Research article

Weakly Gorenstein comodules over triangular matrix coalgebras

  • Received: 10 March 2022 Revised: 14 June 2022 Accepted: 15 June 2022 Published: 20 June 2022
  • MSC : 18G10, 18G25

  • In this paper, we characterise weakly Gorenstein injective and weakly Gorenstein coflat comodules over triangular matrix coalgebras by introducing the class of weakly compatible bicomodules. In particular, Gorenstein injective and Gorenstein coflat comodules are investigated.

    Citation: Dingguo Wang, Chenyang Liu, Xuerong Fu. Weakly Gorenstein comodules over triangular matrix coalgebras[J]. AIMS Mathematics, 2022, 7(8): 15471-15483. doi: 10.3934/math.2022847

    Related Papers:

  • In this paper, we characterise weakly Gorenstein injective and weakly Gorenstein coflat comodules over triangular matrix coalgebras by introducing the class of weakly compatible bicomodules. In particular, Gorenstein injective and Gorenstein coflat comodules are investigated.



    加载中


    [1] M. J. Asensio, J. A. López Ramos, B. Torrecillas, Gorenstein coalgebras, Acta Math. Hung., 85 (1999), 187–198. https://doi.org/10.1023/A:1006697618613 doi: 10.1023/A:1006697618613
    [2] M. Auslander, Anneaux de Gorenstein et torsion en alg$\grave{e}$bre commutative, S$\acute{e}$minaire d'Alg$\grave{e}$bre commutative, Paris: Ecole Normale Sup$\acute{e}$rieure de Jeunes Filles, 1966.
    [3] S. Dǎscǎlescu, C. Nǎstǎsescu, S. Raianu, Hopf algebras: An introduction, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482270747
    [4] S. Dǎscǎlescu, C. Nǎstǎsescu, S. Raianu, F. Van Oystaeyen, Graded coalgebras and Morita-Takeuchi contexts, Tsukuba J. Math., 19 (1995), 395–407. https://doi.org/10.21099/tkbjm/1496162878 doi: 10.21099/tkbjm/1496162878
    [5] Y. Doi, Homological coalgebra, J. Math. Soc. Japan, 33 (1981), 31–50. https://doi.org/10.2969/jmsj/03310031 doi: 10.2969/jmsj/03310031
    [6] E. E. Enochs, O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220 (1995), 611–633. https://doi.org/10.1007/BF02572634 doi: 10.1007/BF02572634
    [7] E. E. Enochs, J. A. López Ramos, Relative homological coalgebras, Acta Math. Hung., 104 (2004), 331–343. https://doi.org/10.1023/b:amhu.0000036293.46154.4e doi: 10.1023/b:amhu.0000036293.46154.4e
    [8] L. El Kaoutit, J. Gómez-Torrecillas, Hereditary triangular matrix comonads, Linear Multilinear A., 64 (2016), 1032–1055. https://doi.org/10.1080/03081087.2015.1071315 doi: 10.1080/03081087.2015.1071315
    [9] S. Eilenberg, J. H. C. Moore, Homology and fibrations, Ⅰ. Coalgebras, cotnsor product and its derived functors, Comment. Math. Helv., 40 (1965), 199–236. https://doi.org/10.1007/BF02564371 doi: 10.1007/BF02564371
    [10] X. R. Fu, H. L. Yao, On Gorenstein coalgebras, Front. Math. China, 11 (2016), 845–867. https://doi.org/10.1007/s11464-016-0562-7 doi: 10.1007/s11464-016-0562-7
    [11] E. G. Green, C. Psaroudakis, On Artin algebras arising from Morita contexts, Algebr. Represent. Theor., 17 (2014), 1485–1525. https://doi.org/10.1007/s10468-013-9457-4 doi: 10.1007/s10468-013-9457-4
    [12] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167–193. https://doi.org/10.1016/j.jpaa.2003.11.007 doi: 10.1016/j.jpaa.2003.11.007
    [13] M. Iovanov, Triangular matrix coalgebras and applications, Linear Multilinear A., 63 (2015), 46–67. https://doi.org/10.1080/03081087.2013.844233 doi: 10.1080/03081087.2013.844233
    [14] J. Kosakowska, D. Simson, Bipartite coalgebras and a reduction functor for coradical square complete coalgebras, Colloq. Math., 112 (2008), 89–129. https://doi.org/10.4064/cm112-1-5 doi: 10.4064/cm112-1-5
    [15] L. Lin, Semiperfect coalgebras, J. Algebra, 49 (1977), 357–373. https://doi.org/10.1016/0021-8693(77)90246-0 doi: 10.1016/0021-8693(77)90246-0
    [16] F. Y. Meng, (Weakly) Gorenstein injective and (weakly) Gorenstein coflat comodules, Stud. Sci. Math. Hung., 49 (2012), 106–119. https://doi.org/10.1556/sscmath.2011.1189 doi: 10.1556/sscmath.2011.1189
    [17] S. Montgomery, Hopf algebras and their actions on rings, American Mathematical Society, 1993.
    [18] Q. X. Pan, Q. Li, On Gorenstein injective and projective comodules, Math. Notes, 94 (2013), 255–265. https://doi.org/10.1134/S0001434613070250 doi: 10.1134/S0001434613070250
    [19] M. Takeuchi, Morita theorems for categories of comodules, J. Fac. Sci. Univ. Tokyo, 24 (1977), 629–644.
    [20] C. Wang, X. Y. Yang, (Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras, Czech. Math. J., 67 (2017), 1031–1048. https://doi.org/10.21136/CMJ.2017.0346-16 doi: 10.21136/CMJ.2017.0346-16
    [21] D. G. Wang, Morita-Takeuchi contexts acting on graded coalgebras, Algebra Colloq., 7 (2000), 73–82. https://doi.org/10.1007/s10011-000-0073-6 doi: 10.1007/s10011-000-0073-6
    [22] B. L. Xiong, P. Zhang, Gorenstein-projective modules over triangular matrix Artin algebras, J. Algebra Appl., 11 (2012), 1250066. https://doi.org/10.1142/S0219498812500661 doi: 10.1142/S0219498812500661
    [23] Q. B. Xu, K. S. Zhang, On a generalized matrix algebra over Frobenius algebra, Commun. Math. Res., 35 (2019), 65–74.
    [24] P. Zhang, Gorenstein-projective modules and symmetric recollements, J. Algebra, 388 (2013), 65–80. https://doi.org/10.1016/j.jalgebra.2013.05.008 doi: 10.1016/j.jalgebra.2013.05.008
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1377) PDF downloads(63) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog