Research article

Matching preclusion and conditional matching preclusion for hierarchical cubic networks

  • Received: 23 January 2022 Revised: 12 April 2022 Accepted: 21 April 2022 Published: 11 May 2022
  • MSC : 05C05, 05C12, 05C76

  • Matching preclusion originates from the measurement of interconnection network robustness in the event of edge failure. Conditional matching preclusion belongs to generalized matching preclusion. We obtain the matching preclusion number and conditional matching preclusion number for hierarchical cubic network($ HCN_n $). Additionally, all the optimal (conditional) matching preclusion sets of $ HCN_n $ are characterized, which generalize some related results of Birgham et al. and Cheng et al.

    Citation: Jinyu Zou, Haizhen Ren. Matching preclusion and conditional matching preclusion for hierarchical cubic networks[J]. AIMS Mathematics, 2022, 7(7): 13225-13236. doi: 10.3934/math.2022729

    Related Papers:

  • Matching preclusion originates from the measurement of interconnection network robustness in the event of edge failure. Conditional matching preclusion belongs to generalized matching preclusion. We obtain the matching preclusion number and conditional matching preclusion number for hierarchical cubic network($ HCN_n $). Additionally, all the optimal (conditional) matching preclusion sets of $ HCN_n $ are characterized, which generalize some related results of Birgham et al. and Cheng et al.



    加载中


    [1] R. C. Birgham, F. Harry, E. C. Biolin, J. Yellen, Perfect matching preclusion, Congr. Numer., 174 (2005), 185–192.
    [2] E. Cheng, L. Lipták, Matching preclusion for some interconnection networks, Networks, 50 (2007), 173–180. http://dx.doi.org/10.1002/net.20187 doi: 10.1002/net.20187
    [3] E. Cheng, L. Lensik. M. Lipman, L. Lipták, Matching preclusion for alternating group graphs and their generalizations, Int. J. Found. Comp. Sci., 19 (2008), 1413–1437. http://dx.doi.org/10.1142/S0129054108006364 doi: 10.1142/S0129054108006364
    [4] E. Cheng, L. Lensik. M. Lipman, L. Lipták, Conditional matching preclusion sets, Inf. Sci., 179 (2009), 1092–1101. http://dx.doi.org/10.1016/j.ins.2008.10.029 doi: 10.1016/j.ins.2008.10.029
    [5] E. Cheng, R. Jia, D. Lu, Matching preclusion and conditional matching preclusion for augmented cubes, J. of Interconnection Networks, 11 (2010), 35–60. http://dx.doi.org/10.1142/S0219265910002726 doi: 10.1142/S0219265910002726
    [6] W. Chang, E. Cheng, Strong matching preclusion of 2-matching composition networks, Congr. Numer., 224 (2015), 91–104.
    [7] H. Lü, X. Li, H. Zhang, NP-completeness of anti-Kekule and matching preclusion problem, J. Amer. Math. Soc., 2017 (2017), arXiv: 1706.09321. http://dx.doi.org/10.48550/arXiv.1706.09321
    [8] R. Lin, H. Zhang, W. Zhao, Matching preclusion for direct product of regular graphs, Discrete Appl. Math., 277 (2020), 221–230. http://dx.doi.org/10.1016/j.dam.2019.08.016 doi: 10.1016/j.dam.2019.08.016
    [9] R. Lin, Conditional matching preclusion for regular bipartite graphs and their Cartesian product, Discrete Appl. Math., 299 (2021), 17–25. http://dx.doi.org/10.1016/j.dam.2021.04.011 doi: 10.1016/j.dam.2021.04.011
    [10] H. Lv, X. Li, H. Zhang, Matching preclusion for balanced hypercubes, Theor. Comput. Sci., 465 (2012), 10–20. http://dx.doi.org/10.1016/j.tcs.2012.09.020 doi: 10.1016/j.tcs.2012.09.020
    [11] E. Cheng, M. Lipman, L. Lipták, D. Sherman, Conditional matching preclusion for the arrangement graphs, Theor. Comput. Sci., 412 (2011), 6279–6289. http://dx.doi.org/10.1016/j.tcs.2011.07.007 doi: 10.1016/j.tcs.2011.07.007
    [12] S. Wang, R. Wang, S. Lin, J. Li, Matching preclusion for $k$-ary $n$-cubes, Discrete Appl. Math., 158 (2010), 174–182. http://dx.doi.org/10.1016/j.topol.2011.01.008 doi: 10.1016/j.topol.2011.01.008
    [13] Y. Mao, E. Cheng, A concise survey of matching preclusion in interconnection networks, J. Interconnect. Networks, 19 (2019), 1940006. http://dx.doi.org/10.1142/S0219265919400061 doi: 10.1142/S0219265919400061
    [14] K. Ghose, K. R. Desai, Hierarchical cubic network, IEEE Trans. Parallel Distrib Syst., 6 (1995), 427–435. http://dx.doi.org/10.1109/71.372797 doi: 10.1109/71.372797
    [15] S. Zhou, S. Song, X. Yang, L. Chen, On the conditional fault tolerance and diagnosability of hierarchical cubic networks, Theor. Comput. Sci., 609 (2016), 421–433. http://dx.doi.org/10.1016/j.tcs.2015.10.030 doi: 10.1016/j.tcs.2015.10.030
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1161) PDF downloads(92) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog