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Abstract: Based on the variable separation method, the Kadomtsev-Petviashvili equation is
transformed into a system of equations, in which one is a fractional ordinary differential equation with
respect to time variable t, and the other is an integer order variable coefficients partial differential
equation with respect to spatial variables x, y. Assuming that the coefficients of the obtained
partial differential equation satisfy certain conditions, the equation is further reduced. The extended
homogeneous balance method is used to find the exact solutions of the reduced equation. According
to the solutions of some special fractional ordinary differential equations, we obtain some hyperbolic
function solutions of time-fractional Kadomtsev-Petviashvili equation with variable coefficients.
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1. Introduction

In recent years, the fractional partial differential equations (FPDEs) have aroused the extensive
attention of many scholars because the FPDEs are widely used in many fields, such as fluid mechanics,
plasma physics, biology, condensed matter physics, etc. Some effective methods are proposed to find
the exact solutions of the FPDEs, such as method of separation variables [1–3], invariant subspace
method [4–6], Adomian decomposition method [7–9], dynamical system method [10, 11], Lie group
theory method [12–14], and so on. In [15, 16], the variable separation method is successfully used to
obtain the exact solutions for the variable-coefficient time fractional partial differential equations with
forcing term and (2+1)-dimensional nonlinear time fractional biological population model.

The study of this paper is focused on time-fractional Kadomtsev-Petviashvili equation with
variable-coefficients as follows

Dα
t (ux) + l(t)(ux)2 + l(t)uuxx + g(t)uxxxx + µ(t)ux + h(t)uyy = 0, (1.1)
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where Dα
t (0 < α < 1) is Riemann-Liouville fractional derivative with respect to t.

when α = 1, Eq (1.1) is Kadomtsev-Petviashvili equations with variable-coefficients [17, 18] as
follows

uxt + l(t)(ux)2 + l(t)uuxx + g(t)uxxxx + µ(t)ux + h(t)uyy = 0,

where differentiable function u(x, y, t) represents the wave amplitude; coefficients l(t), µ(t), g(t), h(t)
are all real function; µ(t) gives the perturbed effect; l(t), g(t) and h(t) represent the coefficients of
nonlinearity, dispersion and the disturbed term along the y direction, respectively. In [17], the
higher-order rogue waves for Kadomtsev-Petviashvili equations with variable-coefficients have been
investigated. In [18], with the help of bilinear BT, the single soliton solution and double soliton
solution of the equation and their soliton characteristics are given.

The rest of this paper is arranged as follows. In Section 2, we give some background knowledge
which will be used. In Section 3, we apply the variable separation method to construct exact solutions
of time-fractional Kadomtsev-Petviashvili equation with variable coefficients. In Section 4, some
special solutions in the form of hyperbolic functions are found using the extended homogeneous
balance method. Some conclusions are provided at the end of the paper.

2. Preliminaries

Since the definition of fractional derivative was put forward in 1695, there have been many
different forms of definition [19–21] such as Riemann-Liouville, Caputo, Grunwald-Letnikov,
Riez-Feller, Weyl, etc. However, Riemann-Liouville definition, Caputo definition and
Grunwald-Letnikov definition are still the most influential. In this article, we adopt the definition of
the left Riemann-Liouville fractional derivative [19–21], which is as follows

Dα
t ( f (t)) =

1
Γ(n − α)

dn

dtn

∫ t

a
(t − τ)n−α−1( f (τ))dτ,

where t ∈ [a, b], n = [α + 1], n − 1 ≤ α < n, 0 ≤ a < t, Γ(·) is Gamma function.
Some properties [19] of the Riemann-Liouville fractional derivative are used, which are as follows

Dα
t [λu(x) + νv(x)] = λDα

t u(x) + νDα
t v(x), (2.1)

where λ and ν are constants.

Dα
t tγ =

Γ(n + γ)
Γ(n + γ − α)

tγ−α. (2.2)

If 0 < α < 1, (2.2) is reduced into

Dα
t tγ =

Γ(1 + γ)
Γ(1 + γ − α)

tγ−α, γ > −1. (2.3)

The solutions of two fractional ordinary differential equations with 0 < α < 1 are as below [19].
The solution to the Cauchy type problem

Dα
t (y(t)) − λy = 0, Dα−1

t (y(t))|t=0 = b (2.4)
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with λ, b ∈ R is given by

y(t) = btα−1Eα,α(λtα), (2.5)

where Eα,α is Mittag-Leffler function [19].
The equation

Dα
t (y(t)) − λtβy = 0, (λ ∈ R, β ∈ R, β > −{α}), (2.6)

with initial condition Dα−1
t (y(t))|t=0 = b, b ∈ R.

Solution of Eq (2.6) is

y(t) =
b

Γ(α)
tα−1Eα,1+

β
α ,1+

β−1
α

(λtα+β), (2.7)

where Eα,1+
β
α ,1+

β−1
α

is generalized Mittag-Leffler function [19].

3. Construction of exact solutions of Eq (1.1) by variable separation method

It is assumed that the solution of Eq (1.1) is in the following form

u = H(t)W(x, y). (3.1)

Substituting (3.1) into Eq (1.1), we obtain

Dα
t (H(t))Wx + l(t)(H(t))2(Wx)2 + l(t)(H(t))2WWxx + g(t)H(t)Wxxxx + µ(t)H(t)Wx

+h(t)H(t)Wyy = 0. (3.2)

Letting

Dα
t (H(t))Wx + µ(t)H(t)Wx = 0, (3.3)

l(t)(H(t))2(Wx)2 + l(t)(H(t))2WWxx + g(t)H(t)Wxxxx + h(t)H(t)Wyy = 0. (3.4)

Equation (3.3) is reduced into an ODE as follows

Dα
t (H(t)) + µ(t)H(t) = 0, (3.5)

The solution of Eq (3.5) is complicated. Here we consider only two special cases: µ(t) = −λ and
µ(t) = −λtβ, then the solution of Eq (3.5) can refer to Eqs (2.4) and (2.6), respectively.

For Eq (3.4), it is also difficult to find exact solution. It may be assumed that the coefficients of
Eq (3.4) satisfy the following relationships

g(t) = Al(t)H(t), h(t) = Bl(t)H(t), (3.6)

where A and B are constants. Then Eq (3.4) is reduced into a nonlinear partial differential equation
with constant coefficients as follows

(Wx)2 + WWxx + AWxxxx + BWyy = 0. (3.7)

There are many methods for exact solutions of nonlinear partial differential equations. Then we use
the extended homogeneous balance method [22–24] to find the exact solution of Eq (3.7).
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4. Exact solutions of Eq (1.1) by extended homogeneous balance method

According to the idea of extended homogeneous balance method [22–24], we assume that the
solution of Eq (3.7) has the following form

W(x, y) =
∂(r+s) f (φ)
∂xr∂ys + W0 = f (r+s)φr

xφ
s
y + · · · , (4.1)

where W0 = W0(x, y) is the arbitrary known seed solution; r, s and function f (φ) are to be determined
later.

From (4.1), we obtain

Wxxxx = f (r+s+4)φr+4
x φs

y + · · · , (4.2)
W2

x = f (r+s+1) f (r+s+1)φ2r+2
x φ2s

y + · · · , (4.3)
WWxx = f (r+s) f (r+s+2)φ2r+2

x φ2s
y + · · · . (4.4)

Balancing the highest order derivative term Wxxxx and the highest order nonlinear term W2
x , WWxx

can be obtained
2r + 2 = 2r + 2 = r + 4, s = 2s = 2s,

which gives
r = 2, s = 0.

Thus, (4.1) can be rewritten as follows

W(x, y) =
∂2 f (φ)
∂x2 + W0 = f ′′φ2

x + f ′φxx + W0. (4.5)

From (4.5), it is easy to deduce that

Wyy = f (4)φ2
yφ

2
x + f (3)φyyφ

2
x + 4 f (3)φyφxφxy + 2 f ′′φ2

xy + 2 f ′′φxφxyy

+ f (3)φ2
yφxx + f ′′φxxφyy + f ′′φyφxxy + f ′φxxyy + W0yy. (4.6)

Wxx = f (4)φ4
x + 6 f (3)φ2

xφxx + 3 f ′′φ2
xx + 4 f ′′φxφxxx + f ′φxxxx + W0xx. (4.7)

W2
x = ( f (3))2φ6

x + 9( f ′′)2φ2
xφ

2
xx + ( f ′)2φ2

xxx + u2
0x + 6 f (3) f ′′φ4

xφxx

+ 2 f (3) f ′φ3
xφxxx + 2W0x f (3)φ3

x + 6 f ′′ f ′φxφxxφxxx + 6W0x f ′′φxφxx + 2W0x f ′φxxx. (4.8)

WWxx = f ′′ f (4)φ6
x + 6 f ′′ f (3)φ4

xφxx + 3( f ′′)2φ2
xφ

2
xx + 4( f ′′)2φ3

xφxxx + f ′ f ′′φ2
xφxxxx + f ′′φ2

xW0xx

+ f ′ f (4)φ4
xφxx + 6 f ′ f (3)φ2

xφ
2
xx + 3 f ′ f ′′φ3

xx + 4 f ′ f ′′φxφxxφxxx + ( f ′)2φxxφxxxx + f ′φxxW0xx

+ f (4)W0φ
4
x + 6 f (3)W0φ

2
xφxx + 3 f ′′W0φ

2
xx + 4 f ′′W0φxφxxx + f ′W0φxxxx + W0W0xx. (4.9)

Wxxxx = f (6)φ6
x + 15 f (5)φ4

xφxx + 45 f (4)φ2
xφ

2
xx + 20 f (4)φ3

xφxxx + 15 f (3)φ3
xx

+ 60 f (3)φxφxxφxxx + 15 f (3)φ2
xφxxxx + 10 f ′′φ2

xx + 15 f ′′φxxφxxxx + 6 f ′′φxφxxxx

AIMS Mathematics Volume 7, Issue 6, 10378–10386.



10382

+ f ′φxxxxxx + W0xxxx. (4.10)

Now substituting (4.6)–(4.10) into Eq (3.7) and simplifying, it yields

φ6
x[( f (3))2 + f (4) f ′′ + A f (6)] + φ4

x[(12 f ′′ f (3) + f ′ f (4) + 15A f (5))φxx + W0 f (4)]
+φ3

x[(2 f ′ f (3) + 4( f ′)2 + 20A f (4))φxxx + 2 f (3)W0x] + φ2
x[B f (4)φ2

y + B f (3)φyy + 6W0 f (3)φxx

+(12( f ′′)2 + 6 f ′ f (3) + 45A f (4))φ2
xx + ( f ′ f ′′ + 15A f (3))φxxxx + f ′′W0xx] + φx[4B f (3)φyφxy

+2B f ′′φxyy + (10 f ′ f ′′φxx + 60A f (3)φxx + 4W0 f ′′)φxxx + 6A f ′′φxxxx + 6W0x f ′′φxx]
+φ3

xx(3 f ′ f ′′ + 15A f (3)) + 3W0 f ′′φ2
xx + φxx[B f (3)φ2

y + B f ′′φyy + (15A f ′′ + ( f ′)2)φxxxx + W0xx]
+φ2

xxx[( f ′)2 + 10A f ′′] + 2W0x f ′φxxx + W0 f ′φxxxx + 2B f ′′φ2
xy + B f ′φxxyy + B f ′′φyφxxy

+A f ′φxxxxxx + AW0xxxx + W2
0x + W0W0xx + BW0yy = 0. (4.11)

Setting the coefficient of the term φ6
x in Eq (4.11) to zero, we obtain a nonlinear ordinary differential

equation for function f (φ)
( f (3))2 + f (4) f ′′ + A f (6) = 0. (4.12)

Integrating Eq (4.12) with respective to x twice and letting the constant of integration be zero yields

( f ′′)2 + A f (4) = 0, (4.13)

which has particular solution
f (φ) = 12A ln φ. (4.14)

According to (4.14), we get the following results

( f ′)2 = −r f ′′, f ′′ f ′ = −
r
2

f (3), f (3) f ′ = −
r
3

f (4),

f (4) f ′ = −
r
4

f (5), ( f ′′)2 = −
r
6

f (4), f ′′ f (3) = −
r

12
f (5). (4.15)

By (4.5) and (4.14), we obtain the auto-Bäcklund transformation of Eq (3.7) as follows

W(x, y) = −
12Aφ2

x

φ2 +
12Aφxx

φ
+ W0. (4.16)

Letting the seed solution
W0(x, y) = 0, (4.17)

and using results (4.15), then Eq (4.11) can be simplified as

f (4)[4Aφxφxxx + Bφ2
y − 3Aφ2

xx]φ
2
x + f (3)[(Bφyy + 9Aφxxxx)φ2

x + 4Bφxφyφxy − 3Aφ3
xx

+Bφxxφ
2
y] + f ′′[6Aφxφxxxx + 2Bφxφxyy + 3Aφxxφxxxx + Bφyyφxx − 2Aφ2

xxx

+2Bφ2
xy + 2Bφyφxxy] + f ′[Bφxxyy + Aφxxxxxx] = 0. (4.18)

Setting the coefficients of f (4), f (3), f ′′, f ′ in Eq (4.18) to zero yields a set of partial differential
equations for φ(x, t) as follows

[4Aφxφxxx + Bφ2
y − 3Aφ2

xx]φ
2
x = 0, (4.19)
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(Bφyy + 9Aφxxxx)φ2
x + 4Bφxφyφxy − 3Aφ3

xx + Bφxxφ
2
y = 0, (4.20)

6Aφxφxxxx + 2Bφxφxyy + 3Aφxxφxxxx + Bφyyφxx − 2Aφ2
xxx + 2Bφ2

xy + 2Bφyφxxy = 0, (4.21)
(Bφyy + Aφxxxx)xx = 0. (4.22)

Here, Eqs (4.20) and (4.21) can be rewritten as

φ2
x[Bφyy + Aφxxxx] + φxx[4Aφxφxxx + Bφ2

y − 3Aφ2
xx]

+2φx[4Aφxφxxx + Bφ2
y − 3Aφ2

xx]x = 0. (4.23)
φxx[Bφyy + Aφxxxx] + 2φx[Bφyy + Aφxxxx]x

+[4Aφxφxxx + Bφ2
y − 3Aφ2

xx]xx = 0. (4.24)

By analysis Eqs (4.23) and (4.24), we find that the Eqs (4.19)–(4.22) are satisfied automatical under
the conditions

Bφyy + Aφxxxx = 0, (4.25)
4Aφxφxxx + Bφ2

y − 3Aφ2
xx = 0. (4.26)

To obtain some exact solutions of Eqs (4.25) and (4.26), we assume the solutions of the form

φ(x, y) = M + N sinh(ξ) exp(η), (4.27)

where ξ = Kx + Ωy + ξ0, η = kx + ωy + η0; M,N,K,Ω, ξ0, k, ω, η0 are constants which are to be
determined.

Substituting (4.27) into Eqs (4.25) and (4.26) and simplifying, it leads to a system of nonlinear
algebraic equations with respect to K,Ω, k, ω as follows

AK4 + 6AK2k2 + Ak4 + BΩ2 + Bω2 = 0,
4AKk3 + BΩ2 = 0,
2AK3k + 2AKk3 + BΩω = 0,
6AK2k2 + Ak4 − 3AK4 + Bω2 = 0.

By solving the above equations, the following solutions are obtained

Case 1: K = k, Ω = ω =

√
−4A

B k2, where A · B < 0.

Case 2: K = k, Ω = ω = −

√
−4A

B k2, where A · B < 0.

For case 1, according to (4.16), (4.17) and (4.27), the solutions of Eq (3.7) are as follows

W(x, y) = −
12AN2k2 exp(2η)[cosh(ξ) + sinh(ξ)]2

[M + N sinh(ξ) exp(η)]2

+
24ANk2 exp(η)[sinh(ξ) + cosh(ξ)]

M + N sinh(ξ) exp(η)
,

where ξ = kx +

√
−4A

B k2y + ξ0, η = kx +

√
−4A

B k2y + η0.
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When µ(t) = −λ, the exact explicit solutions to time-fractional Kadomtsev-Petviashvili equations
with variable-coefficient are obtained as follows

u(x, y, t) = b
[
−

12AN2k2 exp(2η)[cosh(ξ) + sinh(ξ)]2

[M + N sinh(ξ) exp(η)]2

+
24ANk2 exp(η)[sinh(ξ) + cosh(ξ)]

M + N sinh(ξ) exp(η)

]
tα−1Eα,α(λtα), (4.28)

where ξ = kx +

√
−4A

B k2y + ξ0, η = kx +

√
−4A

B k2y + η0.

When µ(t) = −λtβ, the exact explicit solutions to time-fractional Kadomtsev-Petviashvili equations
with variable-coefficient are obtained as follows

u(x, y, t) =
b

Γ(α)

[
−

12AN2k2 exp(2η)[cosh(ξ) + sinh(ξ)]2

[M + N sinh(ξ) exp(η)]2

+
24ANk2 exp(η)[sinh(ξ) + cosh(ξ)]

M + N sinh(ξ) exp(η)

]
tα−1Eα,1+

β
α ,1+

β−1
α

(λtα+β), (4.29)

where ξ = kx +

√
−4A

B k2y + ξ0, η = kx +

√
−4A

B k2y + η0.

For case 2, according to (4.16), (4.17) and (4.27), the solutions of Eq (3.7) are as follows

W(x, y) = −
12AN2k2 exp(2η)[cosh(ξ) + sinh(ξ)]2

[M + N sinh(ξ) exp(η)]2

+
24ANk2 exp(η)[sinh(ξ) + cosh(ξ)]

M + N sinh(ξ) exp(η)
,

where ξ = kx −
√
−4A

B k2y + ξ0, η = kx −
√
−4A

B k2y + η0.

When µ(t) = −λ, the exact explicit solutions to time-fractional Kadomtsev-Petviashvili equations
with variable-coefficient are obtained as follows

u(x, y, t) = b
[
−

12AN2k2 exp(2η)[cosh(ξ) + sinh(ξ)]2

[M + N sinh(ξ) exp(η)]2

+
24ANk2 exp(η)[sinh(ξ) + cosh(ξ)]

M + N sinh(ξ) exp(η)

]
tα−1Eα,α(λtα), (4.30)

where ξ = kx −
√
−4A

B k2y + ξ0, η = kx −
√
−4A

B k2y + η0.

When µ(t) = −λtβ, the exact explicit solutions to time-fractional Kadomtsev-Petviashvili equations
with variable-coefficient are obtained as follows

u(x, y, t) =
b

Γ(α)

[
−

12AN2k2 exp(2η)[cosh(ξ) + sinh(ξ)]2

[M + N sinh(ξ) exp(η)]2

+
24ANk2 exp(η)[sinh(ξ) + cosh(ξ)]

M + N sinh(ξ) exp(η)

]
tα−1Eα,1+

β
α ,1+

β−1
α

(λtα+β), (4.31)

where ξ = kx −
√
−4A

B k2y + ξ0, η = kx −
√
−4A

B k2y + η0.
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5. Conclusions

The variable separation method is an effective method to construct exact solutions of fractional
differential equations. In this paper, we try to use the extended homogeneous balance method to find
the exact solutions of time-fractional Kadomtsev-Petviashvili equation with variable coefficients. The
some hyperbolic function solutions are obtained. Clearly, this method is effective to obtain exact
solutions for some time-fractional nonlinear partial differential equations with Riemann-Liouville
derivative. Other methods for solving the exact solutions of integer order partial differential equations
can also be used to construct the exact solutions of fractional order differential equations.
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