Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Research article

An analytical approximation formula for European option prices under a liquidity-adjusted non-affine stochastic volatility model

  • Received: 13 January 2022 Revised: 08 March 2022 Accepted: 09 March 2022 Published: 25 March 2022
  • MSC : 91G20

  • In this paper, we investigate the pricing of European options under a liquidity-adjusted non-affine stochastic volatility model. An analytical European option pricing formula is successfully derived with the COS method, based on an approximation for the characteristic function of the underlying log-asset price. Numerical analysis reveals that our results are very efficient and of reasonable accuracy, and we also present some sensitivity analysis to demonstrate the effects of different parameters on option prices.

    Citation: Shoude Huang, Xin-Jiang He. An analytical approximation formula for European option prices under a liquidity-adjusted non-affine stochastic volatility model[J]. AIMS Mathematics, 2022, 7(6): 10364-10377. doi: 10.3934/math.2022577

    Related Papers:

    [1] Nina Huo, Bing Li, Yongkun Li . Global exponential stability and existence of almost periodic solutions in distribution for Clifford-valued stochastic high-order Hopfield neural networks with time-varying delays. AIMS Mathematics, 2022, 7(3): 3653-3679. doi: 10.3934/math.2022202
    [2] Yongkun Li, Xiaoli Huang, Xiaohui Wang . Weyl almost periodic solutions for quaternion-valued shunting inhibitory cellular neural networks with time-varying delays. AIMS Mathematics, 2022, 7(4): 4861-4886. doi: 10.3934/math.2022271
    [3] Ardak Kashkynbayev, Moldir Koptileuova, Alfarabi Issakhanov, Jinde Cao . Almost periodic solutions of fuzzy shunting inhibitory CNNs with delays. AIMS Mathematics, 2022, 7(7): 11813-11828. doi: 10.3934/math.2022659
    [4] Yuwei Cao, Bing Li . Existence and global exponential stability of compact almost automorphic solutions for Clifford-valued high-order Hopfield neutral neural networks with D operator. AIMS Mathematics, 2022, 7(4): 6182-6203. doi: 10.3934/math.2022344
    [5] Jin Gao, Lihua Dai . Weighted pseudo almost periodic solutions of octonion-valued neural networks with mixed time-varying delays and leakage delays. AIMS Mathematics, 2023, 8(6): 14867-14893. doi: 10.3934/math.2023760
    [6] Hedi Yang . Weighted pseudo almost periodicity on neutral type CNNs involving multi-proportional delays and D operator. AIMS Mathematics, 2021, 6(2): 1865-1879. doi: 10.3934/math.2021113
    [7] Yanshou Dong, Junfang Zhao, Xu Miao, Ming Kang . Piecewise pseudo almost periodic solutions of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations. AIMS Mathematics, 2023, 8(9): 21828-21855. doi: 10.3934/math.20231113
    [8] Zhangir Nuriyev, Alfarabi Issakhanov, Jürgen Kurths, Ardak Kashkynbayev . Finite-time synchronization for fuzzy shunting inhibitory cellular neural networks. AIMS Mathematics, 2024, 9(5): 12751-12777. doi: 10.3934/math.2024623
    [9] Abdulaziz M. Alanazi, R. Sriraman, R. Gurusamy, S. Athithan, P. Vignesh, Zaid Bassfar, Adel R. Alharbi, Amer Aljaedi . System decomposition method-based global stability criteria for T-S fuzzy Clifford-valued delayed neural networks with impulses and leakage term. AIMS Mathematics, 2023, 8(7): 15166-15188. doi: 10.3934/math.2023774
    [10] Xiaofang Meng, Yongkun Li . Pseudo almost periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays and leakage delays on time scales. AIMS Mathematics, 2021, 6(9): 10070-10091. doi: 10.3934/math.2021585
  • In this paper, we investigate the pricing of European options under a liquidity-adjusted non-affine stochastic volatility model. An analytical European option pricing formula is successfully derived with the COS method, based on an approximation for the characteristic function of the underlying log-asset price. Numerical analysis reveals that our results are very efficient and of reasonable accuracy, and we also present some sensitivity analysis to demonstrate the effects of different parameters on option prices.



    As stated in [1], a nervous system in the real world, synaptic transmission is a noisy process caused by random fluctuations in neurotransmitter release and other probabilistic factors. Therefore, it is necessary to consider stochastic neural networks (NNs) because random inputs may change the dynamics of the (NN) [2,3,4,5].

    SICNNs, which were proposed in [6], have attracted the interest of many scholars since their introduction due to their special roles in psychophysics, robotics, adaptive pattern recognition, vision, and image processing. In the above applications, their dynamics play an important role. Thereupon, their various dynamics have been extensively studied (see [7,8,9,10,11,12,13] and references therein). However, there is limited research on the dynamics of stochastic SICNNs. Therefore, it is necessary to further study the dynamics of such NNs.

    On the one hand, research on the dynamics of NNs that take values from a non commutative algebra, such as quaternion-valued NNs [14,15,16], octonion-valued NNs [17,18,19,20], and Clifford-valued NNs [21,22,23], has gained the interest of many researchers because such neural networks can include typical real-valued NNs as their special cases, and they have superior multi-dimensional signal processing and data storage capabilities compared to real-valued NNs. It is worth mentioning that in recent years, many authors have conducted extensive research on various dynamics of Clifford-valued NNs, such as the existence, multiplicity and stability of equilibrium points, and the existence, multiplicity and stability of almost periodic solutions as well as the synchronization problems [22,23,24,25,26,27,28,29,30]. However, most of the existing results for the dynamics of Clifford-valued NNs has been obtained through decomposition methods [24,25,26,27]. However, the results obtained by decomposition methods are generally not convenient for direct application, and there is little research on Clifford-valued NNs using non decomposition methods [28,29,30]. Therefore, further exploration of using non decomposition methods to study the dynamics of Clifford-valued NNs has important theoretical significance and application value.

    On the other hand, Bohr's almost periodicity is a special case of Stepanov's almost periodicity, but there is little research on the Stepanov periodic oscillations of NNs [19,31,32,33], especially the results of Stepanov's almost periodic solutions of stochastic SICNNs with discrete and infinitely distributed delays have not been published yet.

    Motivated by the discussion above, our purpose of this article is to establish the existence and global exponential stability of Stepanov almost periodic solutions in the distribution sense for a stochastic Clifford-valued SICNN with mixed delays via non decomposition methods.

    The subsequent sections of this article are organized as follows. Section 2 introduces some concepts, notations, and basic lemmas and gives a model description. Section 3 discusses the existence and stability of Stepanov almost periodic solutions in the distribution sense of the NN under consideration. An example is provided in Section 4. Finally, Section 5 provides a brief conclusion.

    Let A={ϑPxϑeϑ,xϑR} be a real Clifford-algebra with N generators e=e0=1, and eh,h=1,2,,N, where P={,0,1,2,,ϑ,,12N}, e2i=1,i=1,2,,r,e2i=1,i=r+1,r+2,,m,eiej+ejei=0,ij and i,j=1,2,,N. For x=ϑPxϑeϑA, we indicate x=maxϑP{|xϑ|},xc=ϑxϑeϑ,x0=xxc, and for x=(x11,x12,,x1n,x21,x22,,x2n,,xmn)TAm×n, we denote x0=max{xij,1im,1jn}. The derivative of x(t)=ϑPxϑ(t)eϑ is defined by ˙x(t)=ϑP˙xϑ(t)eϑ and the integral of x(t)=ϑPxϑ(t)eϑ over the interval [a,b] is defined by bax(t)dt=ϑP(baxϑ(t)dt)eϑ.

    Let (Y,ρ) be a separable metric space and P(Y) the collection of all probability measures defined on Borel σ-algebra of Y. Denote by Cb(Y) the set of continuous functions f:YR with g:=supxY{|g(x)|}<.

    For gCb(Y), μ,νP(Y), let us define

    gL=supxy|g(x)g(y)|ρ(x,y),gBL=max{g,gL},
    ρBL(μ,ν):=supgBL1|Ygd(μν)|.

    According to [34], (Y,ρBL(,)) is a Polish space.

    Definition 2.1. [35] A continuous function g:RY is called almost periodic if for every ε>0, there is an (ε)>0 such that each interval with length has a point τ meeting

    ρ(g(t+τ),g(t))<ε,foralltR.

    We indicate by AP(R,Y) the set of all such functions.

    Let (X,) signify a separable Banach space. Denote by μ(X):=PX1 and E(X) the distribution and the expectation of X:(Ω,F,P)X, respectively.

    Let Lp(Ω,X) indicate the family of all X-valued random variables satisfying E(Xp)=ΩXpdP<.

    Definition 2.2. [21] A process Z:RLp(Ω,X) is called Lp-continuous if for any t0R,

    limtt0EZ(t)Z(t0)p=0.

    It is Lp-bounded if suptREZ(t)p<.

    For 1<p<, we denote by Lploc(R,X) the space of all functions from R to X which are locally p-integrable. For gLploc(R,X), we consider the following Stepanov norm:

    gSp=suptR(t+1tg(s)pds)1p.

    Definition 2.3. [35] A function gLploc(R,X) is called p-th Stepanov almost periodic if for any ε>0, it is possible to find a number >0 such that every interval with length has a number τ such that

    g(t+τ)g(t)Sp<ε.

    Definition 2.4. [9] A stochastic process ZLploc(R,Lp(Ω,X)) is said to be Sp-bounded if

    ZSps:=suptR(t+1tEZ(s)pds)1p<.

    Definition 2.5. [9] A stochastic process ZLloc(R,Lp(Ω,H)) is called Stepanov almost periodic in p-th mean if for any ε>0, it is possible to find a number >0 such that every interval with length has a number τ such that

    Z(t+τ)Z(t)Sps<ε.

    Definition 2.6. [9] A stochastic process Z:RLp(Ω,X)) is said to be p-th Stepanov almost periodic in the distribution sense if for each ε>0, it is possible to find a number >0 such that any interval with length has a number τ such that

    supaR(a+1adpBL(P[Z(t+τ)]1,P[Z(t)]1)dt)1p<ε.

    Lemma 2.1. [36] (Burkholder-Davis-Gundy inequality) If fL2(J,R), p>2, B(t) is Brownian motion, then

    E[suptJ|tt0f(s)dB(s)|p]CpE[Tt0|f(s)|2ds]p2,

    where cp=(pp+12(p1)p1)p2.

    The model that we consider in this paper is the following stochastic Clifford-valued SICNN with mixed delays:

    dxij(t)=[aij(t)xij(t)+CklNh1(i,j)Cklij(t)f(xkl(tτkl(t)))xij(t)+CklNh2(i,j)Bklij(t)0Kij(u)g(xkl(tu))duxij(t)+Lij(t)]dt+CklNh3(i,j)Eklij(t)δij(xij(tσij(t)))dωij(t), (2.1)

    where i=1,2,,m,j=1,2,,n, Cij(t) represents the cell at the (i,j) position, the h1-neighborhood Nh1(i,j) of Cij is given as:

    Nh1(i,j)={Ckl:max(|ki|,|lj|)h1,1km,1ln},

    Nh2(i,j),Nh3(i,j) are similarly defined, xij denotes the activity of the cell Cij, Lij(t):RA corresponds to the external input to Cij, the function aij(t):RA represents the decay rate of the cell activity, Cklij(t):RA,Bklij(t):RA and Eklij(t):RA signify the connection or coupling strength of postsynaptic activity of the cell transmitted to the cell Cij, and the activity functions f():AA, and g():AA are continuous functions representing the output or firing rate of the cell Ckl, and τkl(t),σij(t):RR+ are the transmission delay, the kernel Kij(t):RR is an integrable function, ωij(t) represents the Brownian motion defined on a complete probability space, δij():AA is a Borel measurable function.

    Let (Ω, F, {Ft}t, P ) be a complete probability space in which \{\mathscr{F}_t\}_{t\geqslant 0} is a natural filtration meeting the usual conditions. Denote by B_{\mathscr{F}_0}([-\theta, 0], \mathscr{A}^n) the family of bounded, \mathscr{F}_0 -measurable and \mathscr{A}^n -valued random variables from [-\theta, 0]\rightarrow \mathscr{A}^n . The initial values of system (2.1) are depicted as

    x_i(s) = \phi_i(s),\; \; \; s\in[-\theta,0],

    where \phi_i\in B_{\mathscr{F}_0} ([-\theta, 0], \mathscr{A}), \theta = \max\limits_{1\leq i, j\leq n}\{ \sup\limits_{t\in \mathbb{R}}\tau_{ij}(t), \sup\limits_{t\in \mathbb{R}}\sigma_{ij}(t)\} .

    For convenience, we introduce the following notations:

    \begin{align*} &\underline{a}^0 = \min\limits_{ij\in\Lambda} \underline{a}_{ij}^0 = \min\limits_{ij\in\Lambda}\inf\limits_{t\in\mathbb{R}} a_{ij}^0(t),\; \; \bar{a}^0 = \max\limits_{ij\in\Lambda} \bar{a}_{ij}^0 = \max\limits_{ij\in\Lambda}\sup\limits_{t\in\mathbb{R}} a_{ij}^0(t),\; \; {C_{ij}^{kl}}^+ = \sup\limits_{t\in\mathbb{R}}\|C_{ij}^{kl}(t) \|_{\flat},\\ &\bar{a^c} = \max\limits_{ij\in\Lambda} \bar{a}_{ij}^c = \max\limits_{ij\in\Lambda}\sup\limits_{t\in\mathbb{R}} \|a_{ij}^c(t)\|_{\flat}, \; \; {B_{ij}^{kl}}^+ = \sup\limits_{t\in\mathbb{R}} \|B_{ij}^{kl}(t)\|_{\flat},\; \; {E_{ij}^{kl}}^+ = \sup\limits_{t\in\mathbb{R}}\|E_{ij}^{kl}(t)\|_{\flat}, \\ & K_{ij}^+ = \sup\limits_{t\in\mathbb{R}}K_{ij}(t),\; \; \tau_{kl}^+ = \sup\limits_{t\in\mathbb{R}}\tau_{kl}(t),\; \; \dot{\tau}_{kl}^+ = \sup\limits_{t\in\mathbb{R}}\dot{\tau}_{kl}(t), \sigma_{ij}^+ = \sup\limits_{t\in \mathbb{R}}\sigma_{ij}(t),\; \; \dot{\sigma}_{ij}^+ = \sup\limits_{t\in\mathbb{R}}\dot{\sigma}_{ij}(t), \\ & M_L = \max\limits_{ij\in\Lambda} L_{ij}^+ = \max\limits_{ij\in\Lambda}\sup\limits_{t\in\mathbb{R}}\|L_{ij}(t)\|_{\flat},\; \; \theta = \max\limits_{ij\in\Lambda}\{\tau_{ij}^+,\sigma_{ij}^+\},\; \; \Lambda = \{11,12,\cdots,1n,\cdots,mn\}. \end{align*}

    Throughout this paper, we make the following assumptions:

    (A1) For ij\in\Lambda , f, g, \delta_{ij}\in C(\mathscr{A}, \mathscr{A}) satisfy the Lipschitz condition, and f, g are bounded, that is, there exist constants L_f > 0, L_g > 0, L_{ij}^{\delta} > 0, M_f > 0, M_g > 0 such that for all x, y\in \mathscr{A} ,

    \begin{align*} ||f(x)-f(y)||_{\flat}\leq L_f||x-y||_{\flat},\; \; ||g(x)-g(y)||_{\flat}\leq L_g||x-y||_{\flat},\\ ||\delta_{ij}(x)-\delta_{ij}(y)||_{\flat}\leq L_{ij}^{\delta}||x-y||_{\flat} , ||f(x)||_{\flat}\leq M_f ,\; \; ||g(x)||_{\flat}\leq M_g; \end{align*}

    furthermore, f(0) = g(0) = \delta_{ij}(0) = 0 .

    (A2) For ij\in\Lambda , {a}_{ij}^0\in AP(\mathbb{R}, \mathbb{R}^+), {a}_{ij}^c\in AP(\mathbb{R}, \mathscr{A}), \tau_{ij}, \sigma_{ij}\in AP(\mathbb{R}, \mathbb{R}^+)\cap C^1(\mathbb{R}, \mathbb{R}) satisfying 1-\dot{\tau}_{ij}^+, 1-\dot{\sigma}_{ij}^+ > 0 , C_{ij}^{kl}, B_{ij}^{kl}, E_{ij}^{kl}\in AP(\mathbb{R}, \mathscr{A}) , L = (L_{11}, L_{12}, \cdots, L_{mn})\in\mathscr{L}_{loc}^p(\mathbb{R}, L^p(\Omega, \mathscr{A}^{m\times n})) is almost periodic in the sense of Stepanov.

    (A3) For p > 2, \frac{1}{p}+\frac{1}{q} = 1 ,

    \begin{align*} 0 < r^1: = & \frac{8^p}{4}\max\limits_{ij\in\Lambda}\bigg\{ \bigg(\frac{p}{q\underline{a}_{ij}^0}\bigg)^{\frac{p}{q}}\frac{q}{p\underline{a}_{ij}^0}\bigg[ (\bar{a}_{ij}^c)^p + \bigg(\sum\limits_{C_{kl}\in N_{h_1}(i,j)}({C_{ij}^{kl}}^+)^q\bigg)^{\frac{p}{q}}(2\kappa L_f+M_f)^p \\ & + \bigg(\sum\limits_{C_{kl}\in N_{h_2}(i,j)}({B_{ij}^{kl}}^+)^q\bigg)^{\frac{p}{q}} \bigg( (2\kappa L_g+M_g) \int_0^{\infty}|K_{ij}(u)|du\bigg)^{p}\bigg] \\ & +C_p\bigg(\frac{p-2}{2\underline{a}_{ij}^0}\bigg)^{\frac{p-2}{2}}\frac{q}{p\underline{a}_{ij}^0}\bigg(\sum\limits_{C_{kl}\in N_{h_3}(i,j)}({E_{ij}^{kl}}^+)^q\bigg)^{\frac{p}{q}} (L_{ij}^{\delta})^p\bigg\} < 1, \end{align*}

    and for p = 2 ,

    \begin{align*} 0 < r^2: = & 16\max\limits_{ij\in\Lambda}\bigg\{\frac{1}{(\underline{a}_{ij}^0)^2} \bigg[ (\bar{a}_{ij}^c)^2 + \sum\limits_{C_{kl}\in N_{h_1}(i,j)}({C_{ij}^{kl}}^+)^2 (2\kappa L_f+M_f)^2+ \sum\limits_{C_{kl}\in N_{h_2}(i,j)}({B_{ij}^{kl}}^+)^2 \\ & \times\bigg((2\kappa L_g+M_g)\int_0^{\infty}|K_{ij}(u)|du\bigg)^2\bigg] + \frac{1}{2\underline{a}_{ij}^0} \sum\limits_{C_{kl}\in N_{h_3}(i,j)}({E_{ij}^{kl}}^+)^2 (L_{ij}^{\delta})^2\bigg\} < 1. \end{align*}

    (A4) For \frac{1}{p}+\frac{1}{q} = 1 ,

    \begin{align*} 0 < \frac{q}{p\underline{a}^0}\rho^1 : = & 16^{p-1} \frac{q}{p\underline{a}^0} \max\limits_{ij\in\Lambda} \bigg\{ \bigg( \frac{p}{q\underline{a}_{ij}^0 }\bigg)^{\frac{p}{q}} \bigg[ (\bar{a}_{ij}^c )^p + \bigg( \sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{ij}^{kl}}^+)^q \bigg)^{\frac{p}{q}} \bigg[ 2^{p-1} (L_f )^p \notag\\ & \times \sum\limits_{C_{kl}\in N_{h_1}(i,j)} \frac{e^{\frac{p}{q}\underline{a}_{ij}^0 {\tau_{kl}}^+} (2\kappa)^p } {1-{\dot{\tau}}_{kl}^+ } +(M_f )^p \bigg] +\bigg( \sum\limits_{C_{kl}\in N_{h_2}(i,j) } \big( {B_{ij}^{kl}}^+ \big)^q \bigg)^{\frac{p}{q}} \bigg[ \bigg( 2\kappa L_g \\ & \times \int_0^{\infty} |K_{ij}(u)|du \bigg)^{p} + \bigg( M_g \int_0^\infty |K_{ij}(u)|du \bigg)^p \bigg] \bigg] + 2^{p-1} C_p \big(\frac{p-2}{2\underline{a}_{ij}^0} \big)^{\frac{p-2} {2} } \\ & \times \bigg( \sum\limits_{C_{kl}\in N_{h_3}(i,j)} ({E_{ij}^{kl}}^+ )^q \bigg)^{\frac{p}{q}} ( L_{ij}^{\delta})^p \frac{e^{\frac{p}{q}\underline{a}_{ij}^0 \sigma_{ij}^+ } } {1-\dot{\sigma}_{ij}^+ } \bigg\} < 1, \,\, (p > 2), \end{align*}
    \begin{align*} 0 < \frac{\rho^2}{\underline{a}^0}: = & \frac{32}{\underline{a}^0} \max\limits_{ij\in\Lambda} \bigg\{ \bigg(\frac{1}{\underline{a}_{ij}^0}\bigg) \sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{ij}^{kl}}^+)^2 \bigg[ (L_f )^2 \sum\limits_{C_{kl}\in N_{h_1}(i,j)}\frac{e^{\underline{a}_{ij}^0 {\tau_{kl}}^+} (2\kappa)^2 } {1-{\dot{\tau}}_{kl}^+ } +\frac{(M_f)^2}{2} \bigg] \\ & + \sum\limits_{C_{kl}\in N_{h_3}(i,j)} ({E_{ij}^{kl}}^+ )^2 ( L_{ij}^{\delta} )^2 \frac{e^{2\underline{a}_{ij}^0 \sigma_{ij}^+ } } {1-\dot{\sigma}_{ij}^+ } + \frac{1}{2\underline{a}_{ij}^0 } \sum\limits_{C_{kl}\in N_{h_2}(i,j) } \big( {B_{ij}^{kl}}^+ \big)^2 (4\kappa^2 L_g^2+M_g^2) \\ & \times \bigg( \int_0^{\infty} |K_{ij}(u)| du \bigg)^2 +\frac{(\bar{a}_{ij}^c)^2}{2\underline{a}_{ij}^0} \bigg\} < 1,\,\, (p = 2). \end{align*}

    (A5) The kernel K_{ij} is almost periodic and there exist constants M > 0 and u > 0 such that |K_{ij}(t)|\leq Me^{-ut} for all t\in \mathbb{R} .

    Let \mathbb{X} indicate the space of all \mathcal{L}^p -bounded and \mathcal{L}^p -uniformly continuous stochastic processes from \mathbb{R} to \mathcal{L}^p(\Omega, \mathscr{A}^{m\times n}) , then with the norm \|\phi\|_{\mathbb{X}} = \sup\limits_{t\in\mathbb{R}}\big\{E\|\phi(t)\|_0^p\big\}^{\frac{1}{p}}, where \phi = (\phi_{11}, \phi_{12}, \ldots, \phi_{mn})\in \mathbb{X} , it is a Banach space.

    Set \phi^0 = (\phi_{11}^0, \phi_{12}^0, \ldots, \phi_{mn}^0)^T , where \phi_{ij}^0(t) = \int_{-\infty}^te^{-\int_s^ta_{ij}^0(u)du}L_{ij}(s)ds, t\in\mathbb{R}, ij\in\Lambda . Then, \phi^0 is well defined under assumption (A2) . Consequently, we can take a constant \kappa such that \kappa\geq \|\phi^0\|_{\mathbb{X}} .

    Definition 3.1. [37] An \mathscr{F}_t -progressively measurable stochastic process x(t) = (x_{11}(t), x_{12}(t), \ldots, x_{mn}(t))^T is called a solution of system (2.1), if x(t) solves the following integral equation:

    \begin{align} x_{ij}(t) = & x_{ij}(t_0)e^{-\int_{t_0}^ta_{ij}^0(u)du}+\int_{t_0}^{t}e^{-\int_{s}^ta_{ij}^0(u)du}\bigg[ -a_{ij}^c(s)x_{ij}(s)+\sum\limits_{C_{kl}\in N_{h_1}(i,j)}C_{ij}^{kl}(s) \\ & \times f(x_{kl}(s-\tau_{kl}(s)))x_{ij}(s)+ \sum\limits_{C_{kl}\in N_{h_2}(i,j)}B_{ij}^{kl}(s)\int_{0}^{\infty}K_{ij}(u)g(x(s-u))dux_{ij}(s) \\ &+L_{ij}(s) \bigg]ds+\int_{t_0}^te^{-\int_{s}^ta_{ij}^0(u)du} \sum\limits_{C_{kl}\in N_{h_3}(i,j)}E_{ij}^{kl}(s)\delta_{ij}(x_{ij}(s-\sigma_{ij}(s)))dw_{ij}(s). \end{align} (3.1)

    In (3.1), let t_0\rightarrow -\infty , then one gets

    \begin{align} x_{ij}(t) = & \int_{-\infty}^{t}e^{-\int_{s}^ta_{ij}^0(u)du}\bigg[ -a_{ij}^c(s)x_{ij}(s)+\sum\limits_{C_{kl}\in N_{h_1}(i,j)}C_{ij}^{kl}(s)f(x_{kl}(s-\tau_{kl}(s)))x_{ij}(s) \\ & + \sum\limits_{C_{kl}\in N_{h_2}(i,j)}B_{ij}^{kl}(s)\int_{0}^{\infty}K_{ij}(u)g(x(s-u))dux_{ij}(s)+L_{ij}(s) \bigg]ds+\int_{-\infty}^te^{-\int_{s}^ta_{ij}^0(u)du} \\ & \times \sum\limits_{C_{kl}\in N_{h_3}(i,j)}E_{ij}^{kl}(s)\delta_{ij}(x_{ij}(s-\sigma_{ij}(s)))dw_{ij}(s), t\geq t_0,ij\in\Lambda. \end{align} (3.2)

    It is easy to see that if x(t) solves (3.2), then it also solves (2.1).

    Theorem 3.1. Assume that (A1) (A4) hold. Then the system (2.1) has a unique \mathcal{L}^p -bounded and \mathcal{L}^p -uniformly continuous solution in \mathbb{X}^* = \{\phi\in\mathbb{X}:\|\phi-\phi^0\|_{\mathbb{X}}\leq \kappa\} , where \kappa is a constant satisfying \kappa\geq \|\phi^0\|_{\mathbb{X}} .

    Proof. Define an operator \phi:\mathbb{X}^*\to \mathbb{X} as follows:

    (\Psi\phi)(t) = ( (\Psi_{11}\phi)(t),(\Psi_{12}\phi)(t),\ldots,(\Psi_{mn}\phi)(t) )^T,

    where (\phi_{11}, \phi_{12}, \ldots, \phi_{mn})^T\in\mathbb{X} , t\in\mathbb{R} and

    \begin{align} (\Psi_{ij}\phi)(t) = &\int_{-\infty}^{t}e^{-\int_{s}^ta_{ij}^0(u)du}\bigg[ -a_{ij}^c(s)\phi_{ij}(s)+ \sum\limits_{C_{kl}\in N_{h_1}(i,j)}C_{ij}^{kl}(s)f(\phi_{kl}(s-\tau_{kl}(s)))\phi_{ij}(s) \\ & + \sum\limits_{C_{kl}\in N_{h_2}(i,j)}B_{ij}^{kl}(s)\int_{0}^{\infty}K_{ij}(u)g(\phi_{kl}(s-u))du\phi_{ij}(s)+L_{ij}(s) \bigg]ds\\ &+\int_{-\infty}^te^{-\int_{s}^ta_{ij}^0(u)du} \sum\limits_{C_{kl}\in N_{h_3}(i,j)}E_{ij}^{kl}(s)\delta_{ij}(\phi_{ij}(s-\sigma_{ij}(s)))d\omega_{ij}(s), ij\in\Lambda. \end{align} (3.3)

    First of all, let us show that E\|\Psi \phi(t)-\phi^0(t)\|_{0}^p\leq \kappa for all \phi\in \mathbb{X}^* .

    Noticing that for any \phi\in\mathbb{X}^* , it holds

    \|\phi\|_{\mathbb{X}}\leq \|\phi^0 \|_{\mathbb{X}}+\|\phi-\phi^0 \|_{\mathbb{X}}\leq 2\kappa.

    Then, we deduce that

    \begin{align} & E\|\Psi \phi(t)-\phi^0(t)\|_{0}^p \\ \leq & 4^{p-1}\max\limits_{ij\in\Lambda} \bigg\{ E\bigg\|\int_{-\infty}^{t} -e^{-\int_{s}^ta_{ij}^0(u)du} a_{ij}^c(s)\phi_{ij}(s) \bigg\|_{\flat}^p \bigg\} +4^{p-1}\max\limits_{ij\in\Lambda}\bigg\{E\bigg\|\int_{-\infty}^{t} e^{-\int_{s}^ta_{ij}^0(u)du} \\ &\times \sum\limits_{C_{kl}\in N_{h_1}(i,j)}C_{ij}^{kl}(s) f(\phi_{kl}(s-\tau_{kl}(s)))\phi_{ij}(s)ds\bigg\|_{\flat}^p\bigg\} + 4^{p-1}\max\limits_{ij\in\Lambda} \bigg\{E\bigg\|\int_{-\infty}^{t} e^{-\int_{s}^ta_{ij}^0(u)du} \\ &\times \sum\limits_{C_{kl}\in N_{h_2}(i,j)}B_{ij}^{kl}(s)\int_{0}^{\infty}K_{ij}(u)g(\phi_{kl}(s-u))du\phi_{ij}(s)ds\bigg\|_{\flat}^p\bigg\}\\ & + 4^{p-1}\max\limits_{ij\in\Lambda} \bigg\{E\bigg\|\int_{-\infty}^{t} e^{-\int_{s}^ta_{ij}^0(u)du} \sum\limits_{C_{kl}\in N_{h_3}(i,j)}E_{ij}^{kl}(s)\delta_{ij}(\phi_{ij}(s-\sigma_{ij}(s)))d\omega_{ij}(s)\bigg\|_{\flat}^p\bigg\}\\ : = &F_1+F_2+F_3+F_4 . \end{align} (3.4)

    By the Hölder inequality, we have

    \begin{align} F_2\leq & 4^{p-1}\max\limits_{ij\in\Lambda}\bigg\{E\bigg\|\bigg[ \int_{-\infty}^te^{-\frac{q}{p}\int_s^ta_{ij}^0(u)du}ds \bigg]^{\frac{p}{q}} \bigg[\int_{-\infty}^te^{-\frac{p}{q}\int_s^ta_{ij}^0(u)du} \\ & \times\bigg(\sum\limits_{C_{kl}\in N_{h_1}(i,j)}C_{ij}^{kl}(s)f(\phi_{kl}(s-\tau_{kl}(s)))\phi_{ij}(s)\bigg)^pds\bigg]\bigg\|_{\flat}\bigg\} \\ \leq & 4^{p-1} \max\limits_{ij\in\Lambda}\bigg\{ \bigg(\frac{p}{q\underline{a}_{ij}^0}\bigg)^{\frac{p}{q}} E\bigg[ \int_{-\infty}^t e^{-\frac{p}{q}\int_{s}^ta_{ij}^0(u)du}\bigg(\sum\limits_{C_{kl}\in N_{h_1}(i,j)}(\|C_{ij}^{kl}(s)\|_{\flat})^q\bigg)^{\frac{p}{q}} \\ &\times\sum\limits_{ij\in\Lambda}(2\kappa L_f)^p\|\phi_{ij}(s)\|_{\flat}^pds \bigg] \bigg\} \\ \leq & 4^{p-1}\max\limits_{ij\in\Lambda}\bigg\{ \bigg(\frac{p}{q\underline{a}_{ij}^0}\bigg)^{\frac{p}{q}} \frac{q}{p\underline{a}_{ij}^0} \bigg(\sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{ij}^{kl}}^+)^q \bigg) ^{\frac{p}{q}} (2\kappa L_f )^p \bigg\}\|\phi\|_{\mathbb{X}}^{p}. \end{align} (3.5)

    Similarly, one has

    \begin{align} F_1 \leq & 4^{p-1}\max\limits_{ij\in\Lambda}\bigg\{\bigg(\frac{p}{q\underline{a}_{ij}^0}\bigg)^{\frac{p}{q}} \frac{ q}{p\underline{a}_{ij}^0} (\bar{a}_{ij}^c)^p \bigg\}\|\phi\|_{\mathbb{X}}^{p}, \end{align} (3.6)
    \begin{align} F_3 \leq & 4^{p-1}\max\limits_{ij\in\Lambda}\bigg\{ \bigg(\frac{p}{q\underline{a}_{ij}^0}\bigg)^{\frac{p}{q}} \frac{ q}{p\underline{a}_{ij}^0} \bigg (\sum\limits_{C_{kl}\in N_{h_2}(i,j)} ({B_{ij}^{kl}}^+)^q \bigg ) ^{\frac{p}{q}} \bigg( 2\kappa L_g \int_0^\infty |K_{ij}(u)|du \bigg )^{p} \bigg \} \|\phi\|_{\mathbb{X}}^{p}. \end{align} (3.7)

    By the Burkolder-Davis-Gundy inequality and the Hölder inequality, when p > 2 , we infer that

    \begin{align} F_4\leq&4^{p-1}C_p\max\limits_{ij\in\Lambda} \bigg\{E\bigg[\int_{-\infty}^{t}\bigg\| e^{-\int_{s}^ta_{ij}^0(u)du}\sum\limits_{C_{kl}\in N_{h_3}(i,j)}E_{ij}^{kl}(s)\delta_{ij}(\phi_{ij}(s-\sigma_{ij}(s)))\bigg\|_\flat^2ds\bigg]^{\frac{p}{2}}\bigg\}\\ \leq & 4^{p-1} C_p \max\limits_{ij\in\Lambda}\bigg\{ E\bigg[ e^{-2\int_s^ta_{ij}^0(u)du} \bigg\|\sum\limits_{C_{kl}\in N_{h_3}(i,j)}E_{ij}^{kl}\delta_{ij}(\phi_{ij}(s-\sigma_{ij}(s)))\bigg\|_{\flat}^2ds \bigg]^{\frac{p}{2}} \bigg\} \\ \leq & 4^{p-1} C_p \max\limits_{ij\in\Lambda}\bigg \{ E\bigg [ \int_{-\infty}^t (e^{-2\int_s^ta_{ij}^0(u)du})^{\frac{p}{p-2}\times\frac{1}{p}}ds \bigg ]^{\frac{p-2}{p}\times\frac{p}{2}} \\ &\times E\bigg[ \int_{-\infty}^t (e^{-2\int_s^ta_{ij}^0(u)du})^{\frac{1}{q}\times\frac{p}{2}} \bigg( \bigg\|\sum\limits_{C_{kl}\in N_{h_3}(i,j)}E_{ij}^{kl}(s)\delta_{ij}\phi_{ij}(s-\sigma_{ij}(s))\bigg\|_{\flat}^2\bigg)^{\frac{p}{2}}ds \bigg] \bigg\} \\ \leq& 4^{p-1} C_p \max\limits_{ij\in\Lambda}\bigg\{ \bigg( \frac{p-2}{2\underline{a}_{ij}^0} \bigg)^{\frac{p-2}{2}} \frac{q}{p\underline{a}_{ij}^0} E\bigg\|\sum\limits_{C_{kl}\in N_{h_3}(i,j)}E_{ij}^{kl}(s)\delta_{ij}(\phi_{ij}(s-\sigma_{ij}(s)))\bigg\|_{\flat}^p\bigg\} \\ \leq & 4^{p-1} C_p \max\limits_{ij\in\Lambda}\bigg\{ \bigg( \frac{p-2}{2\underline{a}_{ij}^0} \bigg)^{\frac{p-2}{2}} \frac{q}{p\underline{a}_{ij}^0}\bigg( \sum\limits_{C_{kl}\in N_{h_3}(i,j)}({E_{ij}^{kl}}^+)^q \bigg)^{\frac{p}{q}} (L_{ij}^{\delta})^p \bigg\} \|\phi\|_{\mathbb{X}}^p. \end{align} (3.8)

    When p = 2 , by the It \rm \hat{o} isometry, it follows that

    \begin{align} F_4\leq & 4 \max\limits_{ij\in\Lambda}\bigg\{ E\bigg[ \int_{-\infty}^t e^{-2\int_s^ta_{ij}^0(u)du} \bigg\| \sum\limits_{C_{kl}\in N_{h_3}(i,j)}E_{ij}^{kl}(s)\delta_{ij}(\phi_{ij}(s-\sigma_{ij}(s)))\bigg\|_{\mathscr{A} }^2ds \bigg] \bigg\} \\ \leq & 4 \max\limits_{ij\in\Lambda}\bigg\{ \frac{1}{2\underline{a}_{ij}^0} \sum\limits_{C_{kl}\in N_{h_3}(i,j)}({E_{ij}^{kl}}^+)^2 (L_{ij}^{\delta})^2 \bigg\} \|\phi\|_{\mathbb{X}}^2. \end{align} (3.9)

    Putting (3.5)–(3.9) into (3.4), we obtain that

    \begin{align} \|\Psi\phi-\phi^0\|_{\mathbb{X}}^p \leq & 4^{p-1} \max\limits_{ij\in\Lambda}\bigg\{ \bigg(\frac{p}{q\underline{a}_{ij}^0}\bigg)^{\frac{p}{q}} \frac{q}{p\underline{a}_{ij}^0} \bigg[ (\bar{a}_{ij}^c)^p +\bigg(\sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{ij}^{kl}}^+)^q \bigg)^{\frac{p}{q}} (2\kappa L_f)^p \\ & + \bigg(\sum\limits_{C_{kl}\in N_{h_2}(i,j)} ({B_{ij}^{kl}}^+)^q \bigg) ^{\frac{p}{q}} \bigg(2\kappa L_g\int_0^\infty |K_{ij}(u)|du\bigg)^{p} \bigg] \\ & + C_p \bigg( \frac{p-2}{2\underline{a}_{ij}^0} \bigg)^{\frac{p-2}{2}} \frac{q}{p\underline{a}_{ij}^0} \bigg( \sum\limits_{C_{kl}\in N_{h_3}(i,j)}({E_{ij}^{kl}}^+)^q \bigg)^{\frac{p}{q}} (L_{ij}^{\delta})^p \bigg\}\|\phi\|_{\mathbb{X}}^{p} \leq \kappa^{p}, \,\,(p > 2), \end{align} (3.10)

    and

    \begin{align} \|\Psi\phi-\phi^0\|_{\mathbb{X}}^2 \leq & 4 \max\limits_{ij\in\Lambda}\bigg\{ \frac{1}{(a_{ij}^-)^2} \bigg[ (\bar{a}_{ij}^c)^2 + \sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{ij}^{kl}}^+)^2 (2\kappa L_f)^2 + \sum\limits_{C_{kl}\in N_{h_2}(i,j)} ({B_{ij}^{kl}}^+)^2 \bigg(2\kappa L_g \\ & \times\int_0^\infty |K_{ij}(u)|du\bigg)^2 \bigg] + \frac{1}{2\underline{a}_{ij}^0} \sum\limits_{C_{kl}\in N_{h_3}(i,j)}({E_{ij}^{kl}}^+)^2 (L_{ij}^{\delta})^2 \bigg\}\|\phi\|_{\mathbb{X}}^2 \leq \kappa^2, \,\, (p = 2). \end{align} (3.11)

    It follows from (3.10), (3.11) and (A3) that \|\Psi\phi-\phi^0\|_{\mathbb{X}} \leq \kappa .

    Then, using the same method as that in the proof of Theorem 3.2 in [21], we can show that \Psi\phi is \mathcal{L}^p -uniformly continuous. Therefore, we have \Psi({\mathbb{X}}^*) \subset \mathbb{X}^* .

    Last, we will show that \Psi is a contraction mapping. Indeed, for any \psi, \varphi \in \mathbb{X}^* , when p > 2 , we have

    \begin{align} & E\|(\Phi \varphi)(t)-(\Phi \psi)(t)\|_{0}^{p} \\ \leq & 4^{p-1} \max _{ij\in\Lambda} \bigg\{ E \bigg\| \int_{-\infty}^{t} e^{-\int_{s}^{t} a_{ij}^0(u) d u} (-a_{ij}^c(s)\varphi_{ij}(s)+a_{ij}^c(s)\psi_{ij}(s)) d s \bigg\|_{\flat}^{p} \bigg\} \\ &+4^{p-1} \max _{ij\in\Lambda} \bigg\{ E \bigg\| \int_{-\infty}^{t} e^{-\int_{s}^{t} a_{ij}^0(u) d u} \sum\limits_{C_{kl}\in N_{h_1}(i,j)} C_{i j}^{kl}(s) \bigg[f\big(\varphi_{kl}(s-\tau_{kl}(s)) \big)\varphi_{ij}(s) \\ & -f\big( \psi_{kl}(s-\tau_{kl}(s)) \big)\psi_{ij}(s) \bigg] d s \bigg\|_{\flat}^{p} \bigg\} +4^{p-1} \max _{ij\in\Lambda} \bigg\{E \bigg\| \int_{-\infty}^{t} e^{-\int_{s}^{t} a_{ij}^0(u) d u} \sum\limits_{C_{kl}\in N_{h_2}(i,j)} B_{i j}^{kl}(s) \\ & \times \bigg[ \int_0^{\infty} K_{ij}(u)g\big(\varphi_{kl}(s-u)\big) du\varphi_{ij}(s) -\int_0^{\infty} K_{ij}(u)g\big(\psi_{kl}(s-u)\big) du\psi_{ij}(u) \bigg] d s \bigg\|_{\flat}^{p}\bigg\} \\ & + 4^{p-1} \max _{ij\in\Lambda} \bigg\{E \bigg\| \int_{-\infty}^{t} e^{-\int_{s}^{t} a_{ij}^0(u) d u} \sum\limits_{C_{kl}\in N_{h_3}(i,j)} E_{i j}^{kl}(s)\bigg[\delta_{ij}\big(\varphi_{ij}(s-\sigma_{i j}(s))\big) \\ & -\delta_{ij}\big(\psi_{ij}(s-\sigma_{i j}(s))\big)\bigg] d \omega_{ij}(s) \bigg\|_{\flat}^{p}\bigg\} \\ \leq & 4^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \bigg( \frac{p}{q\underline{a}_{ij}^0} \bigg)^{\frac{p}{q}} \frac{q}{p\underline{a}_{ij}^0} \bigg[ (\bar{a}_{ij}^c)^p + \bigg( \sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{i j}^{kl}}^+)^q \bigg)^{\frac{p}{q}} (2\kappa L_f+M_f)^p \\ & + \bigg( \sum\limits_{C_{kl}\in N_{h_2}(i,j)} ({B_{i j}^{kl}}^+)^q \bigg)^{\frac{p}{q}} \bigg( (2\kappa L_g+M_g)\int_0^{\infty}|K_{ij}(u)|du \bigg)^p \bigg] + C_p \bigg( \frac{p-2}{2\underline{a}_{ij}^0} \bigg)^{\frac{p-2}{2}} \frac{q}{p\underline{a}_{ij}^0} \\ & \times \bigg(\sum\limits_{C_{kl}\in N_{h_3}(i,j)} ({E_{ij}^{kl}}^+)^q \bigg)^{\frac{p}{q}} (L_{ij}^{\delta})^p \bigg\} \| \varphi-\psi \|_{\mathbb{X}}^p. \end{align} (3.12)

    Similarly, for p = 2 , we can get

    \begin{align} & E\|(\Phi \varphi)(t)-(\Phi \psi)(t)\|_{0}^{2} \\ \leq & 4 \max\limits_{ij\in\Lambda} \bigg\{ \frac{1}{(\underline{a}_{ij}^0)^2} \bigg[ (\bar{a}_{ij}^c)^2 + \sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{i j}^{kl}}^+)^2 (2\kappa L_f+M_f)^2 + \sum\limits_{C_{kl}\in N_{h_2}(i,j)} ({B_{i j}^{kl}}^+)^2 \\ & \times \bigg( (2\kappa L_g+M_g)\int_0^{\infty}|K_{ij}(u)|du \bigg)^2 \bigg] + \frac{1}{2\underline{a}_{ij}^0} \sum\limits_{C_{kl}\in N_{h_3}(i,j)} ({E_{ij}^{kl}}^+)^2 (L_{ij}^{\delta})^2 \bigg\} \| \varphi-\psi \|_{\mathbb{X}}^2. \end{align} (3.13)

    From (3.12) and (3.13) it follows that

    \begin{align*} \|(\Phi \varphi)(t)-(\Phi \psi)(t)\|_{\mathbb{X}} \leq \sqrt[p]{r^1}\| \varphi- \psi \|_{\mathbb{X}}, (p > 2),\\ \|(\Phi \varphi)(t)-(\Phi \psi)(t)\|_{\mathbb{X}} \leq \sqrt{r^2}\| \varphi- \psi \|_{\mathbb{X}}, (p = 2). \end{align*}

    Hence, by virtue of (A3) , \Psi is a contraction mapping. So, \Psi has a unique fixed point x in \mathbb{X}^* , i.e., (2.1) has a unique solution x in \mathbb{X}^* .

    Theorem 3.2. Assume that (A1) (A5) hold. Then the system (2.1) has a unique p -th Stepanov-like almost periodic solution in the distribution sense in \mathbb{X}^* = \{\phi\in\mathbb{X}:\|\phi-\phi^0\|_{\mathbb{X}}\leq \kappa\} , where \kappa is a constant satisfying \kappa\geq \|\phi^0\|_{\mathbb{X}} .

    Proof. From Theorem 3.1, we know that (2.1) has a unique solution x in \mathbb{X}^* . Now, let us show that x is Stepanov-like almost periodic in distribution. Since x\in \mathbb{X}^* , it is \mathcal{L}^p -uniformly continuous and satisfies \|x\|\leq 2\kappa . So, for any \varepsilon > 0 , there exists \delta\in (0, \varepsilon) , when |h| < \delta , we have \sup_{t\in\mathbb{R}} E\| x(t+h)-x(t) \|_0^p < \varepsilon . Hence, we derive that

    \begin{align} \sup\limits_{\xi\in\mathbb{R}} \int_\xi^{\xi+1} E\| x(t+h)-x(t) \|_0^p dt < \varepsilon. \end{align} (3.14)

    For the \delta above, according to (A2) , we have, for ij\in\Lambda ,

    \begin{align*} & |a_{ij}^0(t+\tau)-a_{ij}^0(t)| < \delta,\; \; \|a_{ij}^c(t+\tau)-a_{ij}^c(t)\|_{\flat}^p < \delta, \; \; \|C_{ij}^{kl}(t+\tau)-C_{ij}^{kl}(t)\|_{\flat}^p < \delta,\; \; \\ &|\tau_{ij}(t+\tau)-\tau_{ij}(t)| < \delta,\; \; \|B_{ij}^{kl}(t+\tau)-B_{ij}^{kl}(t)\|_{\flat}^p < \delta, \; \; \|E_{ij}^{kl}(t+\tau)-E_{ij}^{kl}(t)\|_{\flat}^p < \delta,\; \; \\ & |\sigma_{ij}(t+\tau)-\sigma_{ij}(t)| < \delta,\; \; \sup\limits_{\xi\in\mathbb{R}}\int_\xi^{\xi+1} \| L_{ij}(t+\tau)-L_{ij}(t) \|_{\flat}^p dt < \delta. \end{align*}

    As |\tau_{ij}(t+\tau)-\tau_{ij}(t)| < \delta , by (3.14), there holds

    \begin{align*} \sup\limits_{\xi\in\mathbb{R}}\int_\xi^{\xi+1} E\| x(s-\tau_{ij}(s+\tau))-x(s-\tau_{ij}(s)) \|_{0}^p ds < \varepsilon. \end{align*}

    Based on (3.2), we can infer that

    \begin{align*} x_{ij}(t+\tau) = & \int_{-\infty}^{t}e^{-\int_{s}^ta_{ij}^0(u+\tau)du}\bigg[ -a_{ij}^c(s+\tau)x_{ij}(s+\tau) +\sum\limits_{C_{kl}\in N_{h_1}(i,j)}C_{ij}^{kl}(s+\tau) \notag \\ & \times f(x_{kl}(s+\tau-\tau_{kl}(s+\tau))) x_{ij}(s+\tau)+ \sum\limits_{C_{kl}\in N_{h_2}(i,j)}B_{ij}^{kl}(s+\tau)\int_{0}^{\infty}K_{ij}(u) \notag\\ & \times g(x_{kl}(s+\tau-u))dux_{ij}(s+\tau) +L_{ij}(s+\tau) \bigg]ds +\int_{-\infty}^te^{-\int_{s}^ta_{ij}(u+\tau)du} \notag\\ & \times \sum\limits_{C_{kl}\in N_{h_3}(i,j)}E_{ij}^{kl}(s+\tau)\delta_{ij}(x_{ij}(s+\tau-\sigma_{ij}(s+\tau)))d[\omega_{ij}(s+\tau) -\omega_{ij}(\tau) ], \end{align*}

    in which ij\in\Lambda, \omega_{ij}(s+\tau)-\omega_{ij}(\tau) is a Brownian motion having the same distribution as \omega_{ij}(s) .

    Let us consider the process

    \begin{align} x_{ij}(t+\tau) = & \int_{-\infty}^{t}e^{-\int_{s}^ta_{ij}^0(u+\tau)du}\bigg[ -a_{ij}^c(s+\tau)x_{ij}(s+\tau) +\sum\limits_{C_{kl}\in N_{h_1}(i,j)}C_{ij}^{kl}(s+\tau) \\ & \times f(x_{kl}(s+\tau-\tau_{kl}(s+\tau))) x_{ij}(s+\tau)+ \sum\limits_{C_{kl}\in N_{h_2}(i,j)}B_{ij}^{kl}(s+\tau)\int_{0}^{\infty}K_{ij}(u) \\ & \times g(x_{kl}(s+\tau-u))dux_{ij}(s+\tau) +L_{ij}(s+\tau) \bigg]ds +\int_{-\infty}^te^{-\int_{s}^ta_{ij}(u+\tau)du} \\ & \times \sum\limits_{C_{kl}\in N_{h_3}(i,j)}E_{ij}^{kl}(s+\tau)\delta_{ij}(x_{ij}(s+\tau-\sigma_{ij}(s+\tau)))d\omega_{ij}(s). \end{align} (3.15)

    From (3.2) and (3.15), we deduce that

    \begin{align} & \int_\xi^{\xi+1} E\| x(t+\tau)-x(t) \|_0^p dt \\ \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t e^{-\int_s^t a_{ij}^0(u+\tau)du} \sum\limits_{C_{kl}\in N_{h_1}(i,j)} C_{ij}^{kl}(s+\tau) \\ & \times \bigg[f(x_{kl}(s+\tau-\tau_{kl}(s+\tau)))x_{ij}(s+\tau)-f(x_{kl}(s-\tau_{kl}(s)))x_{ij}(s+\tau)\bigg] ds\bigg\|_{\flat}^p dt \bigg\} \\ &+ 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t e^{-\int_s^t a_{ij}^0(u+\tau)du} \sum\limits_{C_{kl}\in N_{h_1}(i,j)} \big(C_{ij}^{kl}(s+\tau) - C_{ij}^{kl}(s) \big) \\ & \times f(x_{kl}(s-\tau_{kl}(s)))x_{ij}(s+\tau) ds\bigg\|_{\mathscr{A} }^p dt \bigg\} + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t e^{-\int_s^t a_{ij}^0(u+\tau)du} \\ &\sum\limits_{C_{kl}\in N_{h_1}(i,j)} C_{ij}^{kl}(s) \times f(x_{kl}(s-\tau_{kl}(s)))\big( x_{ij}(s+\tau) - x_{ij}(s) \big)ds\bigg\|_{\flat}^p dt \bigg\} \\ & + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t \big(e^{-\int_s^t a_{ij}^0(u+\tau)du} - e^{-\int_s^t a_{ij}^0(u)du} \big) \sum\limits_{C_{kl}\in N_{h_1}(i,j)} C_{ij}^{kl}(t) \\ & \times f(x_{kl}(s-\tau_{kl}(s)))x_{ij}(s) ds\bigg\|_{\flat}^p dt \bigg\} + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t e^{-\int_s^t a_{ij}^0(u+\tau)du} \\ &\sum\limits_{C_{kl}\in N_{h_2}(i,j)} B_{ij}^{kl}(s+\tau) \bigg[\int_0^{\infty}K_{ij}(u) g(x_{kl}(s+\tau-u)) du x_{ij}(s+\tau) - \int_0^{\infty}K_{ij}(u) \\ & \times g(x_{kl}(s-u)) du x_{ij}(s+\tau)\bigg] ds\bigg\|_{\flat}^p dt \bigg\} + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t e^{-\int_s^t a_{ij}^0(u+\tau)du} \\ & \sum\limits_{C_{kl}\in N_{h_2}(i,j)} \big(B_{ij}^{kl}(s+\tau) - B_{ij}^{kl}(s) \big) \int_0^{\infty}K_{ij}(u) g(x_{kl}(s-u)) du x_{ij}(s+\tau) ds\bigg\|_{\flat}^p dt \bigg\} \\ &+ 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t e^{-\int_s^t a_{ij}^0(u+\tau)du} \sum\limits_{C_{kl}\in N_{h_2}(i,j)} B_{ij}^{kl}(s) \int_0^{\infty}K_{ij}(u) g(x_{kl}(s-u)) du \\ & \times \big( x_{ij}(s+\tau) - x_{ij}(s) \big)ds\bigg\|_{\flat}^p dt \bigg\} + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t \big(e^{-\int_s^t a_{ij}^0(u+\tau)du} \\ & - e^{-\int_s^t a_{ij}^0(u)du} \big) \sum\limits_{C_{kl}\in N_{h_2}(i,j)} B_{ij}^{kl}(s) \int_0^{\infty}K_{ij}(u) g(x_{kl}(s-u)) du x_{ij}(s) ds\bigg\|_{\flat}^p dt \bigg\} \\ & + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t e^{-\int_s^t a_{ij}^0(u+\tau)du} (L_{ij}(s+\tau) - L_{ij}(s)) ds \bigg\|_{\flat}^p dt \bigg\} \\ & + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t \big(e^{-\int_s^t a_{ij}^0(u+\tau)du} - e^{-\int_s^t a_{ij}^0(u)du} \big) L_{ij}(s) ds \bigg\|_{\flat}^p dt \bigg\} \\ & + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t e^{-\int_s^t a_{ij}(u+\tau)du} \sum\limits_{C_{kl}\in N_{h_3}(i,j)} E_{ij}^{kl}(s+\tau) \\ & \times \bigg[ \delta_{ij}(x_{ij}(s+\tau-\sigma_{ij}(s+\tau)))- \delta_{ij}(x_{ij}(s-\sigma_{ij}(s))) \bigg] d\omega_{ij}(s) \bigg\|_{\mathscr{A} }^p dt \bigg\} \\ & + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t e^{-\int_s^t a_{ij}^0(u+\tau)du} \sum\limits_{C_{kl}\in N_{h_3}(i,j)} \big(E_{ij}^{kl}(s+\tau) - E_{ij}^{kl}(s) \big) \\ & \times \delta_{ij}(x_{ij}(s-\sigma_{ij}(s))) d\omega_{ij}(s) \bigg\|_{\flat}^p dt \bigg\} + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t \big(e^{-\int_s^t a_{ij}^0(u+\tau)du} \\ & - e^{-\int_s^t a_{ij}^0(u)du} \big) \sum\limits_{C_{kl}\in N_{h_3}(i,j)} E_{ij}^{kl}(t) \delta_{ij}(x_{ij}(s-\sigma_{ij}(s))) d\omega_{ij}(s) \bigg\|_{\flat}^p dt \bigg\} \\ & + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t e^{-\int_s^t a_{ij}^0(u+\tau)du} \big( a_{ij}^c(s)-a_{ij}^c(s+\tau) \big)x_{ij}(s+\tau) ds \bigg\|_{\flat}^p dt \bigg\} \\ & + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t e^{-\int_s^t a_{ij}(u+\tau)du} a_{ij}^c(s)\big( x_{ij}(s)-x_{ij}(s+\tau) \big) ds \bigg\|_{\flat}^p dt \bigg\} \\ & + 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg\| \int_{-\infty}^t \big(e^{-\int_s^t a_{ij}(u+\tau)du} - e^{-\int_s^t a_{ij}(u)du} \big) (-a_{ij}^c(s))x_{ij}(s) ds \bigg\|_{\flat}^p dt \bigg\} \\ : = & \sum\limits_{i = 1}^{16} H_i. \end{align} (3.16)

    Employing the Hölder inequality, we can obtain

    \begin{align*} H_1 \leq & 32^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \bigg( \frac{p}{q\underline{a}_{ij}^0} \bigg)^{\frac{p}{q}} \bigg( \sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{ij}^{kl}}^+)^q \bigg)^{\frac{p}{q}} (L_f )^p \sum\limits_{C_{kl}\in N_{h_1}(i,j)} \int_\xi^{\xi+1} \bigg[ \int_{-\infty}^t e^{-\frac{p}{q}(t-s)\underline{a}_{ij}^0} \notag \\ & \times E \big\| \big [x(s+\tau-\tau_{kl}(s+\tau) ) - x(s-\tau_{kl}(s+\tau) ) \big] x(t+\tau) \big\|_0^p ds \notag\\ & + \int_{-\infty}^t e^{-\frac{p}{q}(t-s)\underline{a}_{ij}^0} E \big\| \big[ x(s-\tau_{kl}(s+\tau) ) - x(s-\tau_{kl}(s) ) \big] x(t+\tau) \big\|_0^p ds \bigg] dt \bigg\}. \end{align*}

    By a change of variables and Fubini's theorem, we infer that

    \begin{align} H_1 \leq & 32^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \bigg( \frac{p}{q\underline{a}_{ij}^0} \bigg)^{\frac{p}{q}} \bigg( \sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{ij}^{kl}}^+)^q \bigg)^{\frac{p}{q}} (L_f )^p \\ & \times \sum\limits_{C_{kl}\in N_{h_1}(i,j)} \int_\xi^{\xi+1} \bigg[ \int_{-\infty}^{t-\tau_{kl}(t+\tau)} \frac{1 }{1-{\dot{\tau}}_{kl}(s+\tau) } e^{-\frac{p}{q}}\underline{a}_{ij}^0(t-u-\tau_{kl}(s+\tau) ) \\ & \times E \big\| \big [x(u+\tau) - x(u) \big] x(t+\tau) \big\|_0^p du + \frac{q{\varepsilon}^p (2\kappa)^p } {p\underline{a}_{ij}^0 } \bigg] dt \bigg\} \\ \leq & 32^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \bigg( \frac{p}{q\underline{a}_{ij}^0} \bigg)^{\frac{p}{q}} \bigg( \sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{ij}^{kl}}^+)^q \bigg)^{\frac{p}{q}} (L_f )^p \sum\limits_{C_{kl}\in N_{h_1}(i,j)}\frac{e^{\frac{p}{q}}\underline{a}_{ij}^0 {\tau_{kl}}^+ (2\kappa)^p } {1-{\dot{\tau}}_{kl}^+ } \\ & \times \int_{-\infty}^{\xi} e^{-\frac{p}{q}(\xi-s)\underline{a}_{ij}^0} \bigg( \int_{s}^{s+1} E \big\| x(t+\tau) - x(t) \big\|_0^p dt \bigg) ds \bigg\} + \bigtriangleup_{H_1} \varepsilon , \end{align} (3.17)

    where

    \begin{align*} \bigtriangleup_{H_1} = 32^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \frac{q (2\kappa)^p } {p\underline{a}_{ij}^0 } \bigg( \frac{p}{q\underline{a}_{ij}^0} \bigg)^{\frac{p}{q}} \bigg( \sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{ij}^{kl}}^+)^q \bigg)^{\frac{p}{q}} (L_f )^p {\varepsilon}^{p-1} \bigg\} . \end{align*}

    Similarly, when p > 2 , one can obtain

    \begin{align} H_{11} \leq & 16^{p-1} C_p \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg[ \int_{-\infty}^t e^{-2\int_s^t a_{ij}^0(u+\tau)du} E \bigg\| \sum\limits_{C_{kl}\in N_{h_2}(i,j)} E_{ij}^{kl}(s+\tau) \\ & \times \big( \delta_{ij}(x_{ij}(s+\tau-\sigma_{ij}(s+\tau)))- \delta_{ij}(x_{ij}(s-\sigma_{ij}(s))) \big) \bigg\|_{\flat}^2 ds \bigg]^{\frac{p}{2}} dt \bigg\} \\ \leq & 32^{p-1} C_p \max\limits_{ij\in\Lambda} \bigg\{ \big(\frac{p-2}{2\underline{a}_{ij}^0} \big)^{\frac{p-2} {2} } \big( \sum\limits_{C_{kl}\in N_{h_2}(i,j)} ({E_{ij}^{kl}}^+ )^q \big)^{\frac{p}{q}} ( L_{ij}^{\delta})^p \frac{e^{\frac{p}{q}\underline{a}_{ij}^0 \sigma_{ij}^+ } } {1-\dot{\sigma}_{ij}^+ } \int_{-\infty}^{\xi} e^{-\frac{p}{q}(\xi-s)\underline{a}_{ij}^0 } \\ & \times \bigg( \int_s^{s+1} E \big\| x(t+\tau) - x(t) \big\|_0^p dt \bigg) ds\bigg\} +\bigtriangleup_{H_{11}^1 } \varepsilon, \end{align} (3.18)

    where

    \begin{align*} \bigtriangleup_{H_{11}^1} = 32^{p-1} C_p \max\limits_{ij\in\Lambda} \bigg\{ \big(\frac{p-2}{2\underline{a}_{ij}^0} \big)^{\frac{p-2} {2} } \big( \sum\limits_{C_{kl}\in N_{h_3}(i,j)} ({E_{ij}^{kl}}^+ )^q \big)^{\frac{p}{q}} \sum\limits_{C_{kl}\in N_{h_3}(i,j)}( L_{ij}^{\delta})^p \frac{q}{p\underline{a}_{ij}^0} {\varepsilon}^{p-1} \bigg\} , \end{align*}
    \begin{align} H_{12} \leq & 16^{p-1} C_p \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg[ \int_{-\infty}^t e^{-2\int_s^t a_{ij}^0(u+\tau)du} E \bigg\| \sum\limits_{C_{kl}\in N_{h_3}(i,j)} \big( E_{ij}^{kl}(s+\tau) - E_{ij}^{kl}(s) \big) \\ & \times \delta_{ij}(x_{ij}(s-\sigma_{ij}(s))) \bigg\|_{\mathscr{A} }^2 ds \bigg]^{\frac{p}{2}} dt \bigg\} \\ \leq & 16^{p-1} C_p \max\limits_{ij\in\Lambda} \bigg\{ \big(\frac{p}{q\underline{a}_{ij}^0} \big)^{\frac{p} {q} } \frac{q}{p\underline{a}_{ij}^0} ( L_{ij}^{\delta})^p \frac{e^{\frac{p}{q}\underline{a}_{ij}^0 \sigma_{ij}^+ } } {1-\dot{\sigma}_{ij}^+ } (2\kappa)^p \bigg\} \varepsilon^{\frac{p}{q}} : = \bigtriangleup_{H_{12}^1} \varepsilon , \end{align} (3.19)

    and when p = 2 , we have

    \begin{align} H_{11} \leq & 16 \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg[ \int_{-\infty}^t e^{-2\int_s^t a_{ij}^0(u+\tau)du} \sum\limits_{C_{kl}\in N_{h_3}(i,j)} ({E_{ij}^{kl}}^+)^2 \\ & \times \sum\limits_{C_{kl}\in N_{h_3}(i,j)} ( L_{ij}^{\delta} )^2 \| x_{ij}(s+\tau-\sigma_{ij}(s+\tau) ) - x_{ij}(s-\sigma_{ij}(s) ) \|_{\flat}^2 ds \bigg] dt \bigg\} \\ \leq & 32 \max\limits_{ij\in\Lambda} \bigg\{ \sum\limits_{C_{kl}\in N_{h_3}(i,j)} ({E_{ij}^{kl}}^+)^2 ( L_{ij}^{\delta} )^2 \frac{e^{2\underline{a}_{ij}^0 \sigma_{ij}^+} }{1-\dot{\sigma}_{ij}^+ } \int_{-\infty}^{\xi} e^{-2(\xi-s)\underline{a}_{ij}^0 } \\ & \times \bigg( \int_{s}^{s+1} E \| x(t+\tau) - x(t) \|_0^2 dt \bigg) ds \bigg\} + \bigtriangleup_{H_{11}^2} \varepsilon, \end{align} (3.20)

    where

    \begin{align*} \bigtriangleup_{H_{11}^2} = \frac{32}{\underline{a}_{ij}^0} \max\limits_{ij\in\Lambda} \bigg\{ \sum\limits_{C_{kl}\in N_{h_3}(i,j)} ({E_{ij}^{kl}}^+)^2 \sum\limits_{C_{kl}\in N_{h_3}(i,j)} ( L_{ij}^{\delta} )^2 {\varepsilon} \bigg\} , \end{align*}
    \begin{align} H_{12} \leq & 16 \max\limits_{ij\in\Lambda} \bigg\{ \frac{1}{(\underline{a}_{ij}^0)^2} ( L_{ij}^{\delta})^2 \frac{e^{\underline{a}_{ij}^0 \sigma_{ij}^+ } } {1-\dot{\sigma}_{ij}^+ } 4\kappa^2 \bigg\} \varepsilon : = \bigtriangleup_{H_{12}^2} \varepsilon. \end{align} (3.21)

    In the same way, we can get

    \begin{align} H_2 \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ ( \frac{mnp}{q\underline{a}_{ij}^0 })^{\frac{p}{q}} \frac{q}{p \underline{a}_{ij}^0 } (2\kappa M_f )^p \bigg\} \varepsilon^{\frac{p}{q} } : = \bigtriangleup_{H_{2}} \varepsilon, \end{align} (3.22)
    \begin{align} H_3 \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ ( \frac{p}{q\underline{a}_{ij}^0 })^{\frac{p}{q}} \bigg ( \sum\limits_{C_{kl}\in N_{h_1}(i,j) } \big( {C_{ij}^{kl}}^+ \big)^q \bigg)^{\frac{p}{q}} (M_f )^p \int_{-\infty}^\xi e^{-\frac{p}{q} (\xi-s) \underline{a}_{ij}^0} \\ & \times \bigg(\int_s^{s+1} E \| x(t+\tau) - x(t) \|_0^p dt \bigg) ds \bigg\}, \end{align} (3.23)
    \begin{align} H_5 \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \bigg( \frac{p}{q\underline{a}_{ij}^0 } \bigg)^{\frac{p}{q}} \bigg( \sum\limits_{C_{kl}\in N_{h_2}(i,j) } \big( {B_{ij}^{kl}}^+ \big)^q \bigg)^{\frac{p}{q}} \bigg( 2\kappa L_g\int_0^{\infty} |K_{ij}(u)| du \bigg)^p \int_{-\infty}^\xi e^{-\frac{p}{q} (\xi-s) \underline{a}_{ij}^0} \\ & \times \bigg(\int_s^{s+1} E \| x(t+\tau) - x(t) \|_0^p dt \bigg) ds\bigg\}, \end{align} (3.24)
    \begin{align} H_6 \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ ( \frac{mnp}{q\underline{a}_{ij}^0 })^{\frac{p}{q}} \frac{q}{p \underline{a}_{ij}^0 } \bigg( (2\kappa M_g )\int_0^{\infty}|K_{ij}(u)|du \bigg)^p \bigg\} \varepsilon^{\frac{p}{q} } : = \bigtriangleup_{H_{6}} \varepsilon, \end{align} (3.25)
    \begin{align} H_7 \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ ( \frac{p}{q\underline{a}_{ij}^0 })^{\frac{p}{q}} \bigg( \sum\limits_{C_{kl}\in N_{h_2}(i,j) } \big( {B_{ij}^{kl}}^+ \big)^q \bigg)^{\frac{p}{q}} \big( M_g\int_0^\infty |K_{ij}(u)|du \big)^p \int_{-\infty}^\xi e^{-\frac{p}{q} (\xi-s) \underline{a}_{ij}^0} \\ & \times \bigg(\int_s^{s+1} E \| x(t+\tau) - x(t) \|_0^p dt \bigg) ds \bigg\}, \end{align} (3.26)
    \begin{align} H_9 \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \big( \frac{p}{q \underline{a}_{ij}^0}\big)^{\frac{p}{q}} \frac{q}{p \underline{a}_{ij}^0} \bigg\} \varepsilon^{p } : = \bigtriangleup_{H_{9}} \varepsilon, \end{align} (3.27)
    \begin{align} H_{14} \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \big( \frac{p}{q \underline{a}_{ij}^0}\big)^{\frac{p}{q}} \frac{q}{p \underline{a}_{ij}^0} (2\kappa)^p \bigg\} \varepsilon^{p } : = \bigtriangleup_{H_{14}} \varepsilon, \end{align} (3.28)
    \begin{align} H_{15} \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ ( \frac{p}{q\underline{a}_{ij}^0 })^{\frac{p}{q}} (\bar{a}_{ij}^c )^p \int_{-\infty}^\xi e^{-\frac{p}{q} (\xi-s) \underline{a}_{ij}^0} \bigg(\int_s^{s+1} E \| x(t+\tau) - x(t) \|_0^p dt \bigg) ds \bigg\}. \end{align} (3.29)

    Noting that

    \begin{align} &\bigg[ \int_{-\infty}^t \big| e^{-\int_s^t a_{ij}^0(u+\tau)du } - e^{-\int_s^t a_{ij}^0(u)du} \big|^{\frac{q}{p}} ds \bigg]^{\frac{p}{q}} \\ \leq & \bigg[ \int_{-\infty}^t e^{-\frac{q}{p}\underline{a}_{ij}^0 (t-s) } \bigg( \int_s^t | a_{ij}^0(u+\tau) -a_{ij}^0(u) | du \bigg)^{\frac{q}{p}} ds \bigg]^{\frac{p}{q}} \leq \bigg( \Gamma\big(\frac{q+p}{p}\big) \bigg)^{\frac{p}{q}} \bigg( \frac{p}{q\underline{a}_{ij}^0} \bigg)^{\frac{p+q}{q}} \varepsilon . \end{align} (3.30)

    We can gain

    \begin{align} H_4 \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \bigg( \Gamma\big(\frac{q+p}{p} \big) \bigg)^{\frac{p}{q}} \Gamma\big( \frac{q+p}{p} \big) \big(\frac{1}{\underline{a}_{ij}^0}\big)^{\frac{2(p+q)}{q}} \\ & \times \bigg( \sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{ij}^{kl}}^+)^q \bigg)^{\frac{p}{q}} (2\kappa M_f )^{p} \bigg\} \varepsilon^{\frac{p}{q}+1} : = \bigtriangleup_{H_{4}} \varepsilon, \end{align} (3.31)
    \begin{align} H_8 \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \bigg( \Gamma\big(\frac{q+p}{p} \big) \bigg)^{\frac{p}{q}} \Gamma\big( \frac{q+p}{p} \big) \big(\frac{1}{\underline{a}_{ij}^0}\big)^{\frac{2(p+q)}{q}} \\ & \times \bigg( \sum\limits_{C_{kl}\in N_{h_2}(i,j)} ({B_{ij}^{kl}}^+)^q \bigg)^{\frac{p}{q}} (2\kappa M_g\int_0^{\infty} |K_{ij}(u)|du )^p \bigg\} \varepsilon^{\frac{p}{q}+1} : = \bigtriangleup_{H_{8}} \varepsilon, \end{align} (3.32)
    \begin{align} H_{10} \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \bigg( \Gamma\big(\frac{q+p}{p} \big) \bigg)^{\frac{p}{q}} \Gamma\big( \frac{q+p}{p} \big) \big(\frac{1}{\underline{a}_{ij}^0}\big)^{\frac{2(p+q)}{q}} (M_L)^p \bigg\} \varepsilon^{\frac{p}{q}+1} : = \bigtriangleup_{H_{10}} \varepsilon, \end{align} (3.33)
    \begin{align} H_{16} \leq & 16^{p-1} \max\limits_{ij\in\Lambda} \bigg\{ \bigg( \Gamma\big(\frac{q+p}{p} \big) \bigg)^{\frac{p}{q}} \Gamma\big( \frac{q+p}{p} \big) \big(\frac{1}{\underline{a}_{ij}^0}\big)^{\frac{2(p+q)}{q}} (2\kappa \bar{a}_{ij}^c)^p \bigg\} \varepsilon^{\frac{p}{q}+1} : = \bigtriangleup_{H_{16}} \varepsilon, \end{align} (3.34)

    when p > 2 , we have

    \begin{align} H_{13} \leq & 16^{p-1} C_p \max\limits_{ij\in\Lambda} \bigg\{ \int_\xi^{\xi+1} E \bigg[ \int_{-\infty}^t \bigg( e^{-\int_s^t a_{ij}^0(u+\tau)du } - e^{-\int_s^t a_{ij}^0(u)du} \bigg)^2 \\ & \times \sum\limits_{C_{kl}\in N_{h_3}(i,j)} E_{ij}^{kl}(s) \| \delta_{ij}(x_{ij}(s-\sigma_{ij}(s))) \|_{\flat}^2 ds \bigg]^{\frac{p}{2}} dt \bigg\} \\ \leq & 16^{p-1} C_p \max\limits_{ij\in\Lambda} \bigg\{ \bigg( \Gamma\big(\frac{p}{p-2} \big) \bigg)^{\frac{p-2}{2}} \big( \frac{p-2}{2\underline{a}_{ij}^0} \big)^{\frac{p}{2}} \\ & \times \frac{q}{p\underline{a}_{ij}^0} \bigg( \sum\limits_{C_{kl}\in N_{h_3}(i,j)} ({E_{ij}^{kl}}^+)^q \bigg)^{\frac{p}{q}} (L_{ij}^{\delta})^p \frac{e^{\frac{p}{q}\underline{a}_{ij}^0 \sigma_{ij}^+} } {1-{\dot{\sigma}}_{ij}^+} (2\kappa)^{p} \bigg\} \varepsilon : = \bigtriangleup_{H_{13}^1} \varepsilon, \end{align} (3.35)

    for p = 2 , we get

    \begin{align} H_{13} \leq & 16 \max\limits_{ij\in\Lambda} \bigg\{ \sum\limits_{C_{kl}\in N_{h_3}(i,j)} ({E_{ij}^{kl}}^+)^2 (L_{ij}^{\delta})^2 \frac{e^{2\underline{a}_{ij}^0 \sigma_{ij}^+} } {1-{\dot{\sigma}}_{ij}^+} \frac{ \Gamma(3) }{8(\underline{a}_{ij}^0)^3} (2\kappa)^{2} \bigg\} \varepsilon : = \bigtriangleup_{H_{13}^2} \varepsilon . \end{align} (3.36)

    Substituting (3.17)–(3.36) into (3.16), we have the following two cases:

    Case 1. When p > 2 , we have

    \begin{align*} & \int_\xi^{\xi+1} E\| x(t+\tau) -x(t) \|_0^p dt \\ \leq & H^1 \varepsilon + \rho^1 \int_{-\infty}^\xi e^{-(\xi-s)\frac{p}{q}\underline{a}^0}\bigg( \int_s^{s+1} E\| x(t+\tau)-x(t) \|_0^p dt \bigg) ds\\ \leq & H^1 \varepsilon + \rho^1\sup\limits_{s\in \mathbb{R}}\bigg( \int_s^{s+1} E\| x(t+\tau)-x(t) \|_0^p dt \bigg) \int_{-\infty}^\xi e^{-(\xi-s)\frac{p}{q}\underline{a}^0} ds\\ \leq & H^1 \varepsilon + \rho^1\frac{q}{p\underline{a}^0}\sup\limits_{s\in \mathbb{R}}\bigg( \int_s^{s+1} E\| x(t+\tau)-x(t) \|_0^p dt \bigg), \end{align*}

    where \rho^1 is the same as that in (A3) and H^1 = \bigtriangleup_{H_1} + \bigtriangleup_{H_2} +\bigtriangleup_{H_4} +\bigtriangleup_{H_6} +\bigtriangleup_{H_8} +\bigtriangleup_{H_9} +\bigtriangleup_{H_{10}} +\bigtriangleup_{H_{14}} +\bigtriangleup_{H_{16}} +\bigtriangleup_{H_{11}^1} +\bigtriangleup_{H_{12}^1} +\bigtriangleup_{H_{13}^1}.

    By (A4) , we know \rho^1 < \frac{p\underline{a}^0}{q} . Hence, we derive that

    \begin{align} \sup\limits_{\xi\in \mathbb{R}}\int_\xi^{\xi+1} E\| x(t+\tau)-x(t) \|_0^p dt \; < \; \frac{p\underline{a}^0 H^1}{p\underline{a}^0 - \rho^1 q} \varepsilon. \end{align} (3.37)

    Case 2. When p = 2 , we can obtain

    \begin{align*} & \int_\xi^{\xi+1} E\| x(t+\tau)-x(t) \|_0^2 dt \\ \leq & H^2 \varepsilon + \rho^2 \int_{-\infty}^\xi e^{-(\xi-s)\frac{p}{q}\underline{a}^0 }\bigg( \int_s^{s+1} E\| x(t+\tau)-x(t) \|_0^2 dt \bigg) ds, \end{align*}

    where \rho^2 is defined in (A4) and

    \begin{align*} H^2 = & 32 \max\limits_{ij\in\Lambda} \bigg\{ \bigg(\frac{2\kappa} {\underline{a}_{ij}^0 } \bigg)^{2} \sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{ij}^{kl}}^+)^2 (L_f )^2 \bigg\} {\varepsilon} + 16 \max\limits_{ij\in\Lambda} \bigg\{ \frac{m^2n^2}{(\underline{a}_{ij}^0)^2 } \bigg[ (2\kappa M_f )^2 +\bigg(2\kappa M_g \\ & \times \int_0^{\infty}|K_{ij}(u)|du \bigg)^2 \bigg]+ (\Gamma(2))^2 \bigg(\frac{1}{\underline{a}_{ij}^0}\bigg)^{4} \bigg[ \sum\limits_{C_{kl}\in N_{h_1}(i,j)} ({C_{ij}^{kl}}^+)^2 (2\kappa M_f)^2 + \sum\limits_{C_{kl}\in N_{h_2}(i,j)} ({B_{ij}^{kl}}^+)^2 \\ & \times \bigg(2\kappa M_g \int_0^{\infty} |K_{ij}(u)|du \bigg)^2 +(M_L)^2 + (2\kappa \bar{a}_{ij}^c)^2\bigg] + \frac{1}{(\underline{a}_{ij}^0 )^2} \bigg[ \sum\limits_{C_{kl}\in N_{h_2}(i,j) }\big( {B_{ij}^{kl}}^+ \big)^2 \\ & \times \bigg(2\kappa M_g \int_0^{\infty} |K_{ij}(u)| du \bigg)^2 + (2\kappa)^2+1 \bigg] \bigg\} \varepsilon +\bigtriangleup_{H_{11}^2} +\bigtriangleup_{H_{12}^2} +\bigtriangleup_{H_{13}^2}. \end{align*}

    Similar to the previous case, by (A4) , we know \rho^2 < \underline{a}^0 and hence, we can get that

    \begin{align} \int_\xi^{\xi+1} E\| x(t+\tau)-x(t) \|_0^2 dt \; < \; \frac{\underline{a}^0 H^2}{\underline{a}^0 - \rho^2} \varepsilon. \end{align} (3.38)

    Noting that

    \begin{align*} &d_{BL}(P\circ[x(t+\tau)]^{-1},P\circ[x(t)]^{-1})\bigg)\\ \leq &\sup\limits_{\|f\|_{BL}\leq 1}\bigg|\int_{\mathscr{A}^{m\times n}}fd(P\circ[x(t+\tau)]^{-1}-P\circ[x(t)]^{-1})\bigg|\\ \leq&\sup\limits_{\|f\|_{BL}\leq 1}\bigg|\int_{\Omega}f(x(t+\tau))-f(x(t))\bigg|dP\\ \leq&\int_{\Omega}\|x(t+\tau)-x(t)\|_0dP\\ \leq&(E\|x(t+\tau)-x(t)\|_0^p)^{\frac{1}{p}}. \end{align*}

    Hence, we have

    \begin{align} &\sup\limits_{\xi\in\mathbb{R}}\bigg(\int_\xi^{\xi+1}d_{BL}^p(P\circ[x(t+\tau)]^{-1},P\circ[x(t)]^{-1})dt\bigg)^{\frac{1}{p}}\\ \leq &\bigg(\sup\limits_{\xi\in\mathbb{R}}\int_\xi^{\xi+1}E\|x(t+\tau)-x(t)\|_0^pd t\bigg)^{\frac{1}{p}}. \end{align} (3.39)

    Combining (3.37)–(3.39), we can conclude that x(t) is p -th Stepanov almost periodic in the distribution sense. The proof is complete.

    Similar to the proof of Theorem 3.7 in [21], one can easily show that.

    Theorem 3.3. Suppose that (A1) (A5) are fulfilled and let x be the Stepanov almost periodic solution in the distribution sense of system (2.1) with initial value \varphi . Then there exist constants \lambda > 0 and M > 0 such that for an arbitrary solution y with initial value \psi satisfies

    \begin{align*} E\| y(t)-x(t) \|_0^p \leq M \| \varphi -\psi \|_1 e^{-\frac{p}{q}\lambda t}, \; \; t > 0, \end{align*}

    where \| \varphi -\psi \|_1 = \sup_{a\in[-\theta, 0]} E\| \varphi(s) -\psi(s) \|_0^p , i.e., the solution x is globally exponentially stable.

    The purpose of this section is to demonstrate the effectiveness of the results obtained in this paper through a numerical example.

    In neural network (2.1), choose f(x) = \frac{1}{25} \sin x^0 e_0+\frac{1}{30} \sin (x^2+x^0) e_1+\frac{1}{35}\sin^2x^{12} e_2+\frac{1}{40}\tanh^2x^2 e_{12}, g(x) = \frac{1}{40} \sin x^0 e_0+\frac{1}{35} \sin (x^2+x^1) e_1+\frac{1}{30}\sin^2x^{12} e_2+\frac{1}{25}\tanh^2x^1 e_{12} , K_{ij}(t) = \frac{1}{e^{t}} and

    \begin{align*} \begin{bmatrix} a_{11}(t) \\ a_{12}(t) \\ a_{21}(t) \\ a_{22}(t) \\ \end{bmatrix} = \begin{bmatrix} (7+2\text{sin}t) \; e_0 +\text{cos}t \; e_1 +\text{cos}\sqrt5t \; e_2+\text{sin}\sqrt3t \; e_{12} \\ (6-\text{cos}t) e_0+\text{sin}\sqrt3t e_2+\text{cos}\sqrt3t e_{12} \\ (8+\text{cos}\sqrt3t) \; e_0+\text{sin}\sqrt5t \; e_1+\text{sin}t \; e_{12} \\ (10-2\text{sin}\sqrt5t) \; e_0+\text{cos}\sqrt3t \; e_1+\text{cos}t \; e_2+\text{tanh}t \; e_{12} \\ \end{bmatrix}, \end{align*}
    \begin{align*} \begin{bmatrix} C_{11}(t) & C_{12}(t) \\ C_{21}(t) & C_{22}(t) \\ \end{bmatrix} = \begin{bmatrix} B_{11}(t) & B_{12}(t) \\ B_{21}(t) & B_{22}(t) \\ \end{bmatrix} = \begin{bmatrix} E_{11}(t) & E_{12}(t) \\ E_{21}(t) & E_{22}(t) \\ \end{bmatrix} \\ = \begin{bmatrix} 0.02+0.01\text{cost} & 0.03+0.2\sin \sqrt3 \text{t} \\ 0.05+0.07\sin \sqrt5 \text{t} & 0.02+0.05\cos \sqrt3 \text{t}\\ \end{bmatrix}e_0, \end{align*}
    \begin{align*} \begin{bmatrix} L_{11}(t) \\ L_{12}(t) \\ L_{21}(t) \\ L_{22}(t) \\ \end{bmatrix} = \begin{bmatrix} (0.2|\cos|t) \; e_0+(0.2\text{cos}\sqrt3t) \; e_1 + 0.3\text{sin}(\sqrt{3} t) \; e_2 + (0.08\sin t+0.04 e^{-t}) \; e_{12}\\ (0.3\sin(\sqrt{2}t)+e^{-t}) \; e_0+(0.1\cos \sqrt{5} \text{t}+0.04e^{-t}) \; e_1 +0.2e^{-t} \; e_2 + 0.2\text{sin}t \; e_{12} \\ 0.02\sin t\; e_0 + 0.05\text{sin}\sqrt5t \; e_1 + (0.03\cos t+0.01e^{-t}) \; e_2 + 0.02\text{cos}\sqrt{3}t \; e_{12} \\ 0.08\text{sin}t \; e_0+ (0.04\text{cos}\sqrt5t +0.04e^{-t} ) \; e_1 +0.03\text{sin}\sqrt5t \; e_{12} \\ \end{bmatrix}, \end{align*}
    \begin{align*} \begin{bmatrix} \tau_{11}(t) & \tau_{12}(t) \\ \tau_{21}(t) & \tau_{22}(t) \\ \end{bmatrix} = \begin{bmatrix} \sigma_{11}(t) & \sigma_{12}(t) \\ \sigma_{21}(t) & \sigma_{22}(t) \\ \end{bmatrix} = \begin{bmatrix} 0.03+0.009\text{sin0.6t} & 0.05+0.05\text{cos1.2t}\\ 0.02-0.008\text{sin1.1t} & 0.09+0.04\text{sin1.7t} \\ \end{bmatrix}, \end{align*}
    \begin{align*} \begin{bmatrix} \delta_{11}(x) \\ \delta_{12}(x) \\ \delta_{21}(x) \\ \delta_{22}(x) \\ \end{bmatrix} = \begin{bmatrix} \frac{1}{15} \sin \sqrt{3}x^0 e_0+\frac{1}{20} \sin x^2 e_1 +\frac{1}{30}\tanh^2x^1 e_{12} \\ 0.04 \sin x^0 e_1+0.03\sin^2x^{12} e_2+0.05\sin^2x^2 e_{12}\\ 0.02 \tanh x^2 e_0+0.06 \sin x^1 e_1+0.015\sin^2x^{0} e_2 \\ \frac{1}{20} \sin x^1 e_0+\frac{1}{15} \tanh x^2 e_1+\frac{1}{25}\sin x^{12} e_2+\frac{1}{40}\sin x^0 e_{12} \\ \end{bmatrix}, \end{align*}

    and let h_1 = h_2 = 1, h_3 = 0, m = n = 2 . Then we get

    \begin{align*} & L_f = L_g = M_g = M_f = 0.04,\; \underline{a}^0 = 5,\; \bar{a}^c = 1,\; M_L = 1, \; M = u = 1,\; L_{11}^{\delta} = \frac{1}{15} ,\; L_{12}^{\delta} = 0.05,\; \\ & L_{21}^{\delta} = 0.06 ,\; L_{22}^{\delta} = \frac{1}{15},\; \tau_{11}^{+} = \sigma_{11}^+ = 0.039 ,\; \tau_{12}^{+} = \sigma_{12}^+ = 0.1,\; \tau_{21}^{+} = \sigma_{21}^+ = 0.028 ,\; \tau_{22}^{+} = \sigma_{22}^+\\ & = 0.13,\; {\dot{\tau}}_{11}^{+} = {\dot{\sigma}}_{11}^+ = 0.0054 ,\; {\dot{\tau}}_{12}^{+} = {\dot{\sigma}}_{12}^+ = 0.006,\; {\dot{\tau}}_{21}^{+} = {\dot{\sigma}}_{21}^+ = 0.0088 ,\; {\dot{\tau}}_{22}^{+} = {\dot{\sigma}}_{22}^+ = 0.068,\\ & \sum\limits_{C_{kl}\in N_1(1,1)}{C_{11}^{kl}}^+ = \sum\limits_{C_{kl}\in N_1(1,1)}{B_{11}^{kl}}^+ = \sum\limits_{C_{kl}\in N_1(1,2)}{C_{12}^{kl}}^+ = \sum\limits_{C_{kl}\in N_1(1,2)}{B_{12}^{kl}}^+ = \sum\limits_{C_{kl}\in N_1(2,1)}{C_{21}^{kl}}^+ \\ & = \sum\limits_{C_{kl}\in N_1(2,1)}{B_{21}^{kl}}^+ = \sum\limits_{C_{kl}\in N_1(2,2)}{C_{22}^{kl}}^+ \; = \; \sum\limits_{C_{kl}\in N_1(2,2)}{B_{22}^{kl}}^+ = 0.45, \; \sum\limits_{C_{kl}\in N_0(1,1)}{E_{11}^{kl}}^+ = 0.03\\ & \sum\limits_{C_{kl}\in N_0(1,2)}{E_{12}^{kl}}^+ = 0.23,\; \sum\limits_{C_{kl}\in N_0(2,1)}{E_{21}^{kl}}^+ = 0.12,\; \sum\limits_{C_{kl}\in N_0(2,2)}{E_{22}^{kl}}^+ = \; 0.07. \end{align*}

    Take \kappa = 1 , p = \frac{21}{10}, q = \frac{21}{11} , then we have

    \begin{align*} r^1 < 0.6812 < 1, \; \; \; \frac{q}{p\underline{a}^0}\rho^1 < 0.6259 < 1. \end{align*}

    And when p = 2 , we have

    \begin{align*} r^2 < 0.6408 < 1, \; \; \frac{\rho^2}{\underline{a}^0} < 0.6786 < 1. \end{align*}

    Thus, all assumptions in Theorems 3.2 and 3.3 are fulfilled. So we can conclude that the system (2.1) has a unique S^p -almost periodic solution in the distribution sense which is globally exponentially stable.

    The results are also verified by the numerical simulations in Figures 14.

    Figure 1.  Global exponential stability of states x_{11}^0, x_{11}^1, x_{11}^2 and x_{11}^{12} of (2.1).
    Figure 2.  Global exponential stability of states x_{12}^0,x_{12}^1,x_{12}^2 and x_{12}^{12} of (2.1).
    Figure 3.  Global exponential stability of states x_{21}^0,x_{21}^1,x_{21}^2 and x_{21}^{12} of (2.1).
    Figure 4.  Global exponential stability of states x_{22}^0, x_{22}^1, x_{22}^2 and x_{22}^{12} of (2.1).

    From these figures, we can observe that when the four primitive components of each solution of this system take different initial values, they eventually tend to stabilize. It can be seen that these solutions that meet the above conditions do exist and are exponentially stable.

    In this article, we establish the existence and global exponential stability of Stepanov almost periodic solutions in the distribution sense for a class of stochastic Clifford-valued SICNNs with mixed delays. Even when network (2.1) degenerates into a real-valued NN, the results of this paper are new. In fact, uncertainty, namely fuzziness, is also a problem that needs to be considered in real system modeling. However, we consider only the disturbance of random factors and do not consider the issue of fuzziness. In a NN, considering the effects of both random perturbations and fuzziness is our future direction of effort.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the National Natural Science Foundation of China under Grant No. 12261098.

    The authors declare that they have no conflicts of interest.



    [1] F. Black, M. Scholes, The pricing of option and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062
    [2] R. Mohammadi, Quintic B-spline collocation approach for solving generalized Black-Scholes equation governing option pricing, Comput. Math. Appl., 69 (2015), 777–797. https://doi.org/10.1016/j.camwa.2015.02.018 doi: 10.1016/j.camwa.2015.02.018
    [3] P. Roul, V. Goura, A new higher order compact finite difference method for generalised Black-Scholes partial differential equation: European call option, J. Comput. Appl. Math., 363 (2020), 464–484. https://doi.org/10.1016/j.cam.2019.06.015 doi: 10.1016/j.cam.2019.06.015
    [4] P. Roul, V. Goura, A sixth order numerical method and its convergence for generalized Black-Scholes PDE, J. Comput. Appl. Math., 377 (2020), 112881. https://doi.org/10.1016/j.cam.2020.112881 doi: 10.1016/j.cam.2020.112881
    [5] P. Roul, A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options, Appl. Numer. Math., 151 (2019), 472–493. https://doi.org/10.1016/j.apnum.2019.11.004 doi: 10.1016/j.apnum.2019.11.004
    [6] P. Roul, V. Goura, A compact finite difference scheme for fractional Black-Scholes option pricing model, Appl. Numer. Math., 166 (2021), 40–60. https://doi.org/10.1016/j.apnum.2021.03.017 doi: 10.1016/j.apnum.2021.03.017
    [7] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327
    [8] M. K. Lee, S. J. Yang, J. H. Kim, A closed form solution for vulnerable options with Heston's stochastic volatility, Chaos Soliton. Fract., 86 (2016), 23–27. https://doi.org/10.1016/j.chaos.2016.01.026 doi: 10.1016/j.chaos.2016.01.026
    [9] R. Mollapourasl, A. Fereshtian, M. Vanmaele, Radial basis functions with partition of unity method for American options with stochastic volatility, Comput. Econ., 53 (2019), 259–287. https://doi.org/10.1007/s10614-017-9739-8 doi: 10.1007/s10614-017-9739-8
    [10] X. J. He, S. P. Zhu, A closed-form pricing formula for European options under the heston model with stochastic interest rate, J. Comput. Appl. Math., 335 (2018), 323–333. https://doi.org/10.1016/j.cam.2017.12.011 doi: 10.1016/j.cam.2017.12.011
    [11] P. Christoffersen, K. Jacobs, K. Mimouni, Models for S & P 500 dynamics: Evidence from realized volatility, daily returns, and option prices, Rev. Financ. Stud., 23 (2010), 3141–3189. https://doi.org/10.1093/rfs/hhq032 doi: 10.1093/rfs/hhq032
    [12] K. Chourdakis, G. Dotsis, Maximum likelihood estimation of non-affine volatility processes, J. Empir. Financ., 18 (2011), 533–545. https://doi.org/10.1016/j.jempfin.2010.10.006 doi: 10.1016/j.jempfin.2010.10.006
    [13] S. Huang, X. Guo, A Fourier-cosine method for pricing discretely monitored barrier options under stochastic volatility and double exponential jump, Math. Probl. Eng., 2020 (2020). https://doi.org/10.1155/2020/4613536 doi: 10.1155/2020/4613536
    [14] C. Q. Ma, S. J. Yue, H. Wu, Y. Ma, Pricing vulnerable options with stochastic volatility and stochastic interest rate, Comput. Econ., 56 (2020), 391–429. https://doi.org/10.1007/s10614-019-09929-4 doi: 10.1007/s10614-019-09929-4
    [15] R. K. Chou, S. L. Chung, Y. J. Hsiao, Y. H. Wang, The impact of liquidity on option prices, J. Futures Markets, 31 (2011), 1116–1141. https://doi.org/10.1002/fut.20531 doi: 10.1002/fut.20531
    [16] P. Christoffersen, M. Fournier, K. Jacobs, The factor structure in equity options, Rev. Financ. Stud., 31 (2018), 595–637. https://doi.org/10.1093/rfs/hhx089 doi: 10.1093/rfs/hhx089
    [17] S. P. Feng, M. W. Hung, Y. H. Wang, The importance of stock liquidity on option pricing, Int. Rev. Econ. Financ., 43 (2016), 457–467. https://doi.org/10.1016/j.iref.2016.01.008 doi: 10.1016/j.iref.2016.01.008
    [18] Z. Li, Research on the option pricing with liquidity risk, Guang Zhou: South China University of Technology, 2018.
    [19] Z. Li, W. G. Zhang. Y. J. Liu, European quanto option pricing in presence of liquidity risk, N. Am. J. Econ. Financ., 45 (2018), 230–244. https://doi.org/10.1016/j.najef.2018.03.002 doi: 10.1016/j.najef.2018.03.002
    [20] D. X. Xu, B. Z. Yang, J. H. Kang, N. J. Huang, Variance and volatility swaps valuations with the stochastic liquidity risk, Phys. A, 566 (2021), 125679. https://doi.org/10.1016/j.physa.2020.125679 doi: 10.1016/j.physa.2020.125679
    [21] X. Wang, Pricing vulnerable options with stochastic liquidity risk, N. Am. J. Econ. Financ., 60 (2022), 101637. https://doi.org/10.1016/j.najef.2021.101637 doi: 10.1016/j.najef.2021.101637
    [22] F. Fang, C. W. Oosterlee, A novel pricing method for European options based on Fourier-cosine series expansions, Siam J. Sci. Comput., 31 (2008), 826–848. https://doi.org/10.1137/080718061 doi: 10.1137/080718061
    [23] F. Fang, C. W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions, Numer. Math., 114 (2009), 27–62. https://doi.org/10.1007/s00211-009-0252-4 doi: 10.1007/s00211-009-0252-4
    [24] F. Fang, C. W. Oosterlee, A Fourier-based valuation method for Bermudan and barrier options under Heston's model, Siam J. Financ. Math., 2 (2011), 439–463. https://doi.org/10.1137/100794158 doi: 10.1137/100794158
    [25] S. M. Zhang, J. H. Geng, Fourier-cosine method for pricing forward starting options with stochastic volatility and jumps, Commun. Stat-Theor. M., 46 (2017), 9995–10004. https://doi.org/10.1080/03610926.2016.1228960 doi: 10.1080/03610926.2016.1228960
    [26] W. G. Yu, Y. D. Yong, G. F. Guan, Y. J. Huang, W. Su, C. R. Cui, Valuing guaranteed minimum death benefits by cosine series expansion, Math.-Basel, 7 (2019), 835–850. https://doi.org/10.3390/math7090835 doi: 10.3390/math7090835
    [27] P. Carr, D. Madan, Option valuation using the fast Fourier transform, J. Comput. Financ., 2 (1999), 61–73.
    [28] C. X. Feng, J. Tan, Z. Y. Jiang, S. Chen, A generalized European option pricing model with risk management, Phys. A, 545 (2020), 123797. https://doi.org/10.1016/j.physa.2019.123797 doi: 10.1016/j.physa.2019.123797
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2191) PDF downloads(109) Cited by(0)

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog