3
and 2, respectively. In this section, we work on the subconstituents Γ

(i)
s (R) for i = 1, 2, 3 if s = 1 and

i = 1, 2 if s = 2 which are defined to be the induced subgraphs of Γs(R) on the vertex sets

V(Γ(i)
s (R)) := {X ∈ V

(
Γs(R)

)
: d(X, X0) = i}.

We observe that it is possible to define another subconstituents associated with other vertices. However,
our graph Γs(R) is vertex transitive. Therefore, it suffices to consider only the ones associated with X0.
To study these subconstituents, we require an analog version of Lemma 2.7 as follows.
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Lemma 3.1. Under the above description, we have the following statements.

1. If X is a vertex in Γ
(i)
s (R), then there are |M|4(ν−1) many vertices which are lifts of the vertex π(X)

of Γ
(i)
s (k), i.e. |{Y ∈ V

(
Γ

(i)
s (R)

)
|π(Y) = π(X)}| = |M|4(ν−1).

2. X is adjacent to Y in Γ
(i)
s (R) if and only if π(X) is adjacent to π(Y) in Γ

(i)
s (k).

3. If π(X) = kπ(~x1) ⊕ kπ(~x2) is adjacent to π(Y) = kπ(~y1) ⊕ kπ(~y2) in Γ
(i)
s (k), then X = R(~x1 + ~m1) ⊕

R(~x2 + ~m2) is adjacent to Y = R(~y1 + ~n1) ⊕ R(~y2 + ~n2) in Γ
(i)
s (R) for all ~mi, ~ni ∈ M2ν.

Proof. The proof is analogous to the proof of Lemma 2.7 since X is adjacent to X0 in Γs(R) if and only
if π(X) is adjacent to π(X0) in Γs(k). �

Note that the number of vertices of Γ
(1)
s (R) is the valency of Γs(R) and the valency of Γ

(1)
s (R) is the

number of common neighbors of any two vertices in Γs(R).

3.1. Subconstituents of Γ1(R)

By Proposition 3.1 and 3.2 of [14], for any two vertices π(X) and π(Y) in Γ
(1)
1 (k),

1. if π(X) and π(Y) are adjacent, then the number of their common neighbors in Γ
(1)
1 (k) is

|k|2ν−2 − 3, |k|2ν−2 + |k|2 − |k| − 3 or |k|2 − 3,

2. if π(X) and π(Y) are nonadjacent, then the number of their common neighbors in Γ
(1)
1 (k) is

2|k| − 2.

We apply Lemma 3.1 to find all parameters of Γ
(1)
1 (R), so we have the following theorem.

Theorem 3.2. Assume that R is not a field.

1. If ν ≥ 3, then the number of common neighbors of any two adjacent vertices of Γ
(1)
1 (R) is

(|M||R|)2ν−2 − 3|M|4ν−4,

(|M||R|)2ν−2 + |M|4ν−6|R|2 − |M|4ν−5|R| − 3|M|4ν−4 or

|M|4ν−6 − 3|M|4ν−4.

If ν = 2, then the number of common neighbors of any two adjacent vertices of Γ
(1)
1 (R) is

2(|M||R|)2 − |M|3|R| − 3|M|4 or (|M||R|)2 − 3|M|4.
2. The number of common neighbors of any two nonadjacent vertices X, Y of Γ

(1)
1 (R) is

2|M|4ν−5|R| − 2|M|4ν−4 if π(X) , π(Y) and

(|M||R|)2ν−2 + |M|4ν−6|R|2 − |M|4ν−6|R|2 − |M|4ν−5|R| − 2|M|4ν−4 if π(X) = π(Y).

Proof. It remains to show the last part of 2. For any two nonadjacent vertices X and Y such that
π(X) = π(Y), the number of their common neighbors is equal to their degree in Γ

(1)
1 (R). �

We conclude here about the graph Γ
(1)
1 (R).

Theorem 3.3. Assume that R is not a field.
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1. If ν ≥ 3, then the graph Γ
(1)
1 (R) is a 5-Deza graph with parameters

(n, k, {d1, d2, d3, d4, d5}) where

n = |M|2ν−3(|R| + |M|)(|R|2ν−2 − |M|2ν−2),
k = (|M||R|)2ν−2 + |M|4ν−6|R|2 − |M|4ν−5|R| − 2|M|4ν−4,

d1 = (|M||R|)2ν−2 − 3|M|4ν−4,

d2 = (|M||R|)2ν−2 + |M|4ν−6|R|2 − |M|4ν−5|R| − 3|M|4ν−4,

d3 = |M|4ν−6 − 3|M|4ν−4,

d4 = 2|M|4ν−5|R| − 2|M|4ν−4,

d5 = (|M||R|)2ν−2 + |M|4ν−6|R|2 − |M|4ν−5|R| − 2|M|4ν−4.

2. If ν = 2, then then the graph Γ
(1)
1 (R) is a 4-Deza graph with parameters

(n, k, {d1, d2, d3, d4}) where

n = |M|(|R| + |M|)(|R|2 − |M|2),
k = 2(|M||R|)2 − |M|3|R| − 2|M|4,

d1 = (|M||R|)2 − 3|M|4,
d2 = 2(|M||R|)2 − |M|3|R| − 3|M|4,
d3 = 2|M|3|R| − 2|M|4,
d4 = 2(|M||R|)2 − |M|3|R| − 2|M|4.

According to [14], the number of vertices of Γ
(2)
1 (k) is (|k|2ν−2 − 1)(|k|2ν−2 + |k|2ν−4 − |k|). By

Lemma 3.1, the lifts of these vertices are the vertices of Γ
(2)
1 (R). The space π(X0) is not the vertex

of Γ
(2)
1 (k), however, any lift X of π(X0) in Γ1(R), d(X, X0) = 2 by Theorem 2.8. Let X be a vertex of

Γ
(2)
1 (R). Then by [14], the number of neighbors of π(X) in Γ

(2)
1 (k) is |k|2ν−1 + |k|2ν−2−|k|2ν−4−|k|2−|k|−1

or |k|2ν−1 + |k|2ν−2 − |k|2 − 2|k| − 1. Therefore,

Theorem 3.4. Assume that R is not a field. The second subconstituent Γ
(2)
1 (R) is not regular with the

number of vertices

(|R|2ν−2 − |M|2ν−2)(|R|2ν−2|M|2ν−2 + |R|2ν−4|M|2ν − |R||M|4ν−5) + |M|4ν−4 − 1

and the number of neighbors of any vertex is

|R|2ν−1|M|2ν−3 + |R|2ν−2|M|2ν−2 − |R|2ν−4|M|2ν − |R|2|M|4ν−6 − |R||M|4ν−4 − |M|4ν−4

or |R|2ν−1|M|2ν−3 + |R|2ν−2|M|2ν−2 − |R|2|M|4ν−6 − 2|R||M|4ν−4 − |M|4ν−4.

For the third subconstituent Γ
(3)
1 (k), there are 2 distinct cases up to ν to be considered [14]. If ν = 2,

then Γ
(3)
1 (k) is an empty graph with one vertex. On the other hand, for ν ≥ 3, the graph Γ

(3)
1 (k) is a

quasi-strongly regular graph with parameters( |k|2ν−4(|k|2ν−2 − 1)
|k|2 − 1

, (|k| + 1)(|k|2ν−4 − 1), |k|2ν−4 + |k|2 − |k| − 2; |k|2 + |k|, |k|2, 0
)
.

By applying Lemma 3.1, we can prove the result for the graph Γ
(3)
1 (R) analogously to the case of Γ1(R)

and we record this in the following theorem.

AIMS Mathematics Volume 7, Issue 1, 821–839.



835

Theorem 3.5. Assume that R is not a field.

1. If ν = 2, then the third subconstituent Γ
(3)
1 (R) is an empty graph with |M|4 vertices.

2. If ν ≥ 3, then the third subconstituent Γ
(3)
1 (R) is a quasi-strongly regular graph with parameters

(n, k, λ; c1, c2, c3, c4) where

n =
|M|4|R|2ν−4(|R|2ν−2 − |M|2ν−2)

|R|2 − |M|2
,

k = |M|2ν−1(|R| − |M|)(|R|2ν−4 − |M|2ν−4),
λ = |R|2ν−4|M|2ν + |R|2|M|4ν−6 − |R||M|4ν−5 − 2|M|4ν−4,

c1 = |R|2|M|4ν−6 + |R||M|4ν−5,

c2 = |R|2|M|4ν−6,

c3 = 0,
c4 = |M|2ν−1(|R| − |M|)(|R|2ν−4 − |M|2ν−4).

3.2. Subconstituents of Γ2(R)

For these subconstituents, we first investigate the graphs over a finite field. By Corollary 2.11, we
can consider Γ

(1)
2 (Fq) and Γ

(2)
2 (Fq).

Theorem 3.6. The first subconstituent Γ
(1)
2 (Fq) is not regular with

q2ν−2(q2ν − 1)
q2 − 1

− q2ν−1 − q2ν−2 + q

vertices. Moreover, the degree of a vertex of Γ
(1)
2 (Fq) is

q2ν−2(q2ν − 1)
q2 − 1

− 2q2ν−1 − 2q2ν−2 + q2 + 3q,

q2ν−2(q2ν − 1)
q2 − 1

− 2q2ν−1 − 2q2ν−2 + q2 + 2q or

q2ν−2(q2ν − 1)
q2 − 1

− 2q2ν−1 − 2q2ν−2.

Proof. As mentioned, the number of vertices of Γ
(1)
2 (Fq) is the valency of Γ2(Fq) and the valency of

Γ
(1)
2 (Fq) is the number of common neighbors of any two vertices in Γ2(Fq). By Theorem 2.3, we have

the theorem. �

Theorem 3.7. 1. If ν = 2, then the second subconstituent Γ
(2)
2 (Fq) is a quasi-strongly regular graph

with parameters

(q3 + q2 − q − 1, q3 − q2 + 1, q3 − 3q2 + 3q − 1; q3 − 2q2 + q, q3 − q2).

2. If ν ≥ 3, then the second subconstituent Γ
(2)
2 (Fq) is a quasi-strongly regular graph with parameters

(n, k, λ; c1, c2, c3) where

n = q2ν−1 + q2ν−2 − q − 1,
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k = q2ν−1 − q2 + 1,
λ = q2ν−1 − q2ν−2 − 2q2 + 3q − 1,
c1 = q2ν−1 − 2q2 + q,

c2 = q2ν−1 − q2,

c3 = q2ν−1 − q2ν−2 − q2 + q.

Proof. By (2.1), a vertex of Γ
(2)
2 (Fq) is a vertex in Γ

(1)
1 . It is immediate from Theorem 3.3 of [14] that

n = (q + 1)(q2ν−2 − 1) = q2ν−1 + q2ν−2 − q− 1. Note that any neighbor of a vertex X in Γ
(2)
2 (Fq) is a vertex

in Γ
(1)
1 (Fq) which is not adjacent to X. Thus, by Theorem 3.3 of [14],

k = (q + 1)(q2ν−2 − 1) − (q2ν−2 + q2 − q − 2)
= q2ν−1 − q2 + 1.

Let X and Y be two adjacent vertices in Γ
(2)
2 (Fq). Suppose that Z is a vertex in Γ

(2)
2 (Fq) such that

Z is a common neighbor of X and Y . Then, by (2.1), X,Y are nonadjacent vertices in Γ
(1)
1 (Fq) and Z

is a vertex in Γ
(1)
1 (Fq) such that Z , X,Z , Y and is not adjacent to X or Y . The inclusion-exclusion

principle and Theorem 3.3 of [14] give

λ = (q + 1)(q2ν−2 − 1) − (2(q2ν−2 + q2 − q − 2) − (2q − 2)) − 2
= q2ν−1 − q2ν−2 − 2q2 + 3q − 1.

The similar argument to the previous paragraph applies to the numbers of common neighbors of
nonadjacent vertices of Γ

(2)
2 (Fq). Thus, they are

c1 = (q + 1)(q2ν−2 − 1) − (2(q2ν−2 + q2 − q − 2) − (q2ν−2 − 3))
= q2ν−1 − 2q2 + q,

c2 = (q + 1)(q2ν−2 − (2(q2ν−2 + q2 − q − 2) − (q2ν−2 + q2 − q − 3))
= q2ν−1 − q2,

c3 = (q + 1)(q2ν−2 − (2(q2ν−2 + q2 − q − 2) − (q2 − 3))
= q2ν−1 − q2ν−2 − q2 + q.

For ν = 2, c1 = c3. Therefore, we have proved the theorem. �

Finally, we extend the results to the subconstituents of Γ
(2)
2 (R) where R is a not a field using Theorem

3.1 and the similar argument described in Subsection 3.1.

Theorem 3.8. Assume that R is not a field. The first subconstituent Γ
(1)
2 (R) is not regular with

|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

− |R|2ν−1|M|2ν−3 − |R|2ν−2|M|2ν−2 + |R||M|4ν−5

vertices. Moreover, the degree of a vertex of Γ
(1)
2 (R) is

|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

− 2|R|2ν−1|M|2ν−3 − 2|R|2ν−2|M|2ν−2 + |R|2|M|4ν−6 + 3|R||M|4ν−5,
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|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

− 2|R|2ν−1|M|2ν−3 − 2|R|2ν−2|M|2ν−2 + |R|2|M|4ν−6 + 2|R||M|4ν−5 or

|R|2ν−2(|R|2ν − |M|2ν)
|R|2 − |M|2

− 2|R|2ν−1|M|2ν−3 − 2|R|2ν−2|M|2ν−2.

Theorem 3.9. Assume that R is not a field.

1. If ν = 2, then the second subconstituent Γ
(2)
2 (R) is a quasi-strongly regular graph with parameters

(n, k, λ; c1, c2, c3) where

n = |R|3|M| + |R|2|M|2 − |R||M|3 − |M|4,

k = |R|3|M| − |R|2|M|2 + |M|4,

λ = |R|3|M| − 3|R|2|M|2 + 3|R||M|3 − |M|4,
c1 = |R|3|M| − 2|R|2|M|2 + |R||M|3,

c2 = |R|3|M| − |R|2|M|2,

c3 = |R|3|M| − |R|2|M|2 + |M|4.

2. If ν ≥ 3, then the second subconstituent Γ
(2)
2 (R) is a quasi-strongly regular graph with parameters

(n, k, λ; c1, c2, c3, c4) where

n = |R|2ν−1|M|2ν−3 + |R|2ν−2|M|2ν−2 − |R||M|4ν−3 − |M|4ν−4,

k = |R|2ν−1|M|2ν−3 − |R|2|M|2ν−6 + |M|4ν−4,

λ = |R|2ν−1|M|2ν−3 − |R|2ν−2|M|2ν−2 − 2|R|2|M|4ν−6 + 3|R||M|4ν−5 − |M|4ν−4,

c1 = |R|2ν−1|M|2ν−3 − 2|R|2|M|4ν−6 + |R||M|4ν−5,

c2 = |R|2ν−1|M|2ν−3 − |R|2|M|4ν−6,

c3 = |R|2ν−1|M|2ν−3 − |R|2ν−2|M|2ν−2 − |R|2|M|4ν−6 + |R||M|4ν−5,

c4 = |R|2ν−1|M|2ν−3 − |R|2|M|2ν−6 + |M|4ν−4.

4. Conclusions

The nonisotropic symplectic graphs of type 1 over finite fields were studied in [14]. The graphs were
defined by 2-dimensional nonisotropic subspaces and their intersection for the adjacency condition. We
considered this type of graphs and their complements over general finite commutative rings by using
McCoy ranks of matrices over rings. All parameters were computed by using combinatorial approach
and some graphs properties as in [14] were also analyzed. We also studied their subconstituents. These
results may have some impacts to the theory of quasi-strongly regular graphs. Exploring the possible
applications of these graphs requires further attention.
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