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1. Introduction

Fractional calculus [1] generalizes the standard calculus and has been applied in many fields of
engineering and science [2]. Often, finding the exact solutions of fractional order differential equations
is not possible, and accurate numerical methods have to be developed.

Stochastic differential equations (SDE) are utilised to simulate a variety of phenomena, including
volatile stock prices or systems sensitive to thermal variations. SDEs comprise a variable that
corresponds to random white noise, computed as the derivative of a Wiener process or Brownian
motion. Other forms of random behaviour, such as jump processes, are also feasible. Stochastic
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differential equations are conjugate to random differential equations. The solution of stochastic
differential equations (SDEs) is a stochastic process, and many SDEs can not be solved analytically.
Stochastic integro-differential equations (SIDEs) revealed increasing importance in the last decades,
since they can describe accurately many real-world phenomena [3, 4]. Different numerical techniques
for obtaining SIDEs solutions were developed, as those based on finite differences [5–7], finite
elements [8] and spectral Galerkin methods [9–13] and others [14, 15].

Bernoulli collocation [16] and Bernoulli wavelet [17] algorithms are used to solve stochastic
Ito-Volterra integral equations. Also, Multi-dimensional stochastic integral equations have been
solved using bicubic B-spline functions [18], Quintic B-spline collocation [19], bilinear spline
interpolation [20], cubic B-spline and bicubic B-spline collocation [21], and radial basis
functions [22]. Moreover, meshless discrete collocation [23], Cubic B-spline [24], moving least
squares-spectral collocation [25] and spectral collocation [26] techniques have been used to solve
stochastic integro-differential equations. The well-posedness of stochastic fractional
integro-differential equations is introduced in detail by Dai et al. [27, 28]. Because the kernel of
variable-order operators has a variable exponent, analytical solutions to the associated equations are
more difficult to acquire than for constant-order operators. As a result, the numerical solution offers a
more realistic method of investigating variable-order evolutional equations.

Spectral algorithms [29–33] are powerful methods for solving fractional differential equations.
There are four different types of spectral methods: Galerkin [34–38], collocation [39–41], tau, and
Petrov Galerkin. The idea is to approximate the numerical solution by means of truncated series of
basis functions, where the coefficients are chosen so that the error between the exact and
approximated solutions is minimized. In the spectral collocation method [42–44], the approximate
solution satisfies the original equation at the collocation points closely, which means that the residuals
are zero.

The spectral collocation technique is very useful since it can estimate accurately the solutions of a
wide range of equations, including differential, integral, integro-differential and fractional differential
equations, and optimal control and variational problems. The collocation technique has been widely
applied due to its advantages over other methods, namely in providing highly precise solutions and in
yielding exponential rates of convergence. The collocation method, on the other hand, has gained
popularity in recent decades for dealing with fractional problems. In this paper we use the shifted
fractional order Legendre-Gauss-Radau collocation (SFL-GR-C) method to solve variable order
fractional stochastic Volterra integro-differential equations (VOFSV-IDEs). For the independent
variable we adopt as interpolation points the shifted fractional order Legendre-Gauss-Radau
(SFL-GR) nodes, and we express the solution of the VOFSV-IDE by means of a series of shifted
fractional order Legendre orthogonal functions (SFOLOF). Thereon, we estimate the residuals at the
SFJ-GR quadrature points. After an adequate mapping, we use the shifted Legendre Gauss-Lobatto
quadrature to handle the integral terms. The Brownian motion is treated by means of Lagrange
interpolation. Therefore, we obtain an algebraic system that is solved with a suitable method. The
precision of the new technique is confirmed with various numerical problems.

The work is structured as follows. Section 2 introduces the preliminary bases and some useful
definitions, corollaries and theorems. In Section 3, we apply the developed numerical method to solve
FOSV-IDEs with initial condition. In Section 4, we illustrate the benefits of the method by means of
numerical examples. Finally, in Section 5, we address the conclusions.
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2. Notations and preliminaries

2.1. Fractional calculus

There are various definitions of fractional integration and differentiation, but the most reliable and
extensively used are the famous Caputo and Riemann-Liouville formulations. There exist fractional
derivatives of fixed, variable, distributed, and tempered orders for both definitions. In this paper, we
will look at VOFSV-IDEs with the Caputo formulation.

Definition 2.1. The Caputo fractional derivative of variable order ρ(x) is:

Dρ(x)δ(x) =
1

Γ(s − ρ(x))

∫ x

0
(x − ξ)s−ρ(x)−1 dsδ(ξ)

dξs dξ, s − 1 < ρ(x) ≤ s, x > 0, (2.1)

where s = ⌈ρ(x)⌉ and the Gamma function Γ(.) is given by

Γ(n) =
∫ ∞

0
e−ttn−1dt, n > 0.

The Legendre polynomials Ωm(t), m = 0, 1 . . . , obey to the Rodrigues formula:

Ωm(t) =
(−1)m

2mm!
Dm((1 − t2)m). (2.2)

Moreover, Ωm(t) corresponds to a Legendre polynomial [45, 46] of degree m and we can get the pth
derivative of Ωm(t) as:

Ω(p)
m (t) =

m−p∑
i=0(m+i=even)

Cp(m, i)Ωi(t), (2.3)

where

Cp(m, i) =
2p−1(2i + 1)Γ( p+m−i

2 )Γ( p+m+i+1
2 )

Γ(p)Γ( 2−p+m−i
2 )Γ(3−p+m+i

2 )
.

We obtain the orthogonality by:

(Ωm(t),Ωl(t))w =

1∫
−1

Ωm(t)Ωl(t) w(t) = hmδlm, (2.4)

where ω(t) = 1, hm =
2

2m+1 .

The integrals given above were evaluated efficiently using the Legendre-Gauss-Lobatto quadrature.
For ψ ∈ S 2N−1 [−1, 1], we have:

1∫
−1

ψ(t)dt =
N∑

j=0

ϖN, jψ(tN, j). (2.5)
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Let the discrete inner product be given as:

(ψ, φ)w =

N∑
j=0

ψ(tN, j)φ(tN, j)ϖN, j. (2.6)

In the case of smooth solutions, the employment of classical polynomials in spectral techniques, such
as Legendre and Jacobi, suffices to find approximate solutions with great accuracy. On the contrary,
in the case of non-smooth solutions, this precision degrades, prompting us to utilize polynomials of
fractional orders to prevent this issue, see [26, 47, 48] for more details.

Definition 2.2. Let SFOLOF, the inferred function from the Legendre polynomial, be provided by [26,
47, 48]

ΩεL, j(x) = Ω j(2(
x
L

)ε − 1), 0 < ε < 1, j = 0, 1, · · · , 0 ≤ t ≤ L. (2.7)

Theorem 2.1. For ϖ(ε)
L, f (x) = xε−1, a complete L2

ϖ(ε)
L, f

[0,L]-orthogonal system is obtained [26, 47, 48]

L∫
0

Ω
(ε)
L,i(x)Ω(ε)

L, j(x)ϖ(ε)
L, f (x) dx = δi jh

(ε)
L,k, (2.8)

where h(ε)
L,k =

Lε

2(2k+1)ε .

Corollary 2.2. Let ΩM = span{Ω(ε)
L,r : 0 ≤ r ≤ M}, be the fractional-polynomial space of finite

dimensions. Along with the orthogonal characteristic (2.8), the function Θ(ξ) ∈ L2
W

(ε)
f

[0,L] may be

extracted as

Θ(ξ) =
∞∑

r=0

ϱrΩ
(ε)
L,r(ξ), ϱr =

1

h(ε)
L,r

L∫
0

Ω
(ε)
L,i(ξ)Θ(ξ)W(ε)

L, f (ξ) dξ.

Theorem 2.3. The relevant nodes and Christoffel numbers of the shifted fractional Legendre-Gauss
(Gauss-Radau or Gauss-Lobatto) interpolation in the interval [0,L] may be obtained from [26,47,48]

x(ε)
L,K ,s = L

(
xK ,s + 1

2

) 1
ε

, ϖ(ε)
L,K ,s =

(
Lε

2

)
ϖK ,s, 0 ⩽ s ⩽M,

where xK ,s, andϖK ,s, 0 ⩽ s ⩽ M, are the nodes and Christoffel numbers of the standard Legendre-
Gauss (Gauss-Radau or Gauss-Lobatto) interpolation in the interval [−1, 1].

Theorem 2.4. Let us consider that DkεX(x) ∈ C[0,L] ∀k = 0, 1, ...,M. Given the best approximation
XM,ε(x) to X(x) from ΩM, the error bound is [26]

∥X(x) − XM,ε(x)∥ϖ(ε)
L, f (x) ≤

√
Lε(2M+3)Eε

(Γ((M + 1)ε + 1))
. (2.9)

In addition, the exponential error convergence of fractional Legendre (as a special case of
fractional Jacobi) has already been gained, see [47, 48]. In the case of a smooth solution, the errors
drop exponentially as N → ∞.
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2.2. Stochastic calculus

Scalar Brownian motion is a stochastic process ω(t) that varies continuously on t ∈ [0,L] and
fulfills the conditions:

1) ω(t) = 0, with probability 1.

2) For 0 ≤ s < t ≤ L the random variable given by the increment ω(t) − ω(s) is normally distributed
with zero mean and variance t − s, which means ω(t) − ω(s) ∼

√
t − s N(0, 1), where N(0, 1)

denotes a normally distributed random variable with zero mean and unit variance.

3) For 0 ≤ s < t < u < v ≤ L, ω(t) − ω(s) and ω(v) − ω(u) are independent.

A stochastic integral is the integral of some function ψ(t) over some interval [0,L], but with respect
to a Brownian motion ω(t) as

∫ L
0
ψ(t)dωt.

Definition 2.3. (The Itô integral) Let ψ ∈ υ(s1, s2), then the Itô integral of ψ is defined by∫ s2

s1

ψ(t, τ)dωt(τ) = lim
n→∞

∫ s2

s1

ψM(t, τ)dωt(τ), (2.10)

where ψM is a sequence of elementary functions such that

E[
∫ s2

s1

(ψ(t, τ) − ψM(t, τ))2dt]→ 0 as M→∞. (2.11)

Property 2.5. (Integration by parts) Suppose that ψ(s, τ) = ψ(s) depends only on s, and ψ is continuous
and bounded in [0, t]. Then, ∫ t

0
ψ(s)dωs = ψ(t)ωt −

∫ t

0
ωsdψs.

Property 2.6. (The Itô isometry) Let ψ ∈ ν(s1, s2), then

E[(
∫ s2

s1

ψ(t, τ)dωt(τ))2] = E[
∫ s2

s1

ψ2(t, τ)dt].

3. VOFSV-IDEs with initial condition

We solve the VOFSV-IDEs:

Dρ(x)X(x) = H(x,X(x)) +

x∫
0

Q1(ζ, x)X(ζ)dζ + σ

x∫
0

Q2(ζ, x)X(ζ)dω(ζ),

0 < ρ < 1, x ∈ [0,L],

(3.1)

with initial condition:
X(0) = d0, (3.2)
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where X(x), H(x,X), Q1(ζ, x) and Q2(ζ, x), with x ∈ [0,L], denote stochastic processes defined on

the probability space (Ω, 𭟋, P), and X is unknown. Moreover,
x∫

0
Q2(ζ, x)X(ζ)dω(ζ) is the Itô integral.

Therefore, using integration by parts, Eq (3.1) yields:

Dρ(x)X(x) = G(x,X(x), ω(x)) +

x∫
0

Q1(ζ, x)X(ζ)dζ − σ

x∫
0

Q3(ζ, x,X(ζ))ω(ζ)dζ,

0 < ρ < 1, x ∈ [0,L, ],

(3.3)

with
X(0) = d0, (3.4)

where

G(x,X(x), ω(x))
= H(x,X(x)) + σQ2(x, x)X(x)ω(x) and Q3(ζ, x,X(ζ))= ∂

∂ζ
(Q2(x, x)X(x)).

The solution of Eq (3.2) can be approximated by:

XM,ε(x) =
M∑
j=0

ς jΩ
ε
L, j(x). (3.5)

Despite the location of the nodes is optional, we take xε
L,Q, j as SFL-GR nodes.

The Ω(ε)
L, j(x) is given analytically by:

Ω
(ε)
L, j(x) =

j∑
k=0

E(ε, j)
k xεk,

where

E(ε, j)
k =

(−1) j−k (Γ( j + k + 1))
( j − k)!(Γ(k + 1))2Lεk .

By means of Eq (2.1), we find:

Dρ(x)
x (xεk) =

kεΓ(kε)xkε−ρ(x)

Γ(kε − ρ(x) + 1)
and, thus, we have:

Dρ(x)
x (Ω(ε)

L, j(x)) =Ω(ρ(x),ε)
j (x)

=

j∑
k=1

E(ε, j)
k

kεΓ(kε)xkε−ρ(x)

Γ(kε − ρ(x) + 1)
.

Therefore, we get:

Dρ(x)
c XM,ε(x) =

M∑
j=0

ς jΩ
(ρ(x),ε)
j (x). (3.6)
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Adopting ζ = x
L
λ, the integrals in (3.3) are converted into:

x∫
0

Q1(ζ, x)X(ζ)dζ =
x
L

L∫
0

Q1(
x
L
λ, x)X(

x
L
λ)dλ,

x∫
0

Q3(ζ, x,X(ζ))ω(ζ)dζ =
x
L

L∫
0

Q3

( x
L
λ, x,X(

x
L
λ)

)
ω(

x
L
λ)dλ.

(3.7)

Using the quadrature, we have:
L∫

0

ϕ(λ)dλ =
R∑

r=0

ϖR,rϕ
(
λL,Rr

)
, (3.8)

where λL,Rr are the shifted Legendre-Gauss-Lobatto nodes. As a result, the integral terms can be
written as:

L∫
0

Q1(
x
L
λ, x)X(

x
L
λ)dλ =

R∑
r=0

ϖR,rQ1(
x
L
λL,Rr ), x)X(

x
L
λL,Rr ),

L∫
0

Q3

( x
L
λ, x,X(

x
L
λ)

)
ω(

x
L
λ) =

R∑
r=0

ϖR,rQ3

( x
L
λL,Rr ), x,X(

x
L
λL,Rr )

)
ω(

x
L
λL,Rr ).

(3.9)

The residual of (3.2) can thus be computed as:
M∑
j=0

Ω
(ρ(x),ε)
j (x) =G(x,

M∑
j=0

ς jΩ
ε
L, j(x), ω(x)) +

x
L

R∑
r=0

ϖR,rQ1(
x
L
λL,Rr ), x)XM,ε(

x
L
λL,Rr )

− σ
x
L

R∑
r=0

ϖR,rQ3

( x
L
λL,Rr ), x,XM,ε(

x
L
λL,Rr )

)
ω(

x
L
λL,Rr ),

(3.10)

which is complied to be zero atM points:
M∑
j=0

Ω
(ρ(x),ε)
j (xεL,R,r) =G(xεL,R,r,

M∑
j=0

ς jΩ
ε
L, j(xεL,R,r), ω(xεL,R,r))

+
xε
L,R,r

L

R∑
r=0

ϖR,rQ1(
xε
L,R,r

L
λL,Rr ), xεL,R,r)XM,ε(

xε
L,R,r

L
λL,Rr ) − σ

xε
L,R,r

L

×

R∑
r=0

ϖR,rQ3

( xε
L,R,r

L
λL,Rr ), xεL,R,r,XM,ε(

xε
L,R,r

L
λL,Rr )

)
ω(

xε
L,R,r

L
λL,Rr ),

(3.11)

where r = 1, 2, . . . ,M. Hence, forM + 1 unknowns, we haveM algebraic equations. One additional
equation may be constructed from the beginning condition (3.2) as follows:

M∑
j=0

ς jΩ
(ε)
L, j(0) = d0. (3.12)
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Finally, from Eqs (3.11) and (3.12), we have a system of algebraic equations.
Consider the discretized Brownian motion for computational purposes, in which ω(x) is given at x

discrete values and ω(x) is evaluated using Lagrange interpolation. We have:

ωi = ωi−1 + △ωi, i = 1, 2, . . . ,M, (3.13)

where ω0 = 0 with probability 1, ωi = ω(xε
L,Q,i), △xε

L,Q,i = xε
L,Q,i− xε

L,Q,i−1, and △ωi is a random variable

such that
√
△xε
L,Q,iN(0, 1).

4. Numerical results and assessment

We present numerical results obtained with the new algorithm, illustrating its effectiveness and
high accuracy. Therefore, three problems are solved. The algorthim code is run via MATHEMATICA
version 12.2.

4.1. Problem I

We solve the VOFSV-IDEs:

Dρ(x)X(x) =
6x3−ρ(x)

Γ(4 − ρ(x))
−

exx5

5
+

x∫
0

exζX(ζ)dζ + σ

x∫
0

ζdω(ζ),

X(0) = 0, x ∈ [0, 1],

(4.1)

where, for σ = 0, we get X(x) = x3.
Table 1 shows the maximum absolute error between the approximate and exact solutions, given

σ = 0 and ρ(x) = x2. We verify that the exact solution is obtained when εM = p, with p denoting the
power exponent in the exact solution. Table 2 lists the absolute error for σ = 1

2 and ρ(x) = x2, while
Figure 1 depicts the numerical and exact solutions for σ = 0, ε = 1

5 andM = Q = 12. The variation of
the absolute errors are shown in Figure 2. Additionally, we can see the error degradation in Figure 3.
When adopting σ = 1

2 , ρ(x) = x2, we get the approximate solution of Problem I as:

X18, 1
5
= − 3.81639 × 10−17 − 0.0807125

√
x + 14.3743x − 835.141x

3
2 + 23587.5x2 − 386092x

5
2

+ 4.03224 × 106x3 − 2.85201 × 107x
7
2 + 1.42201 × 108x4 − 5.13704 × 108x

9
2

+ 1.36906 × 109x5 − 2.71924 × 109x
11
2 + 4.03631 × 109x6 − 4.45389 × 109x

13
2

+ 3.59806 × 109x7 − 2.06526 × 109x
15
2 + 7.97022 × 108x8 − 1.85297 × 108x

17
2

+ 1.95987 × 107x9.

Table 1. Maximum absolute error computed for Problem I for σ = 0 and ρ(x) = x2.
(M,R) ε = 1 ε = 1

2 ε = 1
3 ε = 1

4 ε = 1
5

(3,3) 0 0.104493 0.198577 0.209191 0.389127
(6,6) 0 3.16228 × 10−3 1.93684 × 10−2 5.03585 × 10−2

(9,9) 0 9.56949 × 10−5 8.38312 × 10−4

(12,12) 0 2.42495 × 10−6

(15,15) 0
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Table 2. The absolute error computed for Problem I for σ = 1
2 and ρ(x) = x2, at different

values of xε
L,R,r with ε = 1

2 .
r M = R = 3 M = R = 6 M = R = 9 M = R = 12 M = R = 15 M = R = 18
1 1.16616 × 10−16 2.12925 × 10−16 8.90855 × 10−17 6.94578 × 10−18 6.50638 × 10−17 3.5991 × 10−17

2 1.62197 × 10−16 3.3922 × 10−17 3.91778 × 10−18 2.62079 × 10−17 2.69371 × 10−16 3.30778 × 10−18

3 5.55112 × 10−17 5.62918 × 10−16 2.51914 × 10−16 1.63364 × 10−16 7.44732 × 10−16 5.69029 × 10−16

4 5.55112 × 10−15 2.76041 × 10−15 6.90667 × 10−15 4.50516 × 10−15 5.29367 × 10−15

5 2.35645 × 10−14 2.15557 × 10−14 4.14891 × 10−14 1.79785 × 10−14 6.07038 × 10−14

6 4.19664 × 10−14 7.96238 × 10−14 2.65349 × 10−13 2.75583 × 10−13 2.48 × 10−13

7 2.85327 × 10−13 1.64056 × 10−12 1.31525 × 10−12 1.40618 × 10−12

8 4.74398 × 10−13 6.93146 × 10−12 1.29288 × 10−11 3.71481 × 10−11

9 9.66449 × 10−13 3.08675 × 10−11 4.99409 × 10−11 2.15793 × 10−10

10 6.97446 × 10−11 1.90008 × 10−10 8.74439 × 10−10

Figure 1. The exact and numerical solutions of Problem I for σ = 0, ε = 1
5 andM = Q = 12.

Figure 2. The absolute error of Problem I for σ = 0, ε = 1
5 andM = Q = 12.
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4.2. Problem II

The following VOFSV-IDEs are solved:

Dρ(x)X(x) =
120x5−ρ(x)

Γ(6 − ρ(x))
−

x8

8
+

x∫
0

ζ2X(ζ)dζ + σ

x∫
0

ζX(ζ)dω(ζ),

X(0) = 0, 0 < ρ < 1, x ∈ [0, 1],

(4.2)

where the solution is X(x) = x5, for σ = 0 and ρ(x) = 1
10

(
1 − x2

)
.

Table 3 summarizes the maximum absolute error for σ = 0 and ρ(x) = 1
10

(
1 − x2

)
, where we can

see that for εM = p the exact solution is obtained. Table 4 shows that accurate results are gotten
when σ = 1

5 and ρ(x) = 1
10

(
1 − x2

)
. Figure 4 illustrates the estimated and exact solutions for σ = 0,

ε = 1
5 andM = Q = 20, showing an excellent matching between them. The variation of the absolute

error is shown in Figure 5, while the numerical solution is plotted in Figure 6 for σ = 1
5 , ε = 1 and

M = Q = 25. Taking σ = 1
5 , ρ(x) = 1

10

(
1 − x2

)
, the numerical solution of Problem II is:

X25,1 = − 6.35231 × 1011x25 + 7.65963 × 1012x24 − 4.33161 × 1013x23 + 1.5268 × 1014x22

− 3.76021 × 1014x21 + 6.87486 × 1014x20 − 9.67797 × 1014x19 + 1.07378 × 1015x18

− 9.53406 × 1014x17 + 6.84048 × 1014x16 − 3.98814 × 1014x15 + 1.89371 × 1014x14

− 7.31871 × 1013x13 + 2.29432 × 1013x12 − 5.79774 × 1012x11 + 1.17 × 1012x10

− 1.86112 × 1011x9 + 2.29289 × 1010x8 − 2.1368 × 109x7 + 1.45886 × 108x6

− 6.97935 × 106x5 + 219355.x4 − 4096.78x3 + 38.1429x2 − 0.119436x + 2.08166 × 10−17.

Table 3. Maximum absolute error computed for Problem II for σ = 0 and ρ(x) = 1
10

(
1 − x2

)
.

(M,R) ε = 1 ε = 1
2 ε = 1

3 ε = 1
4 ε = 1

5
(5,5) 0 4.48509×10−2 0.15429 0.278704 1.26456×10−2

(10,10) 0 3.40602×10−3 1.30207×10−2 0.395536×10−2

(15,15) 0 1.0122×10−4 3.40579×10−5

(20,20) 0 3.11338×10−9

(25,25) 0
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Table 4. The absolute error computed for Problem II for σ = 1
5 and ρ(x) = 1

10

(
1 − x2

)
, at

different values of xε
L,R,r with ε = 1

2 .
r M = Q = 5 M = Q = 10 M = Q = 15 M = Q = 20 M = Q = 25
1 3.38847 × 10−7 2.034 × 10−9 7.92236 × 10−10 1.30257 × 10−10 8.53841 × 10−11

2 7.09815 × 10−6 6.15405 × 10−7 9.62086 × 10−9 1.66978 × 10−9 9.67229 × 10−9

3 1.89629 × 10−4 3.60507 × 10−7 2.47023 × 10−8 1.85437 × 10−8 2.1513 × 10−8

4 1.02968 × 10−3 2.20451 × 10−6 8.22477 × 10−8 4.32886 × 10−8 3.23029 × 10−7

5 5.84265 × 10−3 4.73293 × 10−5 1.69792 × 10−6 1.78552 × 10−7 3.91532 × 10−7

6 1.5182 × 10−4 1.47873 × 10−6 1.25088 × 10−7 8.44327 × 10−7

7 8.78162 × 10−4 1.33773 × 10−7 1.27923 × 10−6 2.28305 × 10−6

8 1.48252 × 10−3 3.92092 × 10−5 5.98247 × 10−6 2.46448 × 10−6

9 1.38848 × 10−4 1.72158 × 10−4 3.60265 × 10−5 2.82674 × 10−7

10 2.71345 × 10−3 9.49137 × 10−4 7.22526 × 10−5 1.61954 × 10−5

Figure 4. The exact and numerical solutions of Problem II forσ = 0, ε = 1
5 andM = Q = 20.

Figure 5. The absolute error of Problem II for σ = 0, ε = 1
5 andM = Q = 20.
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Figure 6. The numerical solutions of Problem II for σ = 1
5 , ε = 1 andM = Q = 25.

4.3. Problem III

Here, we treat the VOFSV-IDEs:

Dρ(x)X(x) + X(x) =
√
πx

1
2−ρ(x)

2Γ
(

3
2 − ρ(x)

) + 2
3
δx3/2 +

√
x + δ

x∫
0

X(ζ)dζ + σ

x∫
0

X(ζ)dω(ζ),

X(0) = −1, 0 < ρ < 1, x ∈ [0, 1].

(4.3)

With σ = 0 and ρ(x) = 1
20

(
1 − x2

)
, we have X(x) =

√
x.

Table 5 compiles the maximum absolute error for σ = 0 and ρ(x) = 1
20

(
1 − x2

)
, while Table 6 lists

the errors for σ = 1
5 and ρ(x) = 1

20

(
1 − x2

)
. Figures 7 and 8 depict the exact and numerical solutions

and the variation of the absolute error, respectively, for σ = 0, ε = 1
5 andM = Q = 20. Furthermore,

in Figure 9, the numerical solution of Problem III is depicted for σ = 1
5 , ε = 1 andM = Q = 20. With

σ = 1
5 , ρ(x) = 1

20

(
1 − x2

)
, the numerical solution of Problem III is:

X25,1 = − 3.72966 × 10−16 + 21.2927x − 1828.13x2 + 100243.x3 − 3.32228 × 106x4

+ 7.18041 × 107x5 − 1.07485 × 109x6 + 1.15919 × 1010x7 − 9.22883 × 1010x8

+ 5.49417 × 1011x9 − 2.4475 × 1012x10 + 8.00235 × 1012x11 − 1.7872 × 1013x12

+ 1.92995 × 1013x13 + 3.44924 × 1013x14 − 2.27583 × 1014x15 + 6.23247 × 1014x16

− 1.15456 × 1015x17 + 1.58531 × 1015x18 − 1.65732 × 1015x19 + 1.32244 × 1015x20

− 7.94709 × 1014x21 + 3.48918 × 1014x22 − 1.05768 × 1014x23 + 1.98019 × 1013x24

− 1.72636 × 1012x25.

Table 5. Maximum absolute error computed for Problem III forσ = 0 and ρ(x) = 1
20

(
1 − x2

)
.

(M,R) ε = 1 ε = 1
2 ε = 1

3 ε = 1
4 ε = 1

5
(5,5) 5.88332×10−2 2.35686×10−4 8.27288×10−4 2.35547×10−4 4.39545×10−4

(10,10) 3.17199×10−2 3.3305×10−5 1.21372×10−4 3.33053×10−5 3.04446×10−5

(15,15) 2.17629×10−2 1.03183×10−5 1.74725×10−5 1.03183×10−5 1.07659×10−5

(20,20) 1.64278×10−2 4.4546×10−6 1.08425×10−5 4.4546×10−6 7.37167×10−6
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Table 6. The absolute error computed for Problem III for σ = 1
5 and ρ(x) = 1

20

(
1 − x2

)
, at

different values of xε
L,R,r with ε = 1

2 .
r M = Q = 5 M = Q = 10 M = Q = 15 M = Q = 20 M = Q = 25
1 4.66772 × 10−4 6.35681 × 10−5 5.60813 × 10−4 5.18845 × 10−5 4.19744 × 10−5

2 7.01101 × 10−3 3.77975 × 10−3 1.28293 × 10−3 1.04153 × 10−3 1.48969 × 10−4

3 2.96939 × 10−2 2.05774 × 10−3 3.75587 × 10−3 2.08944 × 10−3 4.12511 × 10−4

4 3.86938 × 10−2 1.15614 × 10−2 1.13745 × 10−2 1.04722 × 10−3 1.89535 × 10−3

5 2.98868 × 10−2 4.7224 × 10−3 1.23148 × 10−2 1.04644 × 10−4 1.34156 × 10−3

6 2.13935×10−2 6.72127 × 10−3 8.81009 × 10−4 2.97592 × 10−3

7 1.84482×10−2 1.03229 × 10−2 3.20411 × 10−3 1.41325 × 10−3

8 1.33411×10−2 1.2917 × 10−2 2.42679 × 10−3 4.61535 × 10−3

9 4.05949×10−2 2.84333 × 10−2 2.53367 × 10−3 9.03605 × 10−3

10 3.38222×10−2 2.0887 × 10−2 2.41134 × 10−3 1.80867 × 10−4

Figure 7. The exact and numerical solutions of Problem III where σ = 0, ε = 1
5 and

M = Q = 20.

Figure 8. The absolute error of Problem III for σ = 0, ε = 1
5 andM = Q = 20.
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Figure 9. The numerical solution of Problem III for σ = 1
5 , ε = 1 andM = Q = 20.

5. Conclusions

A collocation strategy was proposed to solve VOFSV-IDEs. Numerical examples proved the new
method’s accuracy and applicability. Indeed, the results showed that good precision is achieved even
with a small number of points. Other methods need a larger number of points to achieve identical
results and, thus, involve a higher computational burden. For example, the Euler-Maruyama
approximation arrives at 10−4 as the best solution with step size 1

512 . It is important to note that the
proposed approach also thrives in situations with non-smooth solutions, where the accuracy of many
other methods is affected.
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