Research article

An analytical approximation formula for European option prices under a liquidity-adjusted non-affine stochastic volatility model

  • Received: 13 January 2022 Revised: 08 March 2022 Accepted: 09 March 2022 Published: 25 March 2022
  • MSC : 91G20

  • In this paper, we investigate the pricing of European options under a liquidity-adjusted non-affine stochastic volatility model. An analytical European option pricing formula is successfully derived with the COS method, based on an approximation for the characteristic function of the underlying log-asset price. Numerical analysis reveals that our results are very efficient and of reasonable accuracy, and we also present some sensitivity analysis to demonstrate the effects of different parameters on option prices.

    Citation: Shoude Huang, Xin-Jiang He. An analytical approximation formula for European option prices under a liquidity-adjusted non-affine stochastic volatility model[J]. AIMS Mathematics, 2022, 7(6): 10364-10377. doi: 10.3934/math.2022577

    Related Papers:

  • In this paper, we investigate the pricing of European options under a liquidity-adjusted non-affine stochastic volatility model. An analytical European option pricing formula is successfully derived with the COS method, based on an approximation for the characteristic function of the underlying log-asset price. Numerical analysis reveals that our results are very efficient and of reasonable accuracy, and we also present some sensitivity analysis to demonstrate the effects of different parameters on option prices.



    加载中


    [1] F. Black, M. Scholes, The pricing of option and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062
    [2] R. Mohammadi, Quintic B-spline collocation approach for solving generalized Black-Scholes equation governing option pricing, Comput. Math. Appl., 69 (2015), 777–797. https://doi.org/10.1016/j.camwa.2015.02.018 doi: 10.1016/j.camwa.2015.02.018
    [3] P. Roul, V. Goura, A new higher order compact finite difference method for generalised Black-Scholes partial differential equation: European call option, J. Comput. Appl. Math., 363 (2020), 464–484. https://doi.org/10.1016/j.cam.2019.06.015 doi: 10.1016/j.cam.2019.06.015
    [4] P. Roul, V. Goura, A sixth order numerical method and its convergence for generalized Black-Scholes PDE, J. Comput. Appl. Math., 377 (2020), 112881. https://doi.org/10.1016/j.cam.2020.112881 doi: 10.1016/j.cam.2020.112881
    [5] P. Roul, A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options, Appl. Numer. Math., 151 (2019), 472–493. https://doi.org/10.1016/j.apnum.2019.11.004 doi: 10.1016/j.apnum.2019.11.004
    [6] P. Roul, V. Goura, A compact finite difference scheme for fractional Black-Scholes option pricing model, Appl. Numer. Math., 166 (2021), 40–60. https://doi.org/10.1016/j.apnum.2021.03.017 doi: 10.1016/j.apnum.2021.03.017
    [7] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327
    [8] M. K. Lee, S. J. Yang, J. H. Kim, A closed form solution for vulnerable options with Heston's stochastic volatility, Chaos Soliton. Fract., 86 (2016), 23–27. https://doi.org/10.1016/j.chaos.2016.01.026 doi: 10.1016/j.chaos.2016.01.026
    [9] R. Mollapourasl, A. Fereshtian, M. Vanmaele, Radial basis functions with partition of unity method for American options with stochastic volatility, Comput. Econ., 53 (2019), 259–287. https://doi.org/10.1007/s10614-017-9739-8 doi: 10.1007/s10614-017-9739-8
    [10] X. J. He, S. P. Zhu, A closed-form pricing formula for European options under the heston model with stochastic interest rate, J. Comput. Appl. Math., 335 (2018), 323–333. https://doi.org/10.1016/j.cam.2017.12.011 doi: 10.1016/j.cam.2017.12.011
    [11] P. Christoffersen, K. Jacobs, K. Mimouni, Models for S & P 500 dynamics: Evidence from realized volatility, daily returns, and option prices, Rev. Financ. Stud., 23 (2010), 3141–3189. https://doi.org/10.1093/rfs/hhq032 doi: 10.1093/rfs/hhq032
    [12] K. Chourdakis, G. Dotsis, Maximum likelihood estimation of non-affine volatility processes, J. Empir. Financ., 18 (2011), 533–545. https://doi.org/10.1016/j.jempfin.2010.10.006 doi: 10.1016/j.jempfin.2010.10.006
    [13] S. Huang, X. Guo, A Fourier-cosine method for pricing discretely monitored barrier options under stochastic volatility and double exponential jump, Math. Probl. Eng., 2020 (2020). https://doi.org/10.1155/2020/4613536 doi: 10.1155/2020/4613536
    [14] C. Q. Ma, S. J. Yue, H. Wu, Y. Ma, Pricing vulnerable options with stochastic volatility and stochastic interest rate, Comput. Econ., 56 (2020), 391–429. https://doi.org/10.1007/s10614-019-09929-4 doi: 10.1007/s10614-019-09929-4
    [15] R. K. Chou, S. L. Chung, Y. J. Hsiao, Y. H. Wang, The impact of liquidity on option prices, J. Futures Markets, 31 (2011), 1116–1141. https://doi.org/10.1002/fut.20531 doi: 10.1002/fut.20531
    [16] P. Christoffersen, M. Fournier, K. Jacobs, The factor structure in equity options, Rev. Financ. Stud., 31 (2018), 595–637. https://doi.org/10.1093/rfs/hhx089 doi: 10.1093/rfs/hhx089
    [17] S. P. Feng, M. W. Hung, Y. H. Wang, The importance of stock liquidity on option pricing, Int. Rev. Econ. Financ., 43 (2016), 457–467. https://doi.org/10.1016/j.iref.2016.01.008 doi: 10.1016/j.iref.2016.01.008
    [18] Z. Li, Research on the option pricing with liquidity risk, Guang Zhou: South China University of Technology, 2018.
    [19] Z. Li, W. G. Zhang. Y. J. Liu, European quanto option pricing in presence of liquidity risk, N. Am. J. Econ. Financ., 45 (2018), 230–244. https://doi.org/10.1016/j.najef.2018.03.002 doi: 10.1016/j.najef.2018.03.002
    [20] D. X. Xu, B. Z. Yang, J. H. Kang, N. J. Huang, Variance and volatility swaps valuations with the stochastic liquidity risk, Phys. A, 566 (2021), 125679. https://doi.org/10.1016/j.physa.2020.125679 doi: 10.1016/j.physa.2020.125679
    [21] X. Wang, Pricing vulnerable options with stochastic liquidity risk, N. Am. J. Econ. Financ., 60 (2022), 101637. https://doi.org/10.1016/j.najef.2021.101637 doi: 10.1016/j.najef.2021.101637
    [22] F. Fang, C. W. Oosterlee, A novel pricing method for European options based on Fourier-cosine series expansions, Siam J. Sci. Comput., 31 (2008), 826–848. https://doi.org/10.1137/080718061 doi: 10.1137/080718061
    [23] F. Fang, C. W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions, Numer. Math., 114 (2009), 27–62. https://doi.org/10.1007/s00211-009-0252-4 doi: 10.1007/s00211-009-0252-4
    [24] F. Fang, C. W. Oosterlee, A Fourier-based valuation method for Bermudan and barrier options under Heston's model, Siam J. Financ. Math., 2 (2011), 439–463. https://doi.org/10.1137/100794158 doi: 10.1137/100794158
    [25] S. M. Zhang, J. H. Geng, Fourier-cosine method for pricing forward starting options with stochastic volatility and jumps, Commun. Stat-Theor. M., 46 (2017), 9995–10004. https://doi.org/10.1080/03610926.2016.1228960 doi: 10.1080/03610926.2016.1228960
    [26] W. G. Yu, Y. D. Yong, G. F. Guan, Y. J. Huang, W. Su, C. R. Cui, Valuing guaranteed minimum death benefits by cosine series expansion, Math.-Basel, 7 (2019), 835–850. https://doi.org/10.3390/math7090835 doi: 10.3390/math7090835
    [27] P. Carr, D. Madan, Option valuation using the fast Fourier transform, J. Comput. Financ., 2 (1999), 61–73.
    [28] C. X. Feng, J. Tan, Z. Y. Jiang, S. Chen, A generalized European option pricing model with risk management, Phys. A, 545 (2020), 123797. https://doi.org/10.1016/j.physa.2019.123797 doi: 10.1016/j.physa.2019.123797
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1856) PDF downloads(108) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog