AIMS Mathematics, 7(8): 15484—15496.
DOI: 10.3934/math.2022848
ATMS Mathematics Received: 29 January 2022

Revised: 30 April 2022

Accepted: 13 May 2022
http://www.aimspress.com/journal/Math Published: 22 June 2022

Research article

An existence result involving both the generalized proportional
Riemann-Liouville and Hadamard fractional integral equations through
generalized Darbo’s fixed point theorem

Rahul', Nihar Kumar Mahato', Sumati Kumari Panda’, Manar A. Alqudah’® and Thabet
Abdeljawad*>*

! Department of Mathematics, IIITDM Jabalpur, India
Department of Mathematics, GMR Institute of Technology, Rajam - 532 127, Andhra Pradesh, India

Department of Mathematical Sciences, Faculty of Sciences, Princess Nourah Bint Abdulrahman
University, P. O. Box 84428, Riyadh 11671, Saudi Arabia

Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

(3]

[9%)

I

W

Department of Medical Research, China Medical University, 40402 Taichung, Taiwan

*

Correspondence: Email: tabdeljawad @psu.edu.sa.
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generalizes the Darbo’s fixed point theorem (DFPT) in the context of measure of noncompactness
(MNC). Thereafter, we use DFPT to investigate the existence of solutions to mixed-type fractional
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Hadamard fractional integral equations. We’ve included a suitable example to strengthen the article.

Keywords: (x, 7)-type generalized proportional fractional integral equation; generalized proportional
Hadamard fractional (GPHF) integral equation; MNC; DFPT
Mathematics Subject Classification: 26A33, 26D15, 47H10

1. Introduction

The MNC is one of the most powerful tool of modern mathematical analysis, which was introduced
by Kuratowski [1] in 1930. It was generalized by Banas [2] for solving functional equations, which
is applicable to numerous mathematical problems. Darbo [3] has generalized of Schauder fixed point
theorem (SFPT) and Banach contraction principle, using the concept of MNC.

In the present time, the fixed point theory (FPT) have so many applications in several area of
mathematics along with FPT can be apply for the existence of solutions of FIE. It is still continue to
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earned the attention of researchers in various applications of functional calculus in science and
technology.

Fractional calculus is a very powerful tool to achieve differentiation and integration with real or
complex number order of operators. For recent research on fractional calculus, we refer the reader to
(see [4-12]). On the other hand, there are various known forms of fractional integrals and their
applications. For example: Katugampola [13] introduced a new FIE, which generalize
Riemann-Liouville and Hadamard FIE into single form, Mubeen and Habibullah [14] have introduced
the «-fractional integral of Riemann-Liouville by using «x-gamma function defined by Diaz and
Pariguan [15], Mehmet et al. [16] generalized a new FIE known as (k, 7)-Riemann-Liouville FIE.
Jarad et al. [17] have given the concept of generalized proportional integral operator, which has been
specify certain probability density functions and has interested applications in statistics.

Inspired and motivated by ( [16, 17]), in the context of MNC, we generalize the DFPT and a new
FIE involving both the generalized proportional («, 7)-Riemann-Liouville and Hadamard. Thereafter,
we use DFPT to investigate the existence of solutions of mixed-type FIE, which include both the
generalized proportional (k, 7)-Riemann-Liouville and Hadamard.

We have used the notations in this paper.

=: Banach space with the norm || . ||=.

N: closure of N.

ConvN: convex closure of N.

I=: subset of all nonempty and bounded subsets of =.
Ji=: subset which contains all relatively compact sets.

R: (=00, ), R, = [0, 00) and N be set of natural numbers.

Banas and Lecko [18] have defined MNC as follows:
Definition 1.1. A mapping A : Mz — R, is said to be MNC in Z if it satisfies the following conditions:
(N1) The family ker A = {X € Mz : A(X) = 0} is nonempty and ker A C Nz.
(N2) Ry cRy = AN <ARY).
(N3) A(R) = AR) = A(ComN).
(Ns) AR + (1 —k)Ny) < kAR + (1 —k)ARNy), fork € [0,1].
(Ns) If (N,) is a sequence of closed sets from Mz, such that N,,; C N, forn = 1,2,3,... and if
lim A(X,) =0, then 8., = ﬁ N, # 0.

n=1

n—oo

Example 1.2. Let = = C(I) be the space of real continuous functions on I, where I = [a,b]. Then
g : M=z — R, is defined as

ligll = supflig@®ll : r € I}, g € E.
Then g satisfies all the properties of MNC.

Remark 1.3. Since A(N.) = | (ﬂ xn] < AR, ARS) = 0. So N, € kerA.
n=1
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Theorem 1.4. (Schauder) [19] A mapping J : 8 — N which is compact and continuous have a fixed
point (FP), where N is a nonempty, bounded, closed and convex (NBCC) subset of a Banach space E.

Theorem 1.5. (Darbo) [20] Let 3 : & — N be a continuous mapping and A is an MNC. If for any
nonempty subset ¢ of N, there exists a k € [0, 1) having the inequality,

A(B¢) <k A(s),

then the mapping J have a FP in N.

Definition 1.6. Let N be bounded subset of metric space E. Then for bounded set N, the Hausdorff
MNC A is defined as

A (N) =inf {€e > 0 : N has finite € — net in 2} .

Definition 1.7. [21] The functions F : R?2 — R, which are continuous known by C-class function if it
satisfies

(F1) Flw,v) < w.
(F») Flw,v)=w = w=0o0rv=0forall w,v € R.

Example 1.8. (i) F(w,v) =w —.
(it) F(w,v) = kw, where 0 <k < 1.

Definition 1.9. Suppose V¥ is the set of continuous functions  : R, — R, satisfy
(a) Y(t) = 0if and only ift = 0.

(b) ¥ is non decreasing.

(c) y(t) <t foreveryt>O.

Let = = C(I) be the space of real continuous functions on /, where I = [a, b]. Then = is a Banach
space with the norm

I % [I=sup{lx(¢)l : ¢ € I}, % € E.

Let 7" be a non-empty bounded subset of E then, for x € 7" and € > 0, w(x, €) be the modulus of the
continuity of % and defined as

w(x, €) =sup{lx(s1) —%(s2)l : 61,62 € 1, |61 — 6| < €}

Again, we define
w(T,e) =supf{w(x,e): 2 €T},

wo(T) = lir% w(T,€).

Hence the function w, is a MNC in = in such a way that the Hausdorff MNC A is given by A(T") =
1wo(T) (see [2]).
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2. Generalization of Darbo’s fixed point theorem

Theorem 2.1. Let (Z,]| . ||) be a Banach space. Suppose J : X — N is a continuous, nondecreasing
and bounded (CNB) mapping fulfills the following inequality

ASN) A) AR)
) f n(Q)ds| < F [ﬂ[ f ﬂ(g)dg],t//[ﬁ[ f ﬂ(g)dg]]] (2.1)

0 0 0

for each bounded N of =, where 7 : R, — R, is continuous functions, ¢ : R, — R, is nondecreasing,
continuous functions with #(¢) = 0 if and only if ¢ = 0, ¢ : R, — [0, 1) is a continuous function and
A is MNC. Then 3 contains at least one FP.

Proof. Assume that K, with 8g = N and N,..; = conv(IN,) for all n > 0.
Also, IRy = INC N =Ny, N =conv(INy) € K = Ny. Continuing in the similar manner gives

No DN D,..,DN, D, ... 2.2)

A(IR,)

Let A(N,) > 0 for n € N. We claim {( f n(g)dg}} is positive decreasing sequence. By using (2.1),
0
we have

AR,41) Alconv(TN,)) A(IR,)
19( i ﬂ(§)d§]=ﬂ[ ) ﬂ(c)d§)=ﬁ( ) ﬂ(g)dg]

0 0 0

<F (19 [A(fN n)ﬂ(g)dg) N (19 [A(f n)”(g)dg))]

0 0

A(IN,)
Sﬂ( ll ﬂ(g)dg].
0

Since # is nondecreasing function, we get

A®p41) AIN,)
19[ f n(g)dg]sﬂ fﬂ(g)dg‘.

0 0

ASR,)
Then {[ f ﬂ(g)dg)} is positive decreasing and bounded below, so it converges to
0

0

ANy41) A(conv(IN,)) A(IN,)
ow[ f n(g)dg]=0 f r()ds | =0 f r($)ds

0 0 0

AT

0 0

A(IR,)
r= {( f n(g)dg] } Now suppose r > 0, then from Eq (2.1), we have
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A(IN,) ARy ARy

i.e.,ﬁ( i n(g)dg] < F[ﬁ( ) n(g)dg),lp[ﬁ( i ﬂ(g)dg‘))). Taking the limit 7 — oo on both the
0 0 0

sides of this inequality, we have

H(r) < F (0(r), y(3(r))) < 9(r)

which means
F @(r), y(3(r))) = Hr),

so from (F,), we get ¥(r) = 0, hence r = 0. which implies A(N,)) — 0.

Since N, is nested sequence, so by the (Ns) property of (MNC), we conclude that N, = NN, is
NBCC of E. Also, we know that 8., € kerA. Therefore N, is compact and invariant under the
mapping J. Hence by the SFPT, J have a FP in X, C =. m]

Corollary 2.2. If we take n(s) = 1 for ¢ € [0, ) in Theorem (2.1), then we have

P (ABN)) < F (3 (AR)), ¢ (9 (AIN)))).

Corollary 2.3. Take F(w,v) = wv in Corollary(2.2), then we have

F(A(IN)) < ¢ (F (A(IN))) I (AR)).
It is extension of DFPT extended by Ghaemi and Samadi [23].
Corollary 2.4. Take F(w,v) = w — v in Corollary(2.2), then we have

?(A(BN)) < 3 (AN)) — ¥ (T (ABN))).
It is generalization of DFPT generalize by Parvaneh et al. [22].
Corollary 2.5. If we take y(t) =k, 0 <k < 1, 9(1) = 7 in Corollary (2.3), then we have
A(ON) <k (AN)).

Then it is DFPT [20].

Corollary 2.6. If we take 3(1) = " and y(1) = 7 — 1, 0 < k < 1 in Corollary (2.4), then we have
DFPT [20]
A(IN) < k(ARN)).

Corollary 2.7. If we take 9(t) = T and Y(t) = 1 —kt, 0 < k < 1 in Corollary (2.4), then we have
DFPT [20]
AON) < k(AN)).

Corollary 2.8. If we take F(w,Vv) = kw, where 0 < k < 1, 9(t) = T in Corollary (2.2), then we have
A(ON) < k(ARN)).
Then it is also DFPT [20].

Remark 2.9. Hence it can be seen that the Theorem 2.2 is the generalization of the DFPT.
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3. Existence solutions of generalized proportional (x, 7)-Riemann-Liouville and Hadamard FIE

We define a new generalization of Mehmet et al. [16] and known as the (k, 7)-type generalized
proportional FIE integral equation of order @ > 0 and defined as

-2 -1 T+1 _ o T+1
(1m0) ()= T~ ex [(p (s =)

Z-1
§T+1 _ n‘r+l K n‘r@(n)dn’
P (@) J, o ] ( )

where p € (0,1], T € R*/{—1} and @,k > 0.
Also, motivated by Hadamard [9], we define a new generalization of Hadamard FIE, which is known
as GPHF integral equation of order @ > 0 and defined as

1 f ¢ exp [(p — 1) (log(s) — log(m))

("37°6) (¢) = -

’

27T (@) r ] (log(s) — log(m))

where p € (0, 1] and ¢ € [a, b].
The present study, we have considered the following FIE:

() = F (5, £(5, 0(5), (710) (6), ("1740) (<)), (3.1)

wherew > 1, k>0, pe (0,1], reR*/{-1}andgc el =[a,b], a>0, b=T.
LetB, ={0@ cZ: || O ||<vy}. We consider the following assumptions to solve the Eq (3.1):

(i) F: IxR® - R, £:1xR — R be continuous and there exists constants g;, ¢,, ©3 > 0, which
satisfy

F(s.£.1,J1) = F(s. £, 11, )| < 91 |[€ — & + 92 |1 - T
s S‘EI, £,I],J1,£,I_1,J_] eR

+ 93|01 = Ty

and
[£(s, P1) — £(5, P2)| < 94 |P1 — P3|, where Py, P, € R.

(if) There exists vy € R,, which satisfy

F =sup{|F(s,£,1,Ji| : s e ,£ € [-L,L], I, € [-LI],J; € [-J,JI} < vp, 9194 < 1,
L = sup{[£(s, O(5))] : 5 € 1, O(s) € [-vp, o]},
1= sup{| ({776 (s)| : s € 1,O(s) € [, v},
and
J = sup(|("3776) (5)| : s € 1,6(s) € [-Vo. vol}.
(iti) |F(5,0,0,0)| =0, £(5,0) =0.

(iv) For a positive solution vy € R, having inequality,
(p-DT7*! ](‘r+l)‘% (o-1)logT

(T(T+1) — 1)7 + 803—%:(5[“@51) ](log )7 <.

Vo eXp

P

@p k% T

P194V0 + 92

AIMS Mathematics Volume 7, Issue 8, 15484—15496.



15490

Theorem 3.1. If the conditions (i)—(iv) holds, then the Eq (3.1) have a solution in 2 = C(I).
Proof. Let the operator J : 8, — E is define as
(36)(s) = F (5. £(5. 05, (174 0) (5). ("3770) (5)) .
Step 1: First, we have to prove 3 maps 8, into B, . Let J € B, , we have
(30))| = IF (5. £(5. 06D, (1I770) (). ("3776) (5)) - F(5,0,0,0)] + IF(s, 0,0,0)|
< pilE(s, 6(6)) — 0] + pal (T1770) (6) — 01 + 931 ('3770) (5) - 0] + IF (5, 0,0, 0)|

where,

- _ 1) T+l 7+ ] o
(rmoe) ) -0 = T2 - - f erp| D) (1 =) r@uman

P KR i P |
_7 _1) 7+1 T+1 ) o
G I (G (p (1 = i

vo(t + D'7% exp [M] s =
< p%K%F(%) 14 fl (§T+1 _ 77‘1'+1) 1 ann

Vo eXp [—@“;T’” @+ 1%

< £ T(T+1) -1 %
@p¥ k< 'T() ( )
and
- ° (o = 1) (log(s) — log(n)) -1 6(n)
[(H17°0) (¢) - 0] = ex [ log(s) — log(n)® " ——2d
( 1 ) 07 () p 0 (log g(n)) 7 n
(o—-1)log T
< i f (log() — log(p)”™" 22
B p=T'(w) 1 n
Vo CXP[—(p l)logT](l ).
0
L@+ 1)~ °
Therefore if ||@|| < vy then
(p-DT™! @ (p—-1)log T
voexp[—](7'+ )7« = Vo exp[—]
Jo| < Vo + L T 1) + og T
13611 < p19u0 + 92— = ( )" + 9 SToan el

So by the assumption (iv), J maps 8B,, into B,,,.

Step 2: Now, we have to prove J is continuous on B, . Let € > 0 and O, ®e 8,, such that || O-0 ||< e,

we have
|90)(6) - (30) 6| < [F s 266, 0060, (2776) 00, (3770 )

~F (5,866, 0, (17°8) (), (*57°8) ()|
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+ 92

< 01[t(s, 006)) - £(6. 86| + 92| (176) () - (78) )

+ x| (72770) () - (73778) ()|
Also,
(177 6) (9 - (117°8) (5)|
- (p _ 1) T+l _ T+] @ B
_ ﬁ(%lz(%) | exp[ (gp n )] (§T+1 _ nr+1) el " (@(n) _ @(n)) dn
- <p _ 1) T+l _ T+l @ B
s,(;’f:’i’—lr)(%) lgexp[ (gp '7 )](9’” ) - 8| dn
< e(T+1)7¥ exp [%] (T(T+1) _ 1)%
wpF k(L) ’
and

("1746) () - ("1776) (5)|
1 f oxp [<p — 1) (log(s) ~ log(m)
1

- d
] (log(s) — log(m)™ ™" (B(s) - @(S'));n

p7l(w) P
1 s -1 -1 _ ~ d
< s [ enp | =D =D 103 - o™ forn - B0
pl(w) J, P n
€exp [(p—li)logT]

T+ 1) el

Hence || @ — O ||< €, gives that

— (T '%ex (p-hr™*! @ €ex (p=DlogT
(96) () - (36) (©)] < prgae + 92" +me"[lr(f) PRI EPL e S

If e - 0, we get ‘(5 0)(s) - (5 @) (g)‘ — 0. Hence J become continuous on B, .

Step 3: Finally, to show an estimate of J with respect to wy, suppose Y(# ¢) C B,,.

For an arbitrary € > 0 and choose @ € Y and ¢, ¢, € I such that |¢; — ¢| < €eand ¢, > ¢y,
then,

| (90) () - (30) (s1)

F (52 £(52, ©(52)), ({I770) (52), (7174 0) (2)

~F (51,061,006, (776) 610, (*2776) 51|

IA

F (62, £(52. O(62)), (177 0) (52, ("3776) (52))

~F (52862 062, (11790) 60, ("3776) (52|

I (52 £662, 0060, (176) (), (“5776) 51)
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— F (52 £(61, 01, (174 0) (s1). ("2770) (51))

I (52 £661, 0060, (176) (00, (“5776) 51)

—F(s1.£(61, 01, ((1770) (s1), ("3776) (s1))

< 93{ ("1770) (62) = ("3770) (60)| + 02| (3177 0) (2) - (217 6)

+ sol'i-:(gz, O(c2) - £(s1, @(q))' + oL, Os)

< 03| ("3776) () - ("37°6) (s1)| + 92

(:1776) (s2) - (11770) (gl)'

0(52) — O(s1)| + we(l, ©),

+ 9194

where wr(l, €) = sup {IF(s2, £, 71, 91) —F(s1,£, 71,9 1 Is2 — 1l < €;61,62 € I} . Also,

(177 6) (52) - (177 6) 1)

_w 5 _ T+1 _ T+1 o
= (Tf,l)l i eXp[(p (s p )](gé“ ) i eamdn
- _ T+1 T+1 o
—flexp[(p 1)( - )](gﬁ“—n’“)K_I nf@(n)dn‘
1 P
-z (P _ 1) T+1 T+1 o
;’:’i’?(%) fl eXp[ (p - )](95” ) Oy

@ T+1 T+1
@+DF e - Die e\
< EerE ). P (p )(§2+1 )" 1eGaldn
L) Ya

T+ =% ¢ (exp[(p—ﬂ(g;“ nf“)](ggﬂ_nm)g_l

prk<I(Z) Ji p

o)

@_1
. i =) )ff@(n)‘dn

—exp

exp[ DT ](T+1“

p @+ _ 1\*
< ST ol (7 — 1)
(t+1)% [(p — 1)( T+1 n‘r+1) ) e
+ ol 1 1) ( | > (57 =n") 1
_ 1) e ‘r+1 -
— exp [(P ( > ) (grl nr+1) i )n‘r dn.
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As € — 0, then ¢, — ¢, and we have (;I;ﬂ’p@) (¢n) — (zlf’p@) (gl)' — 0. And

("3776) (62) - (374 6) (s)|
I f [<p—1>(log(g2)—log<n>)]
exp

(log(sz) — log(m)™"'

_1 O(n) dﬂl
n

= o T(@) p @dn
i fgl exp[ _1)(10g(§2)—10g(77))]
‘ f [ p—l)(log(g‘z)—log(ﬂ))]

wr(w) P
) f p[ —1)(log(;'1) log(n))](log(gl)_log(n))w

= ~ 1) (log(sy) — 1
< exp [0 =08 05 - o)
pol(@) Jg, P

51 (exp [(p — 1) (log(s2) - log(’i))]
P

(log(s) — log(m)”

)
(log(s») — log(m)™™! %dn

4 6
1 O(n) d’?'
n

1 |®
Wlﬂdn
n

(log(s) — log(m)”"

@‘dn
n

~exp [(p — D) (log(s») — 10g(77))]

(log(s1) — log())™™" )
P

ex [(p l)logT]

S—
p7l'(w +1)

+ ol
pr(m)

~exp [(p — 1 (log(s») — 108(77))]
Je

161ldog T)”

51 (exp [(p — 1) (log(s») — log(n))]
P

(log(sz) — log()™™"

S\
(log(sy) — log(m)™™! )E‘dn'

As € — 0, then ¢, — ¢; and we have ‘(H hitke @) (¢2) — (H T @) (gl)‘ — 0. Therefore

(50) (52) - (30) (51)] < 951 ("27°0) (52) = ("37°6) (1)l + 92 (T 0) (52) - (1I7*6) (5)|

+ 8018040)(@7 6) + Q)F(I, 6)’
gives

w(36,6) < 93] ("1776) (52) - ("37°0) (s0)l + 92 |17 6) (2) - (1177 6) (s)|

+ 9194w(0, €) + wr(l, €).

Using the uniform continuity of F on I X [-£,£] X [-1, 1] X [-9, T ], we get we(l,e) = 0 as e — 0.

Taking sup and € — 0 we get,
Jer

wo(IT) < p194wo(T),
Thus, by DFPT J has a FP in 7" C 8,,. Hence the Eq (3.1) have a solution in Z. O
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Example 3.2. Consider the following FIE

W= =

5.5 HYS:3
o (1170 (“6)w
O(g) ="+ 1+ + 575 + 510 (3.2)

forgce[l,2] =1

Here
151
(1776)6) = g || epltst =it —nintexsidn
and
1 3125 [ o( )
("546) )= Tz | expl=4 (og(e) ~ og(n)] logte) ~ logen)* =2
Also F(¢,£,7,91) = ¢+ £+ 5172 + 371}) and £(¢,0) = ﬂ(—g. It is obvious that F, £ are continuous
satisfying
[Py — P
8. P1) — £(5. Pyl < ———

and |F(s, £, 71,91 - F(s.£,1,,9))| < [€ - & + & |71 - Il|+5m NEEVIE

Therefore P1 = 19 P2 = 5%55 P3 = L() and P4 = 2 194 = 2(510) <1If || o ”S Vo then

|>—a

L=2 1= volexp(=4(29))15™(25 — 1)» J= v05° exp[—4(log 2)](log 2)*
2 (6)I(5) ’ I6) -
Further,
Fo, 8 T, 3] < 0 4 YLXPCACHNSTQS - 17 oS expl-4llog2)1og D" _

2 (6%)['(5) I'(6) =0

If we choose vy = 5, then we have

- 5 - 574 exp(—4(25))](2% — 1) J= 5% exp[—4(log 2)](log 2)*
2 (6*)I(5) T I(6) '
F <5, ooy < 1.

As we see, all the assumption of Theorem 3.1 from (i)—(iv) are fulfills. So by the Theorem 3.1 we
conclude that the Eq (3.1) have a solution in Z.

4. Conclusions

In the present paper, we have generalized the DFPT and introduced a new class of (k, 7)-fractional
integral operators, which can be reduce to another related operators by choosing suitable values of x, T
and p. Then, we established the existence of solution involving both the generalized proportional FIE
of Riemann-Liouville and Hadamard, using DFPT. Finally, obtained result is illustrated by an example.
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