In this paper, we propose and prove an extension and generalization, which extends and generalizes the Darbo's fixed point theorem (DFPT) in the context of measure of noncompactness (MNC). Thereafter, we use DFPT to investigate the existence of solutions to mixed-type fractional integral equations (FIE), which include both the generalized proportional $ (\kappa, \tau) $-Riemann-Liouville and Hadamard fractional integral equations. We've included a suitable example to strengthen the article.
Citation: Rahul, Nihar Kumar Mahato, Sumati Kumari Panda, Manar A. Alqudah, Thabet Abdeljawad. An existence result involving both the generalized proportional Riemann-Liouville and Hadamard fractional integral equations through generalized Darbo's fixed point theorem[J]. AIMS Mathematics, 2022, 7(8): 15484-15496. doi: 10.3934/math.2022848
In this paper, we propose and prove an extension and generalization, which extends and generalizes the Darbo's fixed point theorem (DFPT) in the context of measure of noncompactness (MNC). Thereafter, we use DFPT to investigate the existence of solutions to mixed-type fractional integral equations (FIE), which include both the generalized proportional $ (\kappa, \tau) $-Riemann-Liouville and Hadamard fractional integral equations. We've included a suitable example to strengthen the article.
[1] | K. Kuratowski, Sur les espaces complets, Fundam. Math., 15 (1930), 301–309. |
[2] | J. Banas, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker: New York, 1980. |
[3] | G. Darbo, Punti uniti in trasformazioni a codominio non compatto (Italian), Rend. Semin. Mat. Univ. Padova, 24 (1955), 84–92. |
[4] | Rahul, N. K. Mahato, Existence solution of a system of differential equations, using generalized Darbo's fixed point theorem, AIMS Mathematics, 6 (2021), 13358–13369. https://doi.org/10.3934/math.2021773 doi: 10.3934/math.2021773 |
[5] | R. Arab, H. K. Nashine, N. H. Can, T. B. Tran, Solvability of functional-integral equations (fractional order) using measure of noncompactness, Adv. Differ. Equ., 2020 (2020), 12. https://doi.org/10.1186/s13662-019-2487-4 doi: 10.1186/s13662-019-2487-4 |
[6] | Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (2010), 93–99. |
[7] | L. G. Romero, L. L. Luque, G. A. Dorrego, R. A. Cerutti, On the $k$-Riemann Liouville fractional derivative, Int. J. Contemp. Math. Sci., 8 (2013), 41–51. |
[8] | M. Tunc, On new inequalities for $h$-convex functions via Riemann-Liouville fractional integration, Filomat, 27 (2013), 559–565. https://doi.org/10.2298/FIL1304559T doi: 10.2298/FIL1304559T |
[9] | J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpement de Taylor, Paris: Gauthier-Villars, 1892. |
[10] | R. Bourguiba, F. Toumi, Positive solutions for singular semipositone nonlinear fractional differential system, Filomat, 35 (2021), 169–179. https://doi.org/10.2298/FIL2101169B doi: 10.2298/FIL2101169B |
[11] | S. Etemad, M.M. Matar, M.A. Ragusa, S. Rezapour, Tripled fixed points and existence study to a tripled impulsive fractional differential system via measures of noncompactness, Mathematics, 10 (2022), 25. https://doi.org/10.3390/math10010025 doi: 10.3390/math10010025 |
[12] | W. Shammakh, H. Z. Alzumi, B. A. AlQahtani, On more general fractional differential equations involving mixed generalized derivatives with nonlocal multipoint and generalized fractional integral boundary conditions, J. Funct. Spaces, 2020 (2020), 3102142. https://doi.org/10.1155/2020/3102142 doi: 10.1155/2020/3102142 |
[13] | U. N. Katugompola, New approach generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062 |
[14] | S. Mubeen, G. M. Habibullah, $k$-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94. |
[15] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulg. Math., 15 (2007), 179–192. |
[16] | M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, $(k; s)$-Riemann-Liouville fractional integral and applications, Hacettepe J. Math. Stat., 45 (2016), 77–89. https://doi.org/10.15672/HJMS.20164512484 doi: 10.15672/HJMS.20164512484 |
[17] | F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7 |
[18] | J. Banas, M. Lecko, Solvability of infinite systems of differential equations in Banach sequence spaces, J. Comput. Appl. Math., 2 (2001), 363–375. https://doi.org/10.1016/S0377-0427(00)00708-1 doi: 10.1016/S0377-0427(00)00708-1 |
[19] | A. Aghajani, A. Banas, N. Sabzali, Some generalizations of Darbo's fixed point theorem and applications, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 345–358. https://doi.org/10.36045/bbms/1369316549 doi: 10.36045/bbms/1369316549 |
[20] | I. Altun, D. Turkoglu, A Fixed point theorem for mappings satisfying a general condition of operator type, J. Comput. Anal. Appl., 9 (2007), 9–14. |
[21] | A. H. Ansari, Note on $\phi-\psi$-contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Application, 2014,377–380. |
[22] | V. Parvaneh, N. Hussain, A. Mukheimer, H. Aydi, On fixed point results for modified JS-contractions with applications, Axioms, 8 (2019), 84. https://doi.org/10.3390/axioms8030084 doi: 10.3390/axioms8030084 |
[23] | A. Samadi, M. B. Ghaemi, An extension of Darbo's fixed point theorem and its application to coupled fixed point and integral equations, Filomat, 28 (2014), 879–886. https://doi.org/10.2298/FIL1404879S doi: 10.2298/FIL1404879S |