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1. Introduction

In this paper, we discuss the numerical solution of the fractional differential equations (FDEs) initial
value problem

Dα
∗y(t) = f (t, y(t)), 0 ≤ t ≤ T, (1.1)

y( j)(0) = y( j)
0 , j = 0, 1, · · · , dαe − 1, (1.2)

where Dα
∗ is fractional Caputo derivative of order α and defined as

Dα
∗y(t) =

1
Γ(n − α)

∫ t

0
(t − τ)n−α−1y(n)(τ)dτ, (1.3)
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where n = dαe is the smallest integer greater than or equal to α and the right hand side function
f (t, y) is assumed to be continuous with respect to two variables t and y. Here, we note that there are
several definitions of fractional derivatives such as Caputo, Grunwald-Letnikov, Marchaud, Riemann-
Liouville, Weyl, etc. In this study, we just focus on the Caputo type of fractional derivative.

Fractional calculus is a research topic in many areas of science and engineering, such as signal
processing, control engineering, electromagnetism, bioscience, fluid mechanics, electrochemistry,
diffusion processes, continuum and statistical mechanics and propagation of spherical flames. Due to
this reason, during the past few decades, mathematical theories and numerical analysis of fractional
differential equations have received lots of attention and several numerical methods have been
developed. For example, Deithem et al. [8, 11] introduced the theory and numerical schemes for the
predictor-corrector type ofAdamsmethods. In [15],a non-polynomialcollocationmethodwas proposed
for fractional equations with having non-smooth solutions. Yan et al. [30] developed a higher order
predictor-corrector methods using quadratic quadrature techniques based on fractional Adam-type
methods [11] for both linear and nonlinear cases. In [28], authors proposed the usage of a suitable
truncated series expressed in terms of fractional powers of the independent variable for ordinary
fractionaldifferential equation. Besides, there are relevant researches [8–10, 13, 14, 22, 23, 25–28, 32].

The main contribution of this paper is, unlike other numerical schemes described above, to split
two different time intervals-one is the sum of the whole previous time interval and the other one is
the current time interval. Then, different numerical schemes are provided to the two time intervals
to obtain desired solutions at the current time interval-piecewise quadratic quadrature techniques are
applied to the whole previous time intervals and Lagrangian collocation methods are cast for the current
time step. There are few attempts to use the mixed numerical schemes. For example, in [31], a new
product integration scheme is introduced by using the idea of local Fourier expansion and several
types of quadrature rules. Inspired by this idea, in this paper, a new version of the mixed numerical
scheme using the piecewise quadratic quadrature techniques and the Lagrangian collocation methods
are introduced.

The procedure of this mixed numerical method can be described as follows: Since the IVP (1.1) is
equivalent to the following Volterra integral equation of the second kind, Eq (1.1) is rewritten as the
Volterra integral equation :

y(t) =

dαe−1∑
k=0

y(k)
0

tk

k!
+

1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ, y(τ))dτ. (1.4)

First of all, a given time interval [t0, t f inal] is divided into several sub-intervals. In each sub-interval
[ti, ti+1], we estimate new solutions by using solutions calculated in all previous intervals [t0, ti].
However, it is not easy to calculate the integral equations directly because FDEs originally have a
singularity at the end point of integral interval.

To hurdle this drawback, the Lagrangian interpolating formulation is applied so that the beta
function property can be used for the fractional integration, and it enables to eliminate the singularity
by removing the fractional integral. For this, we introduce Chebyshev node points in the sub-interval
[ti, ti+1] and calculate solutions at the collocation points. Moreover, solutions at all collocation points
through the whole previous intervals are accumulated. Based on all these accumulated solutions, we
can easily calculate the fractional integral by using any quadrature rule in the whole previous time
interval [t0, ti]. Here, for the higher accuracy, a piecewise quadratic quadrature rule is introduced.
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Note that it has been already known [6,20] that multi-stage methods such as collocation methods have
lots of good properties in the sense of stability and accuracy, compared with multi-step methods.

This paper is organized as follows. In Section 2, we briefly review the basic background such as
Lagrangian interpolations. In Section 3, a Lagrangian interpolation technique is applied to calculate
the fractional integral in a certain time sub-interval. Moreover, a piecewise quadratic interpolation
polynomial is introduced to approximate an integral with all known solutions calculated in all previous
time intervals. In Section 4, to examine the effectiveness and efficiency of the proposed scheme, several
numerical results are presented and shown numerically a convergence order of the propose method.
Finally in Section 5, we summarize our results and discuss possibilities to increase the efficiency of the
propose scheme for solving other types of fractional differential equations, such as multi-term FDEs
or fractional partial differential equations, etc.

2. Preliminaries

In this section, we briefly review the numerical techniques required to develop the numerical
methods to solve the FDE initial value problems (IVPs).

2.1. Lagrangian scheme

Suppose that s0 < s1 < · · · < sn are n + 1 Chebyshev-Gauss-Lobatto (CGL) node points on [0, 1],
where s0 = 0 and sn = 1. We usually discretize the whole time interval into several sub-intervals to
solve IVP (1.1) and solve the IVP in each sub-interval. Suppose ym is approximated for the exact value
y(tm) at time tm. Based on the approximated solutions ym, we need to approximate the solution at time
tm+1. At first, n + 1 CGL-points on [tm, tm+1] are required through the following linear transformation

tm,k = tm + hsk,

for k = 0, 1, · · · , n, where h = tm+1 − tm. Once the numerical solutions ym,1, ym,2, ..., ym,n at the
nodes tm,1, tm,2, ..., tm,n are obtained, we can write the solution y(t) and the function function f (t, y(t)) in
Lagrange interpolation form as follows:

y(t) =

n∑
k=0

ym,kLk(t), (2.1)

f (t, y(t)) =

n∑
k=0

fm,kLk(t), (2.2)

where Lk(t) us the Lagrange interpolation polynomial of order n, given as

Lk(t) =

n∏
i=0,i,k

t − tm,i

tm,k − tm,i
,

fk(t) = f (tm,k, y(tm,k)).

Also, Lk(t) should be transformed into following expressions :

Lk(t) =

n∑
j=0

c j,kt j, k = 0, 1, · · · , n,
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where the coefficients c j,k can be computed by it matrix form,
t0
m,0 t1

m,0 ... tn
m,0

t0
m,1 t1

m,1 ... tn
m,1

... ... ... ...

t0
m,n t1

m,n ... tn
m,n




c0,0 c0,1 ... c0,n

c1,0 c1,1 ... c1,n

... ... ... ...

cn,0 cn,1 ... cn,n

 = In+1, (2.3)

where In+1 is the identity matrix of order n + 1. Moreover, the fractional integral containing Lk(t) can
be easily rewritten by using the Beta function property as follows:

1
Γ(α)

∫ t

0
(t − τ)α−1Lk(τ)dτ =

1
Γ(α)

∫ t

0
(t − τ)α−1

n∑
j=0

c j,kτ
jdτ,

=

n∑
j=0

c j,k
1

Γ(α)

∫ t

0
(t − τ)α−1τ jdτ,

=

n∑
j=0

c j,k
Γ( j + 1)

Γ( j + 1 + α)
t j+α. (2.4)

As seen above, it turns out that the Lagrangian polynomial can remove the fractional integral, so
the singularity in FDE can be resolved .

3. Development of the proposed algorithm

In this section, we introduce a mixed numerical method to solve the FDEs for 0 < α < 2 since the
case for α > 2 is not our primary practical concern [12]. Note that we formulate all equations in terms
of the Caputo sense.

3.1. Chebyshev interpolation

The fractional IVP (1.1) is equivalent to the following Volterra integral equation

y(t) = y0 + y′0t +
1

Γ(α)

∫ t

0
(t − τ)α−1 f (τ, y(τ))dτ, (3.1)

with y(0) = y0. The other condition y′(0) = y′0 is needed only for 1 < α < 2, so, for 0 < α < 1,
y′(0) = y′0 is not necessary, so we set y′0 = 0 for 0 < α < 1. Here, we suppose the the function f (τ)
satisfies the Lipschitz condition.

First of all, we discretize the given time interval [0,T ] into N sub-intervals equally and the step
size h = T

N . Based on all the solutions calculated in all previous intervals [0, tm], we approximate the
solution at tm+1 as follows:

y(tm+1) = y0 + y′0tm+1 +
1

Γ(α)

∫ tm+1

0
(tm+1 − τ)α−1 f (τ, y(τ))dτ,

= y0 + y′0tm+1 +
1

Γ(α)

∫ tm

0
(tm+1 − τ)α−1 f (τ, y(τ))dτ
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+
1

Γ(α)

∫ tm+1

tm
(tm+1 − τ)α−1 f (τ, y(τ))dτ. (3.2)

Note that the integral
∫ tm

0
(tm+1 − τ)α−1 f (τ, y(τ))dτ, the third term of right hand side of Eq (3.2)

can be calculated numerically since the approximated values of y(ti) in ti ∈ [0, tm] are calculated in
the previous intervals [ti, ti+1] for i = 0, · · · ,m − 1. The details of calculation for the integration
will be described in the following subsection. Instead, we discuss the calculation of the last term∫ tm+1

tm
(tm+1 − τ)α−1 f (τ, y(τ))dτ of right hand side of Eq (3.2). Since the first three terms of the right hand

side of Eq (3.2) are known values, we just let the three terms a constant Cm, so the Eq (3.2) is rewritten
as

y(tm+1) = Cm +
1

Γ(α)

∫ tm+1

tm
(tm+1 − τ)α−1 f (τ, y(τ))dτ, (3.3)

where

Cm = y0 + y′0tm+1 +

∫ tm

0
(tm+1 − τ)α−1 f (τ, y(τ))dτ.

To discretize the integral equation Eq (3.3) in a time interval [tm, tm+1], we introduce Lagrangian
interpolation described in Section 2.1. With h = tm+1 − tm, we let τ = hs + tm, 0 ≤ s ≤ 1. Here, we
use Gauss-Legendre-Lobatto nodes for s described in Section 2.1.

Eq (3.3) leads to

y(tm+1) = Cm +
1

Γ(α)

∫ 1

0
(h − hs)α−1 f (hs + tm, y(hs + tm))hds

= Cm +
1

Γ(α)

∫ 1

0
hα(1 − s)α−1 f (hs + tm, y(hs + tm))ds. (3.4)

Using the notations of Lagrangian interpolation

y(t) =

n∑
k=0

ykLk(t), f (t, y(t)) =

n∑
k=0

fkLk(t), t ∈ [tm, tm+1],

where

fk = f (tk, yk), and Lk(t) =

n∑
j=0

c j,kt j, k = 0, 1, · · · , n,

Eq (3.4) can be rewritten as

y(tm+1) = Cm +
hα

Γ(α)

∫ 1

0
(1 − s)α−1

n∑
k=0

fkLk(hs + tm)ds,

= Cm +
hα

Γ(α)

∫ 1

0
(1 − s)α−1

n∑
k=0

fk

n∑
j=0

c j,k(hs + tm) jds,

= Cm +
hα

Γ(α)

n∑
k=0

fk

n∑
j=0

c j,k

∫ 1

0
(1 − s)α−1

j∑
i=0

(
j
i

)
hisit j−i

m ds,
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= Cm +
hα

Γ(α)

n∑
k=0

fk

n∑
j=0

c j,k

j∑
i=0

(
j
i

)
hit j−i

m

∫ 1

0
(1 − s)α−1sids, (3.5)

where
(

j
i

)
denotes a combination of j objects taken i. Using the definition of the beta distribution

described in Eq (2.4) and the derivation of Eq (3.5), the following formula can be derived,

y(t) = Cm +

n∑
k=0

fk

n∑
j=0

c j,k

j∑
i=0

Γ(i + 1)
Γ(α + i + 1)

(
j
i

)
(t − tm)α+it j−i

m , (3.6)

where t is a collocation point contained in [tm, tm+1] defined above. Using the notation of the Lagrangian
interpolation for y(t), it produces a nonlinear system for yk,

Cm −

n∑
k=0

yk

n∑
j=0

c j,kt j +

n∑
k=0

fk

n∑
j=0

c j,k

j∑
i=0

Γ(i + 1)
Γ(α + i + 1)

(
j
i

)
(t − tm)α+it j−i

m = 0. (3.7)

By solving the nonlinear system Eq (3.7) for yk, k = 0, · · · , n, we can finally approximate the solution
y(tm+1).

Theorem 3.1. Let pN =
∑n

k=0 fkLk(x) defined above. Then, for f ∈ CN([0,T ]),

|| f − pN || ≤ c̄hN+1|| f (N+1)||, (3.8)

for some positive constant c̄.

Proof. The details of the proof can be found in [1, 16, 18]. �

3.2. Quadrature rule

In this subsection, we explain how to calculate Cm in Eq (3.7) using a piecewise quadratic
quadrature rules. There are several well-developed quadrature rules [3–5, 17, 19, 24]. For example, [4]
presented explicit quadrature rules for spaces of quintic splines with uniform knot sequences over
finite domains by using only 2 quadrature points per element. In [17, 19], an efficient ruless for
NURBS-based isogeometric analysis was presented for spaces arising in the calculation, for which
the number of quadrature points in an optimal rule is almost equal to half the number of
degrees-of-freedom. This idea was extended to the practical computation of quadrature rules for
univariate non-uniform splines up to any precision. Despite various choices of the quadrature rules, in
this work, we simply use a piecewise quadratic quadrature for calculation of Cm in Eq (3.7), since the
quadrature efficiency is not the main focus of this work. Later, we will apply various higher order
quadrature rules to increase accuracy of the proposed scheme and report it in the future.

Remind that the Cm is

Cm = y0 + y′0tm+1 +

∫ tm

0
(tm+1 − τ)α−1 f (τ, y(τ))dτ.

To calculate the integration in Cm, we equally discretize the given whole integration interval [0, tm]
into N subintervals. As described in subsection 3.1, in each subtime interval [ti, ti+1], we use p-Gaussian
node points to approximate the solutions. That is, there are p-points in the subinterval [ti, ti+1]:

ti = ti,0 < ti,1 < · · · < ti,p = ti+1.
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By Eq (3.7) with a notation of Lagrangian interpolation, solutions at p node points in the interval
[ti, ti+1] can be calculated. Finally, at the time interval [tm, tm+1], we can have estimated solutions in mp
node points in whole previous time interval [0, tm]. To denote the points explicitly, we define t̂ by

t̂ip+ j = ti, j, 0 ≤ i ≤ m − 1, 0 ≤ j ≤ p. (3.9)

With having all calculated solutions in the whole previous time interval set [0, tm] and a notation in
Eq (3.9), we consider a sub-interval [t̂2i, t̂2i+2] having 3 time points (t̂2i, t̂2i+1, t̂2i+2), and we can write the
integral as the 3-point quadrature polynomial to calculate the fractional integration. That is, the given
function f is replaced by the quadratic polynomial:

f (τ) ≈ P(τ) =
(τ − t̂2i+1)(τ − t̂2i+2)

(t̂2i − t̂2i+1)(t̂2i − t̂2i+2)
f (t̂2i)

+
(τ − t̂2i)(τ − t̂2i+2)

(t̂2i+1 − t̂2i)(t̂2i+1 − t̂2i+2)
f (t̂2i+1)

+
(τ − t̂2i)(τ − t̂2i+1)

(t̂2i+2 − t̂2i)(t̂2i+2 − t̂2i+1)
f (t̂2i+2). (3.10)

Therefore the fractional integration in the sub-interval [t̂2i, t̂2i+2] can be calculated as∫ t̂2i+2

t̂2i

(tm+1 − τ)α−1 f (τ)dτ ≈ ω1 f (t̂2i) + ω2 f (t̂2i+1) + ω3 f (t̂2i+2), (3.11)

where ω1, ω2 and ω3 are easily obtained by calculation of the integration (3.10). Based on the
calculation in sub-interval, we can extend this calculation to the whole time interval [0, tm]. We
summarize the calculation as the following remark.

Remark 3.2. For 0 < α < 1, the piecewise quadratic quadrature for fractional integration is∫ tm

0
(tm+1 − τ)α−1 f (τ)dτ =

mp∑
i=0

ωi,m+1 f (t̂i), (3.12)

where

ωi,m+1 =


ω1

0,m+1, i = 0,
ω2

k,m+1, i = 2k + 1, k = 0, 1, · · · mp
2 − 1

ω1
k,m+1 + ω3

k−1,m+1, i = 2k, k = 1, · · · mp
2 − 1

ω3
mp−2,m+1, i = mp,

ω1
k,m+1 = −

Pα+2,k − Pα+1,k(2tm+1 − t̂2k+2 − t̂2k+1)
(t̂2k+2 − t̂2k)(t̂2k+1 − t̂2k)

(3.13)

−
Pα,k(tm+1 − t̂2k+2)(tm+1 − t̂2k+1)

(t̂2k+2 − t̂2k)(t̂2k+1 − t̂2k)
,

ω2
k,m+1 =

Pα+2,k − Pα+1,k(2tm+1 − t̂2k+2 − t̂2k)
(t̂2k+1 − t̂2k)(t̂2k+2 − t̂2k+1)

(3.14)

+
Pα,k(tm+1 − t̂2k+2)(tm+1 − t̂2k)

(t̂2k+1 − t̂2k)(t̂2k+2 − t̂2k+1)
,
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ω3
k,m+1 = −Pα,k − ω

1
k,m+1 − ω

2
k,m+1, (3.15)

with

Pα,k =
(tm+1 − t̂2k+2)α − (tm+1 − t̂2k)α

α
.

Note that to calculate Eq (3.12), we apply the quadrature rule in mp
2 sub-intervals. In each

sub-interval, 3 wi should be calculated and each wi is obtained from one of wi
k,m+1 defined in

Eqs (3.13)–(3.15). Thus, a computational cost in the interval [0, tm] is 3mp
2 . Overall, since we

discretize the given interval [0,T ] into N sub-intervals, the whole computational costs for quadrature
in the proposed scheme can be

∑N
m=1

3mp
2 = O(pN2).

Theorem 3.3. If f (t) ∈ C3[0,T ], y(tk) and yk, k = 0, 1, · · · , 2m and T = t2m be the solutions, then there
exists a constant C0 such that∣∣∣∣∣∣∣

∫ tm

0
(tm+1 − τ)α−1 f (τ)dτ −

mp∑
i=0

ωi,m+1 f (t̂i)

∣∣∣∣∣∣∣ ≤ C0h3+α. (3.16)

Proof. ∣∣∣∣∣∣∣
∫ tm

0
(tm+1 − τ)α−1 f (τ)dτ −

mp∑
i=0

ωi,m+1 f (t̂i)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ tm

0
(tm+1 − τ)α−1 f (τ)dτ −

∫ tm

0
(tm+1 − τ)α−1P(τ)

∣∣∣∣∣∣ dτ,
where P(τ) is the piecewise quadratic polynomial defined in Eq (3.10). Therefore,∣∣∣∣∣∣∣

∫ tm

0
(tm+1 − τ)α−1 f (τ)dτ −

mp∑
i=0

ωi,m+1 f (t̂i)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ tm

0
(tm+1 − τ)α−1( f (τ) − P(τ))dτ

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
j−1∑
k=0

∫ 2k+2

2k
(tm+1 − τ)α−1( f (τ) − P(τ))dτ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
j−1∑
k=0

∫ 2k+2

2k
(tm+1 − τ)α−1 f ′′′(ξ)

3!
(τ − t2k)(τ − t2k+1)(τ − t2k+2)dτ

∣∣∣∣∣∣∣
≤ max

0≤ξ≤tm

∣∣∣∣∣ f ′′′(ξ)
3!

∣∣∣∣∣ h3
∫ tm

0
(tm+1 − τ)α−1dτ = Ch3, (3.17)

where C is a constant depending on α. Since
∫ tm

0
(tm+1 − τ)α−1dτ =

tαm+1

α
−

hα

α
, Eq (3.17) is summarized

as ∣∣∣∣∣∣∣
∫ tm

0
(tm+1 − τ)α−1 f (τ)dτ −

mp∑
i=0

ωi,m+1 f (t̂i)

∣∣∣∣∣∣∣ ≤ C0h3+α, (3.18)

where C is a constant depending on α. �
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4. Numerical results

In this section, we test several examples to examine the effectiveness of the proposed scheme. The
numerical results are compared with exact solutions. For showing the superiority of the methods, the
results are compared with those obtained by other methods [11, 21, 30, 31]. To investigate numerically
the convergence order in each example, experimentally determined order of convergence (EOC) is
calculated as follows:

EOC =
log||Error(h2)/Error(h1)||

log||h2/h1||
,

where Error(h) denotes the absolute error between the analytic solutions and the numerical solutions
simulated with a step size h. In addition, if the right hand side of the FDEs is nonlinear, a nonlinear
system is derived from Eq (3.7). For calculation of the nonlinear system, the matlab-builtin
routine “fsolve” is used. Also, for the initial guess of the nonlinear solver, we use the fractional
explicit Euler method, which is the most basic and economical method. Details of each problem will
be explained in each subsection.

4.1. Linear case

As the first example, we consider a linear fractional differential equation described by

Dαy(t) = t2 +
2

Γ(3 − α)
t(2−α) − y(t), (4.1)

with the initial condition y(0) = 0 and y′(0) = 0. The exact solutions is y(t) = t2. For the experiment,
it is marched from t = 0.0 to t = 1.0 with a step size h = 0.1 and 4 Chebyshev node points are used
in each sub interval. To check the effectiveness of the proposed scheme, we plot the absolute errors
between the proposed scheme and the analytic solution for different the value α = 0.25, 0.5, and 0.75
in Figure 1.
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Figure 1. Comparison of absolute errors for different α.

It can be seen that the proposed scheme seems to work well for this problem.
To examine the numerical convergence order, we calculate numerical errors at T = 1 and the

experimentally determined order of convergence (EOC) by varying the step size
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h = 1/10, 1/20, 1/40, 1/80, 1/160 and 1/320 for different α = 0.5, 0.75 and 1.5 with 2 Chebyshev
node points. All results are reported in Table 1 and Figure 2.

Table 1. Comparison of Absolute errors (Error) and the experimentally determined order of
convergence (EOC) for α = 0.5, 0.75 and α = 1.5.

α = 0.5 α = 0.75 α = 1.5
h Error EOC Error EOC Error EOC

1/10 8.5380e-07 - 5.2605e-06 - 0.0014 -
1/20 2.1429e-07 1.9943 1.1846e-06 2.1508 5.1105e-04 1.4539
1/40 4.3641e-08 2.2958 2.5665e-07 2.2065 1.8079e-04 1.4991
1/80 8.2507e-09 2.4031 5.4724e-08 2.2296 6.3940e-05 1.4995

1/160 1.5050e-09 2.4548 1.1623e-08 2.2352 2.2610e-05 1.4998
1/320 2.3670e-10 2.6686 2.4488e-09 2.2468 7.9944e-06 1.4999

Table 1 shows that for α = 0.5, EOC converges to 2.5, for α = 0.75 EOC to 2.25, and for α = 1.5
EOC to 1.5. One can guess that for linear problems, the proposed algorithm has 3 − α convergence
order. For more details, we plot the numerical results and straight line y = (3 − α)x for α = 0.75 in
Figure 2. It can be seen that the two lines in the figure are parallel, so the convergence order of the
numerical results for α = 0.75 is 2.25. For α = 1.5, one can convincingly conclude the convergence
order, but for α = 0.5 it is not so clear.
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Figure 2. The experimentally determined order of convergence (EOC) for α = 0.75; Blue
line represents the absolute error with log-scale and red line is a linear line with a slope=2.25.

Note that for the linear problems of 1 < α < 2, this scheme seems not appropriate since the
convergence order is quite low. Also, to be precise, we need to theoretically analyze the convergence
orders.

4.2. Nonlinear case 1

In this subsection, the following nonlinear fractional differential equation is considered

Dαy(t) =
Γ(5 + α)

24
t4 + t8+2α − y2(t), (4.2)
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with an initial condition y(0) = 0 and y′(0) = 0. The exact solution of this problem is given as

y(t) = t4+α.

For the experiment, we march from t = 0.0 to t = 1.0 with step size h = 0.2. We calculate the
numerical errors between the proposed scheme and the analytic solution is calculated by varying the
number of Chebyshev node points n = 2, 4, and 6 for the value α = 0.25, 0.5, and 0.75 and all results
are plotted in Figure 3. The results show that the proposed scheme has higher accuracy as the number
of Chebyshev node points is increasing, which implies why the collocation methods are useful.
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Figure 3. Comparison of absolute errors by varying the number of node points n = 2, 4, and
6 for different α = 0.25, 0.5 and 0.75.

For investigating the numerical convergence order for the nonlinear problem, numerical errors and
the experimentally determined order of convergence (EOC) are computed by varying the step size h
for different α = 0.25, 0.5 and 0.75 with 2 Chebyshev node points in time interval [0, 1] and results are
reported in Table 2.

Table 2. Comparison of Absolute errors (Error) and the experimentally determined order of
convergence (EOC) for α = 0.25, 0.5 and α = 0.75.

α = 0.25 α = 0.5 α = 0.75
h Error EOC Error EOC Error EOC

1/10 2.7529e-05 - 3.5555e-05 - 2.4196e-05 -
1/20 3.2219e-06 3.0950 3.4520e-06 3.3645 1.9254e-06 3.6515
1/40 3.6714e-07 3.1335 3.2360e-07 3.4151 1.4941e-07 3.6878
1/80 4.1133e-08 3.1580 2.9722e-08 3.4446 1.1444e-08 3.7066

1/160 4.5541e-09 3.1751 2.6903e-09 3.4657 8.6836e-10 3.7202
1/320 5.0643e-10 3.1687 2.2742e-10 3.5643 6.5728e-11 3.7237

In Table 2, we observe that for α = 0.25, 0.5 and 0.75, the EOCs converge to 3.2, 3.5 and 3.75 as
the step size is decreasing. Similar to the previous result, for α = 0.5 and 0.75, one can convincingly
conclude the convergence order, but for α = 0.25 it is not so clear. It is almost 3 + α, unlike the case of
the linear problem. It is almost identical to the theoretic convergence order described in Theorem 3.3.
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Additionally, to investigate the efficiency of the proposed scheme, we compare the results from the
proposed scheme with those from the existing higher order methods introduced in [7]. For the
experiment, we march from t = 0 to t = 1 with various time steps h = 1/10, 1/20, 1/40, 1/80, 1/160
and 1/320 to check the EOCs for both schemes at the same time. For the proposed scheme, 2
Chebyshev nodes are used. We calculate the absolute errors and the corresponding EOCs for both
methods by difference between the results and analytic solutions. All results are reported in Table 3.

Table 3. Comparing Absolute errors (Error) and the experimentally determined order of
convergence (EOC) obtained from the proposed scheme and the method in [7] for α = 0.5.

Proposed scheme Method in [7]
h Error EOC Error EOC

1/10 3.5555e-05 - 2.2974e-04 -
1/20 3.4520e-06 3.3645 2.2161e-05 3.3739
1/40 3.2360e-07 3.4151 2.0734e-06 3.4179
1/80 2.9722e-08 3.4446 1.9054e-07 3.4439

1/160 2.6903e-09 3.4657 1.7293e-08 3.4618
1/320 2.2742e-10 3.5643 1.5566e-09 3.4738

As mentioned, the method introduced in [7] is also higher order numerical scheme, so as seen in
Table 3, the method in [7] have similar convergence order to the proposed scheme. However, it can be
easily seen that the proposed scheme has more accurate results in this comparison. Therefore, we can
conclude that the proposed scheme is quite efficient for this problem.

4.3. Nonlinear case 2

As the last example, we consider the following nonlinear fractional differential equation described
by

Dαy(t) =
40320

Γ(9 − α)
t8−α − 3

Γ(5 + α/2)
Γ(5 − α/2)

t4−α/2 +
9
4

Γ(α + 1) +

(
3
2

tα/2 − t4
)3

− y3/2, (4.3)

with an initial condition y(0) = 0 and y′(0) = 0. The exact solution of this problem is

y(t) = t8 − 3t4+α/2 +
9
4

tα.

To investigate the accuracy of the proposed scheme, we compare the numerical results of the
proposed scheme with those obtained from existing methods-one is a numerical method introduced
in [21] and the other one is predictor-correction methods [11]. For the experiment, it is marched from
t = 0.0 to t = 1.0 with step size h = 0.025 for α = 0.75. The numerical results introduced in [21] have
been already represented in [21], so the data are directly excerpted from the reference. The
predictor-corrector methods [11] is implemented for the same setting and the proposed scheme uses 4
Chebyshev node points. Figure 4 represents numerical errors generated from three methods over the
given time interval.
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Figure 4. Comparison of absolute errors over time interval [0.0, 1.0] for proposed scheme
(Proposed) and other methods (Kumar in [21] and Pred-Corr.) for case α = 0.75.

The figure shows that the proposed scheme generates more accurate solution for the problem,
compared with other existing methods. As well as the numerical methods in references [11, 21], there
are several references to represent the numerical results of this example and the results can be found
in [2, 29–31], etc. Even compared with the results in [31] where is most recently developed and has
higher accuracy, the results of the proposed scheme is quite competitive.

To check the numerical convergence order, we investigate numerical errors at T = 1 and the
experimentally determined order of convergence (EOC) by varying the step size h for different
α = 0.25, 0.5 and 0.75 with 2 Chebyshev node points in Table 4.

Table 4. Comparison of Absolute errors (Error) and the experimentally determined order of
convergence (EOC) for α = 0.25, 0.5 and α = 0.75.

α = 0.25 α = 0.5 α = 0.75
h Error EOC Error EOC Error EOC

1/20 4.2585e-05 - 3.9458e-05 - 2.0432e-05 -
1/40 4.9115e-06 3.1161 3.7647e-06 3.3897 1.6291e-06 3.6487
1/80 5.4822e-07 3.1633 3.4955e-07 3.4290 1.2757e-07 3.6747

1/160 6.4956e-09 3.2085 2.9121e-09 3.4545 7.5437e-10 3.7074
1/320 7.0151e-10 3.2109 2.4571e-10 3.5670 1.9482e-11 5.2751

The results show that for α = 0.25, 0.5 and 0.75, the EOCs are 3.25, 3.5 and 3.75, respectively.
That is, as similar to the previous nonlinear example, a numerical convergence order for this problem
is about 3 + α. For checking in detail, we plot the EOC for α = 0.5 and a straight line with having a
slope 3.5 in Figure 5. The figure shows the two lines are exactly parallel.
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Figure 5. The experimentally determined order of convergence (EOC) for α = 0.5 : Blue
line represents the absolute error with log-scale and red line is a linear line with a slope=3.5.

To examine the numerical convergence order for 1 < α < 2, Numerical errors at T = 1 and the
experimentally determined order of convergence (EOC) are computed by varying the step size h for
different α = 1.5 and 1.75 with 2 Chebyshev node points and reported in Table 5.

Table 5. Comparison of Absolute errors (Error) and the experimentally determined order of
convergence (EOC) for α = 1.5 and α = 1.75.

α = 1.5 α = 1.75
h Error EOC Error EOC

1/20 6.8725e-06 - 8.0313e-06 -
1/40 4.6601e-07 3.8824 5.1554e-07 3.9615
1/80 3.0672e-08 3.9254 3.2723e-08 3.9777

1/160 2.0802e-09 3.8821 2.0693e-09 3.9831
1/320 1.3313e-10 3.9658 1.3002e-10 3.9923
1/640 8.2365e-12 4.0147 7.7750e-12 4.0637

1/1280 4.2821e-13 4.2656 4.0962e-13 4.2465

The results show that for α = 1.5 and 1.75, the EOC is over 4. It is quite competitive convergence
order compared with the existing techniques.

5. Conclusions

In this paper, a mixed numerical technique is developed for solving fractional differential equations
(FDEs) by splitting into two time intervals-the whole previous time interval and current time integration
step. At a current time integration, we compute the solution by using Chebyshev collocation methods
which can be rewritten as a Lagrangian interpolating form. By the Lagrangian interpolating form, we
can remove a singularity which belongs originally to the FDEs. For calculating the fraction integral in
the previous time interval, we use a piecewise quadratic quadrature technique to get higher accuracy
by using all solutions including solutions at the collocation points. Several numerical examples are
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presented to show the efficiency of the proposed method and compare it with several existing methods.
The numerical results present that the proposed techniques can get competitively better accuracy and
and numerically convergence orders 3 − α for linear cases. Also, the numerical convergence orders
are 3 + α and over 4 for nonlinear cases, when 0 < α < 1 and 1 < α < 2, respectively.

In order to fully explore the efficiency of the proposed scheme, several extended issues are
currently being pursued. First, we apply the proposed scheme to other types of fractional differential
equations such as several Bagley-Torvik equations, a popular FDE with α > 1. Secondly, we are
doing theoretically convergence analysis for linear which will be hopefully consistent with the
numerical convergence orders. Lastly, an adaptive time stepping method should be considered by
calculating the fractional integral for long time simulations. Preliminary results are quite promising.
Results along these issues will be reported soon.
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