Matching preclusion originates from the measurement of interconnection network robustness in the event of edge failure. Conditional matching preclusion belongs to generalized matching preclusion. We obtain the matching preclusion number and conditional matching preclusion number for hierarchical cubic network($ HCN_n $). Additionally, all the optimal (conditional) matching preclusion sets of $ HCN_n $ are characterized, which generalize some related results of Birgham et al. and Cheng et al.
Citation: Jinyu Zou, Haizhen Ren. Matching preclusion and conditional matching preclusion for hierarchical cubic networks[J]. AIMS Mathematics, 2022, 7(7): 13225-13236. doi: 10.3934/math.2022729
Matching preclusion originates from the measurement of interconnection network robustness in the event of edge failure. Conditional matching preclusion belongs to generalized matching preclusion. We obtain the matching preclusion number and conditional matching preclusion number for hierarchical cubic network($ HCN_n $). Additionally, all the optimal (conditional) matching preclusion sets of $ HCN_n $ are characterized, which generalize some related results of Birgham et al. and Cheng et al.
[1] | R. C. Birgham, F. Harry, E. C. Biolin, J. Yellen, Perfect matching preclusion, Congr. Numer., 174 (2005), 185–192. |
[2] | E. Cheng, L. Lipták, Matching preclusion for some interconnection networks, Networks, 50 (2007), 173–180. http://dx.doi.org/10.1002/net.20187 doi: 10.1002/net.20187 |
[3] | E. Cheng, L. Lensik. M. Lipman, L. Lipták, Matching preclusion for alternating group graphs and their generalizations, Int. J. Found. Comp. Sci., 19 (2008), 1413–1437. http://dx.doi.org/10.1142/S0129054108006364 doi: 10.1142/S0129054108006364 |
[4] | E. Cheng, L. Lensik. M. Lipman, L. Lipták, Conditional matching preclusion sets, Inf. Sci., 179 (2009), 1092–1101. http://dx.doi.org/10.1016/j.ins.2008.10.029 doi: 10.1016/j.ins.2008.10.029 |
[5] | E. Cheng, R. Jia, D. Lu, Matching preclusion and conditional matching preclusion for augmented cubes, J. of Interconnection Networks, 11 (2010), 35–60. http://dx.doi.org/10.1142/S0219265910002726 doi: 10.1142/S0219265910002726 |
[6] | W. Chang, E. Cheng, Strong matching preclusion of 2-matching composition networks, Congr. Numer., 224 (2015), 91–104. |
[7] | H. Lü, X. Li, H. Zhang, NP-completeness of anti-Kekule and matching preclusion problem, J. Amer. Math. Soc., 2017 (2017), arXiv: 1706.09321. http://dx.doi.org/10.48550/arXiv.1706.09321 |
[8] | R. Lin, H. Zhang, W. Zhao, Matching preclusion for direct product of regular graphs, Discrete Appl. Math., 277 (2020), 221–230. http://dx.doi.org/10.1016/j.dam.2019.08.016 doi: 10.1016/j.dam.2019.08.016 |
[9] | R. Lin, Conditional matching preclusion for regular bipartite graphs and their Cartesian product, Discrete Appl. Math., 299 (2021), 17–25. http://dx.doi.org/10.1016/j.dam.2021.04.011 doi: 10.1016/j.dam.2021.04.011 |
[10] | H. Lv, X. Li, H. Zhang, Matching preclusion for balanced hypercubes, Theor. Comput. Sci., 465 (2012), 10–20. http://dx.doi.org/10.1016/j.tcs.2012.09.020 doi: 10.1016/j.tcs.2012.09.020 |
[11] | E. Cheng, M. Lipman, L. Lipták, D. Sherman, Conditional matching preclusion for the arrangement graphs, Theor. Comput. Sci., 412 (2011), 6279–6289. http://dx.doi.org/10.1016/j.tcs.2011.07.007 doi: 10.1016/j.tcs.2011.07.007 |
[12] | S. Wang, R. Wang, S. Lin, J. Li, Matching preclusion for $k$-ary $n$-cubes, Discrete Appl. Math., 158 (2010), 174–182. http://dx.doi.org/10.1016/j.topol.2011.01.008 doi: 10.1016/j.topol.2011.01.008 |
[13] | Y. Mao, E. Cheng, A concise survey of matching preclusion in interconnection networks, J. Interconnect. Networks, 19 (2019), 1940006. http://dx.doi.org/10.1142/S0219265919400061 doi: 10.1142/S0219265919400061 |
[14] | K. Ghose, K. R. Desai, Hierarchical cubic network, IEEE Trans. Parallel Distrib Syst., 6 (1995), 427–435. http://dx.doi.org/10.1109/71.372797 doi: 10.1109/71.372797 |
[15] | S. Zhou, S. Song, X. Yang, L. Chen, On the conditional fault tolerance and diagnosability of hierarchical cubic networks, Theor. Comput. Sci., 609 (2016), 421–433. http://dx.doi.org/10.1016/j.tcs.2015.10.030 doi: 10.1016/j.tcs.2015.10.030 |