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Abstract: For a finite group G and a subset X , ∅ of G, the commuting graph, indicated by G =
C(G, X), is the simple connected graph with vertex set X and two distinct vertices x and y are edge
connected in G if and only if they commute in X. The Aα matrix of G is specified as Aα(G) = αD(G)+
(1−α)A(G), α ∈ [0, 1], where D(G) is the diagonal matrix of vertex degrees while A(G) is the adjacency
matrix of G. In this article, we investigate the Aα matrix for commuting graphs of finite groups and we
also find the Aα eigenvalues of the dihedral, the semidihedral and the dicyclic groups. We determine
the upper bounds for the largest Aα eigenvalue for these graphs. Consequently, we get the adjacency
eigenvalues, the Laplacian eigenvalues, and the signless Laplacian eigenvalues of these graphs for
particular values of α. Further, we show that these graphs are Laplacian integral.
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1. Introduction

In this article, all our graphs are simple, finite and connected. A graph G = G(V(G), E(G)) is an
ordered pair consisting of the vertex set V(G) and the edge set E(G). The cardinality of V(G) is referred
to as the order of G represented by n and the cardinality of E(G) is called the size of G, symbolized by
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m. The set of vertices adjacent to v ∈ V(G), indicated by N(v), is known as the neighborhood of v. The
cardinality of N(v) is the degree of a vertex v, symbolized by d(v). A graph G is called regular if the
degree of every vertex is same. For other notations and terminology, see [14].

Let Mn(R) be the set of square matrices over the field R and M∗ := {M ∈ Mn(R) : MT = M}, where
M∗ is the set of real symmetric matrices. The adjacency matrix of G, symbolized by A(G), is described
in the following way:

A(G) = (ai j)n =

1, if i adjacent j;
0, otherwise.

Clearly, A(G) is in M∗, so all its eigenvalues are in R and can be indexed from the largest to the least
as: λ1 ≥ λ2 ≥ · · · ≥ λn. The multiset of eigenvalues of A(G) is the spectrum of G, and λ1 is called the
spectral radius (or spectral norm) of G.

Let D(G) = diag(d(v1), d(v2), . . . , d(vn)) be the diagonal matrix of vertex degrees of G. The matrices
L(G) = A(G) − D(G) and Q(G) = A(G) + D(G) are known as the Laplacian matrix and the signless
Laplacian matrix of G, respectively. The matrix L(G) is positive semi-definite and the matrix Q(G)
is positive semi-definite (definite) and their spectrum is in R. Laplacian eigenvalues are denoted by
λL

1 ≥ λ
L
2 ≥ · · · ≥ λ

L
n = 0 while the signless Laplacian eigenvalues are denoted by λQ

1 ≥ λ
Q
2 ≥ · · · ≥ λ

Q
n .

It is well known that λL
n = 0 is always the eigenvalue of L(G) and λL

n−1 > 0 for connected graphs, which
is referred to as the algebraic connectivity of G.

Nikiforov [23] suggested examining the convex combinations Aα(G) of the adjacency matrix A(G)
and the diagonal matrix D(G) specified by Aα(G) = (1−α)A(G)+αD(G), where 0 ≤ α ≤ 1. Obviously,
A0(G) = A(G), A1(G) = D(G) and Q(G) = 2A 1

2
(G) = A(G)+D(G). Also Aα(G)−Aγ(G) = (α−γ)L(G) =

(α−γ)(D(G)−A(G)), where L(G) is the Laplacian matrix of G. Thus, Aα(G) matrix merges the spectral
theories of A(G), L(G) and Q(G) as well as their uncountably many combinations. Recent articles on
the spectral properties of the A matrix can be obtained in [21,23–25,27,33] and the references in those
articles.

The matrix Aα(G) belongs to the class M∗, so its eigenvalues can be arranged in decreasing order
as λα1 ≥ λ

α
2 ≥ · · · ≥ λ

α
n , where λα1 is called the α spectral radius ( or λ(Aα) generalized adjacency

spectral radius) of G. For a connected graph G, the matrix Aα(G) (for α , 1) is an irreducible and non-
negative. Consequently, according to the Perron-Frobenius theorem, λ(Aα(G)) is the simple eigenvalue,
and λ(Aα(G)) has only one positive unit eigenvector X, which is known as the generalized adjacency
Perron vector of G.

Consider G is a finite group with n elements and e is the identity element. If X is a non empty
subset of G, then the commuting graph of G related to X, is indicated by C(G, X), and is defined with
X as the vertex set and two different vertices x and y are edge connected in C(G, X) if and only if they
commute in X. The commuting graphs of matrix rings and semirings over the finite fields were studied
in [1, 15]. The metric dimension, the resolving polynomial, the clique number and the chromatic
number of the commuting graphs of the dihedral groups were discussed in [4, 11]. Recent results on
the commuting graphs of the generalized dihedral groups can be found in [12, 20]. The adjacency
spectrum of commuting graphs were studied in [5, 13], the Laplacian as well as the signless Laplacian
spectra of the commuting graphs on the dihedral groups were explored in [3, 32]. For other spectral
properties and energies of commuting graphs, see [16, 18].
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2. Aα eigenvalues of commuting graphs of finite non-abelian groups

Any column vector X = (x1, x2, . . . , xn)T ∈ Rn can be regarded as a function defined by V(G) which
associates every vertex vi to xi, i.e., X(vi) = xi for all i = 1, . . . , n. Also, the quadratic form of the Aα
matrix is:

⟨AαX, X⟩ = (2α − 1)
∑

u∈V(G)

x2
ud(u) + (1 − α)

∑
uv∈E(G)

(xu + xv)2,

and λ is the Aα eigenvalue of G that corresponds to the eigenvector X whenever X , 0 and for every
vi ∈ V(G), we have:

λxi = αd(vi)xi + (1 − α)
∑

viv j∈E(G)

x j, (2.1)

or equivalently (
λ − αd(vi)

)
xi = (1 − α)

∑
viv j∈E(G)

x j. (2.2)

Equations (2.1) and (2.2) are known as eigenequations for the matrix Aα of G.
Our first result is helpful in finding some Aα eigenvalues of G with some special structure.

Theorem 2.1. Suppose G is a graph with V(G) = {v1, v2, . . . , vn} and B = {v1, v2, . . . , vk} is the set of
vertices of G satisfying N(vi) = N(v j) for all i, j ∈ {1, 2, . . . , k}. Then the following hold.

(i) If B is an independent set of G, then bα is an Aα eigenvalue of G with multiplicity at least k − 1,
where b is the degree of vi, for i = 1, 2, . . . , k.

(ii) If B is a clique of G, then α(ω + β) − 1 is an Aα eigenvalue of G having multiplicity at least k − 1,
whereas β is the total number of vertices in V(G) \ B, that are edge connected to every vertex of
clique.

Proof. (i) Since {v1, v2, . . . , vk} is the independent set of G sharing the same neighbourhood, so d(v1) =
d(v2) = · · · = d(vk) = b (say). We first index the independent vertices, so that the Aα matrix of G can
be put as:

Aα(G) =



bα 0 . . . 0
0 bα . . . 0 Bk×(n−k)
...
...
. . .

...

0 0 · · · bα
BT C(n−k)×(n−k)


. (2.3)

Let Xi−1 =
(
− 1, xi2, xi3, . . . , xik, 0, 0, 0, . . . , 0︸         ︷︷         ︸

n−k

)T
be the vector in Rn such that

xi j =

1, if i = j and 2 ≤ i ≤ k;
0, otherwise.

Clearly, X1, X2, . . . , Xk−1 are the linearly independent vectors and we note that all the rows of Bk×(n−k)

are identical. Therefore, we have

Aα(G)X1 =
(
−bα bα 0 · · · 0 0 · · · 0

)T
= bαX1.
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Thus, it follows that X1 is the eigenvector that corresponds to the Aα eigenvalue bα. Similarly,
X2, X3, . . . , Xp−1 are the eigenvectors of the Aα matrix corresponding to the eigenvalue bα.
(ii) By hypothesis, {v1, v2, . . . , vk} forms the clique of G with the same neighbourhood, so
d(v1) = d(v2) = · · · = d(vk) = ω − 1 + β, whereas β is the number of vertices in |N(v1) \ B|, which are
adjacent to every vertex of the clique. We first label the vertices of the clique, hence, the Aα matrix of
G may be expressed as:

Aα(G) =



(ω − 1 + β)α 1 − α . . . 1 − α
1 − α (ω − 1 + β)α . . . 1 − α Bk×(n−k)
...

...
. . .

...

1 − α 1 − α · · · (ω − 1 + β)α
BT C(n−k)×(n−k)


. (2.4)

Let X1, X2, . . . , Xk−1 be the linearly independent vectors defined as in (i). Then, we have

Aα(G)X1 =
(
−(ω + β)α + 1 (ω + β)α − 1 0 · · · 0 0 · · · 0

)T
= (α(ω + β) − 1)X1.

Likewise, X2, . . . , Xp−1 are the eigenvectors of Aα(G) that corresponds to the eigenvalue α(ω + β) − 1.
This proves the result. □

Assume that a matrix M has a kind of symmetry and may be put in the form

M =



X Y Y · · · Y Y
YT B C · · · C C
...
...
...
. . .

...
...

YT C C · · · B C

YT C C · · · C B


, (2.5)

where X ∈ Rn1×n1 , Y ∈ Rn1×n2 and B,C ∈ Rn2×n2 , so that n = n1 + ηn2, where η is the number of copies
of B. Then the spectrum of M can be found by the following result.

Lemma 2.2. [17] Assume that M is a matrix of the form presented in (2.5), having η ≥ 1 copies of
the block matrix B and S pec(M) is the spectrum of M. Then S pec(M) = S pec(B−C)η−1 ∪ S pec(M′),

whereas M′ =
(

X
√
ηY

√
ηYT B + (η − 1)C

)
n1+n2

, and S pec(B − C)η−1 represents the set of eigenvalues of

matrix B − C each with multiplicity η − 1.

All our groups are assumed to be finite with identity element represented by e. For notations and
definitions, we follow [22]. The presentation of the dihedral group D2n, n > 2, is provided as:

D2n = ⟨a, b : an = e = b2, aba = b⟩.

Clearly, the last condition is equivalent to ab = ba−1 = ban−1. Similarly, the presentation of the
semidihedral group S D8n of order 8n and the dicyclic group Q4n having order 4n are given by:

S D8n = ⟨a, b : a4n = e = b2, ab = ba2n−1⟩,
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and
Q4n = ⟨a, b := b4a2n = e, an = b2, ba−1 = ab⟩.

The center of G, symbolized by Z(G), is specified by:

Z(G) = {z ∈ G : za = az for each a ∈ G}.

Any finite cyclic group G of order n can be written as the group Zn of integers modulo n. Clearly,
the commuting graph G = C(Zn,Zn) is the complete graph Kn, as every element of Zn commutes with
every other element. The Aα spectrum of C(Zn,Zn) is {(αn− 1)[n−1], n− 1}, where [n− 1] represents the
algebraic multiplicity of eigenvalue. It easily follows that Z(D2n) =

{
e, a

n
2
}
, for even n and Z(D2n) = {e},

for odd n. Also,the center of the dicyclic group is Z(Q4n) = {e, an}. For the commuting graph [4]
G = C(D2n,Z(D2n)), G is K1, for odd n and G is K2, for even n. So, the commuting graphs C(G,Z(G))
have simple structures and it will be interesting to investigate the commuting graphs with the non trivial
structures.

The next result can be found in [4], which gives the structure of D2n, where X is D2n itself.

Lemma 2.3. The commuting graph of the dihedral group D2n is

C(D2n,D2n) =

K1 ∨
(
Kn−1 ∪ Kn

)
, if n is odd;

K2 ∨
(
Kn−2 ∪

n
2 K2

)
, if n is even.

In the following result, we find the Aα eigenvalues of the commuting graphs of the dihedral group.

Theorem 2.4. The following properties hold for the commuting graph C(D2n,D2n) of D2n.

(i) If n is odd, then the Aα spectrum of C(D2n,D2n) comprises the eigenvalues α and αn − 1 having
multiplicities n − 1, n − 2, respectively, and the three zeros of polynomial (2.6).

(ii) If n is even, then the Aα spectrum of C(D2n,D2n) comprises the simple eigenvalue 2αn − 1, the
eigenvalue 2α + 1 having multiplicity n

2 − 1, the eigenvalues αn − 1 and 4α − 1 having algebraic
multiplicities n − 3 and n

2 , respectively, and the three zeros of polynomial (2.7).

Proof. (i) By Lemma 2.3, the commuting graph of D2n for odd n is C(D2n,D2n) = K1∨
(
Kn−1∪Kn

)
. Let

{v1, v2, . . . , vn, u, u1, u2, . . . , un−1} be the vertex set of C(D2n,D2n), where vi’s are the pendent vertices, u
is the vertex of degree 2n − 1 and ui’s are the vertices of degree n − 1. As vi’s are independent vertices
sharing the vertex u, so by Theorem 2.1, we get the Aα eigenvalue α with algebraic multiplicity n − 1.
Also, ui’s are the vertices of clique sharing the vertex u and by (ii) of Theorem 2.1 with β = 1, we
obtain the Aα eigenvalue α(n − 1 + 1) − 1 = αn − 1 with algebraic multiplicity n − 2. In this way, we
get 2n−3 Aα eigenvalues and the remaining three Aα eigenvalues of C(D2n,D2n) can be found by using
eigenequation (2.1). Let X be the eigenvector of Aα(C(D2n,D2n)) with xi = X(vi), for i = 1, 2, 3, . . . , 2n.
Then, it follows that every component of X that corresponds to every pendent vertex is equal to x1,
component of X that corresponds to the vertex u is x2 and the components of X that corresponds to the
vertices ui’s is equal to x3. Therefore, from the eigenequation AαX = λX, we have

λx1 =αx1 + (1 − α)x2,

λx2 = (1 − α)x1 + (1 − α)x1 + · · · + (1 − α)x1︸                                             ︷︷                                             ︸
n

+α(2n − 1)x2 + (1 − α)x3 + · · · + (1 − α)x3︸                             ︷︷                             ︸
n−1

,
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λx3 =(1 − α)x2 + α(n − 1)x3 + (1 − α)x3 + (1 − α)x3 + · · · + (1 − α)x3︸                                             ︷︷                                             ︸
n−2

,

and the coefficient matrix for the right side of the above equations is:
α 1 − α 0

n(1 − α) α(2n − 1) (n − 1)(1 − α)
0 1 − α α + n − 2

 .
The characteristic polynomial of the above matrix is given by:

x3 − x2(α + 2αn + n − 2) + x
(
−α2 + 2αn2 + 3α2n − 2αn + (1 − α)2(1 − n) − n

)
−

(
α + α2n2 + 2αn2 − n2 + α2n − 6αn + 2n

)
.

(2.6)

(ii) If n is even, then by Lemma 2.3, the commuting graph of D2n is K2 ∨
(
Kn−2 ∪

n
2 K2

)
. Let

v1, v2, . . . , vn−2, v, u, u11, u12, u21, u22, . . . , u n
2 1, u n

2 2 be the vertex labelling of C(D2n,D2n), where vi’s are
the vertices of Kn−2, u and v are the degree 2n − 1 vertices and ui1, ui2, i = 1, 2, . . . , n

2 are the vertices
of the degree 3. Since vi’s form the clique and share the same neighbourhood {u, v}, so by (ii) of
Theorem 2.1, α(n − 2 + 2) − 1 = αn − 1 is the Aα eigenvalue of C(D2n,D2n) having multiplicity n − 3.
Also, {u, v} are the vertices of K2 with β = n − 2 + 2 × n

2 = 2(n − 1) and by Theorem 2.1, is shown here
that 2αn − 1 is the simple Aα eigenvalue of C(D2n,D2n). Similarly, we see that 4α − 1 is the Aα
eigenvalue of C(D2n,D2n) having multiplicity n

2 . The remaining n
2 + 2 Aα eigenvalues of C(D2n,D2n)

can be obtained by using Equation (2.1). If X is the eigenvector of Aα(C(D2n,D2n)), then it is evident
that every component of X that corresponds to vi’s is equal to x1, the components of X that
corresponds to u and v is x2 and the components of X that corresponds to ui1 as well as ui2 is equal to
xi + 2, for i = 1, 2, . . . , n

2 . Thus from eigenequation (2.1), we have:

λx1 =α(n − 1)x1 + (n − 3)(1 − α)x1 + (2 − 2α)x2,

λx2 =(1 − α)(n − 2)x1 + (α(2n − 2) + 1)x2 + 2(1 − α)x3 + 2(1 − α)x4 + · · · + 2(1 − α)x n
2+2,

λx3 =2(1 − α)x2 + 3αx3 + (1 − α)x3,

λx4 =2(1 − α)x2 + 3αx4 + (1 − α)x4,

...

λx n
2+2 =2(1 − α)x2 + 3αx n

2+2 + (1 − α)x n
2+2,

and the coefficient matrix of the right ride of the above system of equations is

2α + n − 3 2(1 − α) 0 0 . . . 0
(n − 2)(1 − α) α(2n − 2) + 1 2(1 − α) 2(1 − α) . . . 2(1 − α)

0 2(1 − α) 2α + 1 0 . . . 0
0 2(1 − α) 0 2α + 1 . . . 0
...

...
...

...
. . .

...

0 2(1 − α) 0 0 . . . 2α + 1

(
n
2+2

)
×
(

n
2+2

)
.
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Now, applying Lemma 2.2 to the above matrix with

X =
(

2α + n − 3 2(1 − α)
(n − 2)(1 − α) α(2n − 2) + 1

)
,Y =

(
0

2 − 2α

)
,B =

(
2α + 1

)
,C =

(
0
)

and note that η = n
2 , we get the Aα eigenvalue 2α + 1 with algebraic multiplicity n

2 − 1. The other three
Aα eigenvalues of C(D2n,D2n) are the eigenvalues of the following matrix:

2α + n − 3 2(1 − α) 0
(n − 2)(1 − α) α(2n − 2) + 1 2(1 − α)

√ n
2

0 2(1 − α)
√ n

2 2α + 1

 ,
and its characteristic polynomial is

x3 − x2(2α + 2αn + n − 1) + x
(
−4α + 2αn2 + 4α2n + 4αn − 2n − 1

)
− 2α − 2α2n2 − 6αn2 + 2n2 − 8α2n + 22αn − 5n − 1.

(2.7)

□

The next lemma gives the structure of the commuting graph of the semidihedral group S D8n.

Lemma 2.5. [32] The structure of the commuting graph of S D8n is given as:

C(S D8n,D8n) =

K4 ∨
(
K4n−4 ∪ nK4

)
, if n is odd;

K2 ∨
(
K4n−2 ∪ 2nK2

)
, if n is even.

In the subsequent result, we find the Aα eigenvalues of the commuting graph of the semidihedral
group.

Theorem 2.6. For the commuting graph C(S D8n, S D8n) of the semidihedral group S D8n, the
subsequent properties hold.

(i) If n is odd, then the Aα spectrum of C(S D8n, S D8n) comprises the eigenvalues 4αn − 1, 8αn − 1,
8α − 1, 4α + 3 with algebraic multiplicities 4n − 5, 3, 3n, n − 1, respectively, and the eigenvalues
of the following matrix: 

4α + 4n − 5 4(1 − α) 0
(4n − 4)(1 − α) 8αn − α + 3 4

√
n(1 − α)

0 4
√

n(1 − α) 4α + 3

 .
(ii) If n is even, then the Aα spectrum of C(S D8n, S D8n) comprises the simple eigenvalue 8αn − 1, the

eigenvalues 4αn−1, 4α−1, 2α+1 having algebraic multiplicities 4n−3, 2n, 2n−1, respectively,
and the three eigenvalues of the sequel matrix:

2α + 4n − 3 2(1 − α) 0
(4n − 2)(1 − α) 8αn − 2α + 1 2

√
2n(1 − α)

0 2
√

2n(1 − α) 2α + 1

 .
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Proof. By using Theorem 2.1, Lemmas 2.2 and 2.5 and proceeding as in (ii) of Theorem 2.4, this result
can be proved. □

In the next result, we will determine the Aα eigenvalues of the commuting graph of the dicyclic
group Q4n.

Theorem 2.7. The Aα spectrum of C(Q4n,Q4n) consists of the simple eigenvalue 4αn − 1, and the
eigenvalues 2αn − 1, 4α − 1, 2α + 1 with algebraic multiplicities 2n − 3, n, n − 1, respectively, and the
rest three eigenvalues are the zeros of polynomial (2.8).

Proof. The commuting graph C(Q4n,Q4n) [5] of Q4n is C(Q4n,Q4n) = K2 ∨
(
K2n−2 ∪ nK2

)
. Let

v1, v2, . . . , v2n−2, v, u, u11, u12, u21, u22, . . . , un1, un2 be the vertex indexing of C(Q4n,Q4n), where vi’s are
the vertices of the degree 2n − 1, v and u are the vertices of the degree 4n − 1 and ui1, ui2 are the
vertices of degree 3, for i = 1, 2, . . . , n. Since vi’s form the clique and share the same neighbourhood
{u, v}, so by Theorem 2.1, we have 2nα − 1 is the Aα eigenvalue of C(Q4n,Q4n) with algebraic
multiplicity 2n − 3. Likewise, u and v form the clique K2 and share the same neighbourhood with
β = 2n − 2 + 2n = 4n − 2 and again using Theorem 2.1, we obtain the simple Aα eigenvalue 4αn − 1.
Similarly, for i = 1, 2, . . . , n considering the vertices ui1 and ui2 with their neighbourhood {u, v}, we
obtain the Aα eigenvalue 4α − 1 of C(Q4n,Q4n) with algebraic multiplicity n. The other n + 2, Aα
eigenvalues of C(Q4n,Q4n) can be found by using Eq (2.1). If X is the eigenvector of Aα(C(Q4n,Q4n)),
then it is clear that every component of X corresponding to vi’s is equal to x1, the components of X
corresponding to u and v is x2 and the components of X corresponding to ui1 and ui2 is equal to xi + 2,
for i = 1, 2, . . . , n. Therefore, by eigenequation (2.1), we have

λx1 =α(2n − 1)x1 + (2n − 3)(1 − α)x1 + 2(1 − α)x2,

λx2 =(2n − 2)(1 − α)x1 + (α(4n − 2) + 1)x2 + 2(1 − α)x3 + 2(1 − α)x4 + · · · + 2(1 − α)xn+2,

λx3 =2(1 − α)x2 + (2α + 1)x3,

λx4 =2(1 − α)x2 + (2α + 1)x4,

...

λxn+2 =2(1 − α)x2 + (2α + 1)xn+2,

and the coefficient matrix of the right side of the above system of equations is

2α + 2n − 3 2(1 − α) 0 0 . . . 0
(2n − 2)(1 − α) α(4n − 2) + 1 2(1 − α) 2(1 − α) . . . 2(1 − α)

0 2(1 − α) 2α + 1 0 . . . 0
0 2(1 − α) 0 2α + 1 . . . 0
...

...
...

...
. . .

...

0 2(1 − α) 0 0 . . . 2α + 1

(
n+2

)
×
(

n+2
)
.

Now, applying Lemma 2.2 to the above matrix with

X =
(

2α + 2n − 3 2(1 − α)
(2n − 2)(1 − α) α(4n − 2) + 1

)
,Y =

(
0

2 − 2α

)
,B =

(
2α + 1

)
,C =

(
0
)
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and note that η = n, we obtain the Aα eigenvalue 2α + 1 with algebraic multiplicity n − 1. The other
three Aα eigenvalues of C(Q4n,Q4n) are the eigenvalues of the subsequent matrix:

2α + 2n − 3 2(1 − α) 0
(2n − 2)(1 − α) α(4n − 2) + 1 2(1 − α)

√
n

0 2(1 − α)
√

n 2α + 1

 ,
and its characteristic polynomial is given as:

x3 − x2(2α + 4αn + 2n − 1) + x
(
−4α + 8αn2 + 8α2n + 8αn − 4n − 1

)
− 2α − 8α2n2 − 24αn2 + 8n2 − 16α2n + 44αn − 10n − 1.

(2.8)

□

As Aα matrix merges the spectral theories of the adjacency matrix, the Laplacian matrix, and the
signless Laplacian matrix. Thus for α = 0, we find the adjacency spectrum of the commuting graphs of
D2n, S D8n and Q4n as already obtained by [5, 13], by using different techniques. Similarly, for α = 1

2 ,
we have A 1

2
(G) = 1

2 Q(G), so we get the signless Laplacian spectrum of S D8n, previously obtained
in [32], but there is an error in the eigenvalues and with their multiplicities. Also, using the fact that
Aα1(G) − Aα2(G) = (α1 − α2)L(G), we can find the Laplacian spectrum of the commuting graphs of
D2n, S D8n and Q4n.

Theorem 2.8. Suppose C(G) is a commuting graph of a finite group G and σ(G) be its Laplacian
spectrum. Then the following hold.

(i) The Laplacian spectrum of C(D2n,D2n) is

σ =


{
0, 1[n], n[n−2], 2n

}
, if n is odd;{

0, 2[ n
2 ], 4[ n

2 ], n[n−2], 2n[2]}, if n is even.

(ii) The Laplacian spectrum of C(S D8n,D8n) is

σ =


{
0, 4[n], 8[3n], (4n)[4n−5], (8n)[4]}, if n is odd;{
0, 2[2n], 4[2n], (4n)[4n−3], (8n)[2]}, if n is even.

(iii) The Laplacian spectrum of C(Q4n,Q4n) is

σ =
{
0, 2[n], 4[n], (2n)[2n−3], (4n)[2]}.

A matrix M ∈ Mn(F) over the field F is called the integral if its spectrum consists of only integers.
Similarly, the Laplacian matrix L(G) of G is integral if all the eigenvalues of L(G) are integers. Next,
we have the immediate consequence of Theorem 2.8 about the Laplacian integral graphs.

Theorem 2.9. The commuting graphs of the dihedral group, the semidihedral group and the dicyclic
group are Laplacian integral graphs.
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3. Bounds for the Aα spectral radius of commuting graphs of non-abelian groups

If a matrix has the special type of symmetry, so that its block representation can be written as:

M =


M1,1 M1,2 · · · M1,d

M2,1 M2,2 · · · M2,d
...

...
. . .

...

Md,1 Md,2 · · · Md,d


n×n

,

the rows and the columns of M are partitioned according to a partition P = {S1,S2, . . . ,Sl} of the
set S = {1, 2, . . . , d}. The quotient matrix Q (see [14]) of M is a d × d matrix whose entries are the
average column (row) sums of the blocksMi, j of M. The partition P is known as regular (equitable)
if every blockMi, j of M has the constant column (row) sum and in such case Q is called the regular
quotient matrix. Generally, the eigenvalues of Q interlace the eigenvalues of M. However, for the
regular partition P of S , any eigenvalue of the matrix Q is the eigenvalue of the matrix M.

Next, we state a result which is crucial in establishing bounds for the Aα spectral radius.

Theorem 3.1. [19] Assume that M1 and M2 are the Hermitian matrices of order n such that M3 =

M1 + M2 and λ1(Mi) ≥ λ2(Mi) ≥ · · · ≥ λn(Mi), i = 1, 2, 3 be their eigenvalues. Then

λk(M3) ≤ λ j(M1) + λk− j+1(M2), n ≥ k ≥ j ≥ 1,
λk(M3) ≥ λ j(M1) + λk− j+n(M2), n ≥ j ≥ k ≥ 1,

where λi is the i-th largest eigenvalue. Both the inequalities are equalities [31] iff there exists a unit
vector which is the eigenvector to every of the three eigenvalues involved.

The following result is a consequence of Theorem 3.1 and this can be found in [14].

Corollary 3.2. [14] Let M ∈ M∗ be such that M =
(

A C
CT B

)
, and λn(M) and λ1(M) be the smallest

and the largest eigenvalues of M, respectively. Then

λ1(M) + λn(M) ≤ λ1(A) + λ1(B).

Now, we give the bounds for the Aα eigenvalues of commuting graphs of non-abelian groups.

Theorem 3.3. Let λα1 be the Aα spectral radius of C(D2n,D2n). Then

λα1 ≤

 1
2

(
2αn + n − 2 +

√
n2 + 4nα − 4nα2 − 4αn2 + 4n2α2

)
+
√

n(1 − α), if n is odd;
1
2

(
2αn + n − 2 +

√
n2 + 8nα − 8nα2 − 4αn2 + 4n2α2

)
+
√

2n(1 − α), if n is even.

Proof. For odd n, let {u, v1, v2, . . . , vn−1, u1, u2, . . . , un} be the vertices of C(D2n,D2n), where u is the
vertex of degree 2n − 1, vi’s are the vertices of degree n − 1 and ui’s are pendent vertices. Under this
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labelling, the Aα matrix of C(D2n,D2n) is Aα(C(D2n,D2n)) = A + B, where block representation of A is

A =



α(2n − 1) 1 − α . . . 1 − α 0 . . . 0
1 − α α(n − 1) . . . 1 − α 0 . . . 0
...

...
. . .

...
...
. . .

...

1 − α 1 − α . . . α(n − 1) 0 . . . 0
0 0 . . . 0 α . . . 0
...

...
. . .

...
...
. . .

...

0 0 . . . 0 0 . . . α


,

and its regular quotient matrix is

Q =


α(2n − 1) (1 − α)(n − 1) 0

1 − α n − 2 + α 0
0 0 α

 .
The eigenvalues of Q are

{
α, 1

2

(
2αn + n − 2 ±

√
−4α2n + 4αn + 4α2n2 − 4αn2 + n2

) }
.

Also, the matrix B is

B =


0 01×(n−1) (1 − α)J1×n

0(n−1)×1 0n−1 0(n−1)×n

(1 − α)Jn×1 0n×(n−1) 0n

 ,
where J is the matrix of all ones. The regular quotient matrix of B is

0 0 n(1 − α)
0 0 0

1 − α 0 0

 ,
and its eigenvalues are

{
0,±
√

n(1 − α)
}
. Therefore, by Theorem 3.1, the inequality

λα1 (C(D2n,D2n)) ≤ λ(A) + λ(B),

implies that

λα1 (C(D2n,D2n)) ≤
1
2

(
2αn + n − 2 +

√
n2 − 4nα2 + 4nα + 4n2α2 − 4n2α

)
+
√

n(1 − α).

For even n, with vertex labelling as in Theorem 2.4, the Aα matrix of C(D2n,D2n) can be put as
Aα(C(D2n,D2n)) = A + B, where

A =



α(n − 1) . . . 1 − α 1 − α 1 − α 0 0 . . . 0 0
1 − α . . . 1 − α 1 − α 1 − α 0 0 . . . 0 0
...

. . .
...

...
...

...
...

. . .
...

...

1 − α . . . α(n − 1) 1 − α 1 − α 0 0 . . . 0 0
1 − α . . . 1 − α α(2n − 1) 1 − α 1 − α 1 − α . . . 1 − α 1 − α
1 − α . . . 1 − α 1 − α α(2n − 1) 1 − α 1 − α . . . 1 − α 1 − α

0 . . . 0 1 − α 1 − α 3α 1 − α . . . 0 0
0 . . . 0 1 − α 1 − α 1 − α 3α . . . 0 0
...

. . .
...

...
...

...
...

. . .
...

...

0 . . . 0 1 − α 1 − α 0 0 . . . 3α 1 − α
0 . . . 0 1 − α 1 − α 0 0 . . . 1 − α 3α



,
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and the regular quotient matrix of A is

Q =



n − 3 + 2α 2(1 − α) 0 0 . . . 0
(n − 2)(1 − α) α(2n − 2) + 1 0 0 . . . 0

0 0 2α + 1 0 . . . 0
0 0 0 2α + 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 2α + 1


n+2

.

Now, by Lemma 2.2, with X =
(

n − 3 + 2α 2(1 − α)
(n − 2)(1 − α) α(2n − 2) + 1

)
, Y = (0), B = (2α + 1) and C = (0),

we get the eigenvalue 2α + 1 with algebraic multiplicity n − 1 and the other three eigenvalues of Q are
the eigenvalues of the sequel matrix:

M′ =


n − 3 + 2α 2(1 − α) 0

(n − 2)(1 − α) α(2n − 2) + 1 0
0 0 2α + 1

 .
The eigenvalues of M′ are

{
2α + 1, 1

2

(
2αn + n − 2 ±

√
n2 + 8nα − 4n2α − 8nα2 + 4n2α2

) }
.

Similarly,

B =


0n−2 0(n−2)×2 0(n−2)×n

02×(n−2) 02×2 (1 − α)J2×n

0n×(n−2) (1 − α)J2×n 0n×n

 ,
and its quotient matrix is


0 0 0
0 0 n(1 − α)
0 2(1 − α) 0

, whose eigenvalues are {0,
√

2n(1 − α)}. Therefore,

by Theorem 3.1, we obtain

λα1 (C(D2n,D2n)) ≤
1
2

(
2αn + n − 2 +

√
n2 + 8nα − 4n2α − 8nα2 + 4n2α2

)
+
√

2n(1 − α).

□
Likewise to Theorem 3.3, we have the subsequent results for the commuting graphs of S D8n and

Q4n.

Theorem 3.4. Let λα1 be the Aα spectral radius of the commuting graph C(S D8n, S D8n). Then

λα1 ≤

4αn + 2n − 1 + 2
√

n2 + 4nα − 4nα2 − 4αn2 + 4n2α2 + 4
√

n(1 − α), if n is odd;
4αn + 2n − 1 + 2

√
n2 + 2nα − 2nα2 − 4αn2 + 4n2α2 + 2

√
2n(1 − α), if n is even.

Theorem 3.5. Let λα1 be the Aα spectral radius of C(Q4n,Q4n). Then

λα1 ≤ 2αn + n − 1 +
√

n2 + 4nα − 4nα2 − 4αn2 + 4n2α2 + 2
√

n(1 − α).

Finally, we obtain the upper bounds for the Aα spectral radius and the least Aα eigenvalue of
commuting graphs of non-abelian groups.
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Theorem 3.6. Let λα1 and λαn be the Aα spectral radius and the smallest Aα eigenvalue of the commuting
graph C(D2n,D2n). Then

λα1 + λ
α
n ≤

n + α + αn − 2 +
√
α2(n2 − n + 1) + n(1 − 2α), if n is odd;

αn + 2α + 1
2

(
n +

√
n(−8α2 + 8α + 4α2n − 4αn + n)

)
, if n is even.

Proof. Labelling the vertices as in Theorem 2.4, the Aα matrix of C(D2n,D2n) for odd n can be written

as Aα(C(D2n,D2n)) =
(
An+1 C(n+1)×(n−1)

CT Bn−1

)
, where

A =



α 0 . . . 0 1 − α
0 α . . . 0 1 − α
...

...
. . .

...
...

0 0 · · · α 1 − α
1 − α 1 − α . . . α α(2n − 1)


, B =


α(n − 1) 1 − α . . . 1 − α

1 − α α(n − 1) . . . 1 − α
...

...
. . .

...

1 − α 1 − α · · · α(n − 1)


and

C =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...

1 − α 1 − α · · · 1 − α

 .
By applying Lemma 2.2 to the matrix B, with X = (0),Y = (0),B = α(n − 1), and C = (1 − α).
Consequently, αn − 1 and n + α − 2 are its only distinct eigenvalues. Also, the regular quotient matrix
of A is (

α 1 − α
n(1 − α) α(2n − 1)

)
,

and its eigenvalues are αn ±
√
α2(n2 − n + 1) + n(1 − 2α). Therefore, by Corollary 3.2, we have

λα1 + λ
α
n ≤ n + α + αn − 2 +

√
α2(n2 − n + 1) + n(1 − 2α).

For even n, indexing the vertices as in Theorem 2.4, the Aα matrix of C(D2n,D2n) can be written as

Aα(C(D2n,D2n)) =
(
An Cn

CT Bn

)
, where

A =



α(n − 1) 1 − α . . . 1 − α 1 − α 1 − α
1 − α α(n − 1) . . . 1 − α 1 − α 1 − α
...

...
. . .

...
...

...

1 − α 1 − α . . . α(n − 1) 1 − α 1 − α
1 − α 1 − α . . . 1 − α α(2n − 1) 1 − α
1 − α 1 − α . . . 1 − α 1 − α α(2n − 1)


,
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B =



3α 1 − α 0 0 . . . 0 0
1 − α 3α 0 0 . . . 0 0

0 0 3α 1 − α . . . 0 0
0 0 1 − α 3α . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 3α 1 − α
0 0 0 0 . . . 1 − α 3α


,C =



0 0 . . . 0
0 0 . . . 0
...

...
. . .

...

1 − α 1 − α . . . 1 − α
1 − α 1 − α . . . 1 − α


.

Now, the quotient matrix of A is
(

n − 3 + 2α 2(1 − α)
(n − 2)(1 − α) α(2n − 2) + 1

)
and its eigenvalues are

1
2

(
2αn + n − 2 ±

√
n(−8α2 + 8α + 4α2n − 4αn + n)

)
. Similarly, the regular quotient of B is

Q =


2α + 1 0 . . . 0

0 2α + 1 . . . 0
...

...
. . .

...

0 0 · · · 2α + 1


n
2

and we have 2α + 1 is the eigenvalue of Q with multiplicity n
2 . Thus, by Corollary 3.2, we obtain

λα1 + λ
α
n ≤ 2α + 1 +

1
2

(
2αn + n − 2 ±

√
n(−8α2 + 8α + 4α2n − 4αn + n)

)
.

□
Following the proof of Theorem 3.6, we have the similar results for the commuting graphs of the

semidihedral and the dicyclic groups.

Theorem 3.7. Let λα1 and λαn be the Aα spectral radius and the smallest Aα eigenvalue of the commuting
graph C(S D8n, S D8n). Then

λα1 + λ
α
n ≤

4αn + 2n + 4α + 2 + 2
√

n2 + 4nα − 4n2α − 4nα2 + 4n2α2, if n is odd;
4αn + 2n + 2α + 2

√
n2 + 2nα − 4n2α − 2nα2 + 4n2α2, if n is even.

Theorem 3.8. Let λα1 and λαn be the Aα spectral radius and the smallest Aα eigenvalue of the commuting
graph C(Q4n,Q4n). Then

λα1 + λ
α
n ≤ 2αn + n + 2α +

√
n2 + 4nα − 4n2α − 4nα2 + 4n2α2.

4. Conclusions

In this article, the adjacency eigenvalues, the Laplacian eigenvalues, the signless Laplacian
eigenvalues, and the generalized adjacency eigenvalues of graphs are given, including the bounds on
the smallest and largest eigenvalues. The Aα matrix makes it very interesting to study the eigenvalues
of well-known matrices in a very natural setting. Spectral properties of the graph defined by algebraic
structures (groups, rings, modules, vector spaces, and others) have attracted many researchers, and
various interesting problems have been solved both in combinatorics and algebra; for some recent
developments, see [2, 5–10, 26–30, 32]. However, the Aα spectrum of all commuting and
non-commuting graphs of groups remains open at large.
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