In this paper we find further versions of generalized Hadamard type fractional integral inequality for $ k $-fractional integrals. For this purpose we utilize the definition of $ h $-convex function. The presented results hold simultaneously for variant types of convexities and fractional integrals.
Citation: Fangfang Ma. Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function[J]. AIMS Mathematics, 2022, 7(1): 784-803. doi: 10.3934/math.2022047
In this paper we find further versions of generalized Hadamard type fractional integral inequality for $ k $-fractional integrals. For this purpose we utilize the definition of $ h $-convex function. The presented results hold simultaneously for variant types of convexities and fractional integrals.
[1] | B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comp. Appl. Math., 353 (2019), 120–129. doi: 10.1016/j.cam.2018.12.030. doi: 10.1016/j.cam.2018.12.030 |
[2] | F. Chen, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math., 2014 (2014), 1–6. doi: 10.1155/2014/386806. doi: 10.1155/2014/386806 |
[3] | A. Guessab, G. Schmeisser, Necessary and sufficient conditions for the validity of Jensen's inequality, Arch. Math., 100 (2013), 561–570. doi: 10.1007/s00013-013-0522-3. doi: 10.1007/s00013-013-0522-3 |
[4] | A. Guessab, O. Nouisser, J. Pecaric, A multivariate extension of an inequality of Brenner-Alzer, Arch. Math., 98 (2012), 277–287. doi: 10.1007/s00013-012-0361-7. doi: 10.1007/s00013-012-0361-7 |
[5] | A. Guessab, Direct and converse results for generalized multivariate Jensen-type inequalities, J. Nonlinear Convex Anal., 13 (2012), 777–797. doi: 10.1186/1029-242X-2012-170. doi: 10.1186/1029-242X-2012-170 |
[6] | A. O. Akdemir, A. Ekinci, E. Set, Conformable fractional integrals and related new integral inequalities, J. Nonlinear Convex Anal., 18 (2017), 661–674. Available from: https://hdl.handle.net/20.500.12501/1401. |
[7] | F. Jarad, E. U$ \check{g} $urlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), Article ID 247. doi:10.1186/s13662-017-1306-z. doi: 10.1186/s13662-017-1306-z |
[8] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204. Available from: https://www.koreascience.or.kr/article/JAKO200111920819409.page. |
[9] | F. Qi, S. Habib, S. Mubeen, M. N. Naeem, Generalized k-fractional conformable integrals and related inequalities, AIMS Math., 4 (2019), 343–368. doi: 10.3934/math.2019.3.343. doi: 10.3934/math.2019.3.343 |
[10] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Math., 15 (2007), 179–192. |
[11] | M. U. Awan, On strongly generalized convex functions, Filomat, 31 (2017), 5783–5790. |
[12] | M. Noor, K. Noor, U. Awan, Hermite–Hadamard type inequalities for modified h-convex functions, Transylv. J. Math. Mech., 6 (2014). |
[13] | M. Bessenyei, Z. Ples, Hermite–Hadamard inequalities for generalized convex functions, Aequ. Math., 69 (2005), 32–40. doi: 10.1007/s00010-004-2730-1. doi: 10.1007/s00010-004-2730-1 |
[14] | V. Ciobotariu-Boer, Hermite–Hadamard and Fejér inequalities for Wright-convex functions, Octogon Math. Mag., 17 (2009), 53–69. |
[15] | B. S. Mordukhovich, N. M. Nam, An easy path to convex analysis and applications, Synth. Lect. Math. Stat., 6 (2013), 1–218. doi: 10.2200/S00554ED1V01Y201312MAS014. doi: 10.2200/S00554ED1V01Y201312MAS014 |
[16] | H. Angulo, J. Gim$\acute{e}$nez, A. M. Moros, K. Nikodem, On strongly $h$-convex functions, Ann. Funct. Anal., 2 (2011), 85–91. doi: 10.15352/afa/1399900197. doi: 10.15352/afa/1399900197 |
[17] | M. U. Awan, M. A. Noor, E. Set, M. V. Mihai, On strongly $(p, h)$-convex functions, TWMS J. Pure Appl. Math., 9 (2019), 145–153. |
[18] | M. J. Vivas-Cortez, H. Hernández, A variant of Jensen-Mercer Inequality for h-convex functions and operator h-convex functions, Matua: Rev. Matemática. Univ. Atl., 4 (2017), 62–76. |
[19] | H. R. Moradi, M. E. Omidvar, M. A. Khan, K. Nikodem, Around Jensen's inequality for strongly convex functions, Aequat. Math., 92 (2018), 25–37. doi: 10.1007/s00010-017-0496-5. doi: 10.1007/s00010-017-0496-5 |
[20] | A. McD. Mercer, A variant of Jensen's inequality, J. Inequal. Pure Appl. Math., 4 (2003), Article ID 73. |
[21] | A. Matković, J. Pe$\check{c}$arić, I. Perić, A variant of Jensen's inequality of Mercer's type for operators with applications, Linear Algebra Appl., 418 (2006), 551–564. doi: 10.1016/j.laa.2006.02.030. doi: 10.1016/j.laa.2006.02.030 |
[22] | S. Varo$\check{s}$anec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. doi: 10.1016/j.jmaa.2006.02.086. doi: 10.1016/j.jmaa.2006.02.086 |
[23] | G. H. Toader, Some generalization of convexity, Proc. Colloq. Approx. Optim. Cluj Napoca(Romania)., 1984 (1984), 329–338. doi: 10.12691/tjant-2-3-1. doi: 10.12691/tjant-2-3-1 |
[24] | İ. İscan, Ostrowski type inequalities for $p$-convex functions, New Trends Math. Sci., 4 (2016), 140–150. doi: 10.20852/ntmsci.2016318838. doi: 10.20852/ntmsci.2016318838 |
[25] | İ. İscan, S. Turhan, S. Maden, Hermite-Hadamard and Simpson-like type inequalities for differentiable $p$-quasi-convex functions, Filomat., 31 (2017), 5945–5953. doi: 10.2298/FIL1719945I. doi: 10.2298/FIL1719945I |
[26] | Z. B. Fang, R. Shi, On the (p, h)-convex function and some integral inequalities, J. Inequal. Appl., 2014 (2014), Article ID 16. doi: 10.1186/1029-242X-2014-45. doi: 10.1186/1029-242X-2014-45 |
[27] | B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Sov. Math.Dokl., 7 (1966), 72–75. |
[28] | S. I. Butt, M. Umar, S. Rashid, New Hermite-Jensen-Mercer-type inequalities via k-fractional integrals, Adv. Differ. Equ., 2020 (2020), Article ID 635. doi: 10.1186/s13662-020-03093-y. doi: 10.1186/s13662-020-03093-y |
[29] | A. Gözpınar, Some Hermite-Hadamard type inequalities for convex functions via new fractional conformable integrals and related inequalities, AIP Conf. Proc., 1991 (2018), Article ID 020006. doi: 10.1063/1.5047879. doi: 10.1063/1.5047879 |
[30] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048. doi: 10.1016/j.mcm.2011.12.048 |
[31] | M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Al., 26 (2013), 742–753. doi: 10.13001/1081-3810.1684. doi: 10.13001/1081-3810.1684 |
[32] | M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes., 17 (2016), 1049–1059. doi: 10.18514/MMN.2017.1197. doi: 10.18514/MMN.2017.1197 |
[33] | S. Özcan, I. Iscan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019 (2019), Article ID 201. doi: 10.1186/s13660-019-2151-2. doi: 10.1186/s13660-019-2151-2 |