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1. Introduction

The Black-Scholes (BS) model [1] has been widely adopted in the pricing of financial derivatives
because of its analytical tractability. However, it is generally known that the assumptions of BS
model are not appropriate with empirical results. Therefore, many researchers devote much effort to
remedying these shortcomings. A great deal of scholars proposed to use the generalized Black-Scholes
model to describe the dynamic process of the underlying asset and solved the generalised Black-
Scholes model numerically. For example, Mohammadi [1] developed a Quintic B-spline collocation
approach for solving generalized Black-Scholes partial differential equation for European option
prices. Roul [3] presented a high-order compact finite difference method based on a uniform mesh to
obtain a highly accurate result for the generalized Black-Scholes equation. Roul [4] constructed a new
computational approach for solving the generalized Black-Scholes equation numerically by combining
Crank-Nicolson scheme and sextic B-spline collocation method. Another important improvement of
the BS model is to make it a fractional one since it can describe the long-range dependence displayed by
financial data. It should be noted that the analytical solution to option prices is generally not available
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under the framework of the fractional BS model, and numerical algorithms have to be used. Roul [5]
designed a high-order numerical approach for solving the fractional BS equation. Roul and Goura [6]
presented a numerical technique for solving the fractional BS equation describing European options.

Another main category that is very popular in modifying the BS model is to include stochastic
volatility. A breakthrough was made by Heston [7] , who proposed a model that not only possesses
a range of basic properties including mean reversion and nonnegativity, but also relieve the volatility
smile or smirk. Due to the popularity of the Heston model, a number of authors have worked under
this framework. For example, Lee et al. [8] obtained an analytic formula for vulnerable options, while
Mollapourasl et al. [9] used a radial basis function method to price American put options. He and
Zhu [10] went further to introduce a stochastic interest rate into the Heston model and presented a
closed-form formula for European options. In particular, the non-affine stochastic volatility model has
attracted the extensive attention as an improvement of the Heston model. Christoffersen et al. [11]
and Chourdakis [12] further confirmed that the non-affine volatility model represents the time series
features of real option price data, which is much better than Heston model. This has prompted a number
of authors to consider the non-affine volatility model. For example, Huang and Guo [13] investigated
the valuation of discrete barrier options with non-affine volatility and double exponential jump, and Ma
et al. [14] studied the pricing problem of vulnerable options with non-affine volatility and stochastic
interest rate.

On the other hand, it needs to be pointed out that the market is assumed to be completely liquid in the
above literature, whereas a lot of empirical evidence has already suggested that the market is actually
not completely liquid [15, 16]. Therefore, the concept of the market liquidity starts to appear in the
option pricing theory. In particular, Feng et al. [17] derived an analytical solution to European option
prices by incorporating a liquidity discounting factor into the option pricing model, based on which
Li and Zhang [18] verified the influence of the market liquidity factor using Shanghai 50ETF options.
Moreover, Li and Zhang [19] studied the pricing of European quanto options when the underlying
foreign asset is in an imperfectly liquid market, while Xu et al. [20] focused on the variance and
volatility swap pricing in the framework of a liquidity-adjusted underlying assets model. The pricing
of vulnerable options is also considered by Wang [21] when the liquidity risk is assumed to be captured
by a stochastic process. These clearly demonstrate that the effect of liquidity risk on option pricing is
not negligible.

Motivated by the above research, we consider the pricing of European options under a liquidity-
adjusted non-affine volatility model. The advantage of this model is that it can not only describe the
nonlinear characteristics of financial data, but also take the liquidity risk into account. Although it
is difficult to derive a closed-form solution for the characteristic function of the underlying log-asset
price, we present an analytical approximation to the characteristic function using the first-order Taylor
expansion method. Based on this, an approximate price for a European option can be obtained by the
COS method [22], which is recently very popular in the area of option pricing [23–26].

The rest of this article is arranged as follows. A liquidity-adjusted non-affine volatility model is
briefly introduced in the Section 2. In Section 3, an approximate formula for the characteristic function
of the underlying log-price is derived, based on which an analytical formula for European option prices
is presented with the COS method. Some numerical examples and sensitivity analysis are provided to
interpret our results in Section 4, after which we conclude in the last section.
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2. Model specification

Let {Ω,Ft,Q} denote a given complete probability space, and Q is a risk-neutral probability
measure. Considering that the non-affine model can explain the nonlinear characteristics of option data
in real market, and liquidity-adjusted models perform better than those without considering liquidity
risk, we construct a liquidity-adjusted non-affine volatility model for the valuation of European options.
Specifically, the price process S t and the process of the volatility vt under the risk-neutral world are
modeled as follows:

dS t

S t
= rdt +

√
β2l2 +

(
1 − ρ2) vtdW1t + ρ

√
vtdW2t, (2.1)

dvt = k(θ − vt)dt + σvtdW2t. (2.2)

where dW1tdW2t = ρdt, r is the risk-free interest rate, l is the level of market liquidity, β is the sensitivity
of the stock to the level of market liquidity, k donates the mean-reversion speed, θ is the long-term mean
of the volatility, and σ is the instantaneous volatility of the volatility.

With xt = ln(S t/K), Eqs (2.1) and (2.2) can be respectively transformed into

dxt =

(
r −

1
2
β2l2 −

1
2

vt

)
dt +

√
β2l2 +

(
1 − ρ2) vtdW1t

+ ρ
√

vtdW2t, (2.3)
dvt =k(θ − vt)dt + σvtdW2t. (2.4)

3. An analytical approximation formula

In this section, we approximate the characteristic function of the underlying log-price with the first-
order Taylor expansion and based on this, European options can be analytically valuated using the COS
method.

3.1. Derivation of the characteristic function

The characteristic function of xT is defined as

Φ(x, v, τ; u) = EQ
[
eiuxT |xt = x, vt = v

]
,

where T is the maturity time of the option, i is an imaginary unit, and τ = T − t. The solution to this
characteristic function is presented in the following theorem.
Theorem 1. If the price process and its volatility process follow the dynamics specified in Eqs (2.1)
and (2.2), then the characteristic function of xT can be expressed by

Φ(x, v, τ; u) = exp (iux + B(u, τ)v + A(u, τ)) ,
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where

B (u, τ) = α0
1 − e−ατ

−β2 + β1e−ατ
,

A (u, τ) =

[
(r −

1
2
β2l2)iu +

1
2
β2l2(iu)2

]
(T − t) −

α3

α2

[
β1τ + ln

(
−β2 + β1e−ατ

α

)]
−

1
2
θB +

1
2
θ

(
−

1
2

(iu + u2)
)
τ,

and

α2 = θσ2, α0 = −
1
2

(iu + u2), α1 =
3
2
θ

1
2σρiu − k,

β1 =
α1 + α

2
, β2 =

α1 − α

2
, α =

√
α2

1 − 4α0α2, α3 =
1
2

kθ +
1
4
ρσiuθ

3
2 .

Proof. The Feynman-Kac theorem indicates that Φ(x, v, τ; u) satisfies the following PDE (partial
differential equation)

∂Φ

∂t
+
∂Φ

∂x

(
r −

1
2
β2l2 −

1
2

v
)

+ k(θ − v)
∂Φ

∂v
+

1
2

(
β2l2 + v

) ∂2Φ

∂x2

+ ρσv
3
2
∂2Φ

∂x∂v
+

1
2
σ2v2∂

2Φ

∂v2 = 0, (3.1)

with the boundary condition given by

Φ (x, v, 0; u) = eiuxT .

Given that the volatility in the proposed model is of mean reversion, it is reasonable to consider the
expansion of v2 and v

3
2 at the long-term mean θ using a first-order Taylor expansion. This gives

v2 ≈ 2θv − θ2, (3.2)

v
3
2 ≈

3
2
θ

1
2 v −

1
2
θ

3
2 . (3.3)

Substituting Eqs (3.2) and (3.3) into the PDE (3.1) yields

∂Φ

∂t
+
∂Φ

∂x

(
r −

1
2
β2l2 −

1
2

v
)

+ k(θ − v)
∂Φ

∂v
+

1
2

(
β2l2 + v

) ∂2Φ

∂x2

+ ρσ(
3
2
θ

1
2 v −

1
2
θ

3
2 )
∂2Φ

∂x∂v
+

1
2
σ2(2θv − θ2)

∂2Φ

∂v2 = 0. (3.4)

If we assume that the solution to this PDE can be written in the form of

Φ(x, v, τ; u) = exp(iux + A(u, τ) + B(u, τ)v), (3.5)

with the boundary conditions A(u, 0) = B(u, 0) = 0, and substituting Eq (3.5) into Eq (3.4), we obtain

− (
∂B
∂τ

v +
∂A
∂τ

) +

(
r −

1
2
β2l2 −

1
2

v
)

iu + k(θ − v)B +
1
2

(
β2l2 + v

)
(iu)2

+ ρσ(
3
2
θ

1
2 v −

1
2
θ

3
2 )iuB +

1
2
σ2(2θv − θ2)B2 = 0.
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As a result, the following two ordinary differential equations can be derived

∂B
∂τ

=θσ2B2 + (
3
2
θ

1
2σρiu − k)B −

1
2

(iu + u2), (3.6)

∂A
∂τ

=(r −
1
2
β2l2)iu +

1
2
β2l2(iu)2 + kθB −

1
2
ρσθ

3
2 iuB

−
1
2
σ2θ2B2. (3.7)

Since Eq (3.6) is a Riccati equation, it can be solved with some algebraic computation so that B can be
formulated as

B (u, τ) = α0
1 − e−ατ

−β2 + β1e−ατ
,

where

α2 = θσ2, τ = T − t, α0 = −
1
2

(iu + u2), β1 =
α1 + α

2
,

β2 =
α1 − α

2
, α =

√
α2

1 − 4α0α2, α1 =
3
2
θ

1
2σρiu − k.

Multiplying both sides of Eq (3.6) by θ/2, and substituting the result into Eq (3.7), the following
expression can be derived:

∂A
∂τ

= (r −
1
2
β2l2)iu +

1
2
β2l2(iu)2 +

(
1
2

kθ +
1
4
ρσiuθ

3
2

)
B

−
1
2
θ
∂B
∂τ

+
1
2
θ

(
−

1
2

(iu + u2)
)
,

which further leads to

A =

[
(r −

1
2
β2l2)iu +

1
2
β2l2(iu)2

]
τ −

α3

α2

[
β1τ + ln

(
−β2 + β1e−ατ

α

)]
−

1
2
θB +

1
2
θ

(
−

1
2

(iu + u2)
)
τ,

where
α3 =

1
2
θk +

1
4
σρiuθ

3
2 .

This completes the proof.

3.2. European option pricing

In this subsection, an analytical approximate price formula for the European options are obtained
by the COS method, the results of which are summarized in the following theorem.
Theorem 2. Under the model dynamics (2.1) and (2.2), the pricing formula of European call option is
expressed by:

P (x, v, τ) = e−rτ
N−1∑′

k=0

Re
{

Φ

(
kπ

b − a

)
eikπ x−a

b−a

}
Vcall

k ,
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where

Vcall
k =

2
b − a

K (χk(0, b) − ψk(0, b)) ,

and the χ(x1, x2), ψ(x1, x2) is defined in Eqs (3.11) and (3.12).
Proof. It is well known that the price of a European option can be expressed as follows

P (x, v, τ) = e−rτ
∫ ∞

−∞

v(y,T ) f (y|x)dy, (3.8)

where x = ln (S 0/K), y = ln (S T/K), and f (y|x) is the density function of y given x. The payoff function
of European options at expiry P(y,T ) can be expressed as

P(y,T ) = g(y) = [αK (ey − 1)]+ , α =

{
1, call option,
−1, put option.

Working out the price of a European option in (3.8) typically requires the information of the density
function f (y|x), which is unknown and difficult to derive. Fortunately, there exists an approximate
formula if the infinite domain of y is truncated into [a, b]

f (y|x) ≈
2

b − a

N−1∑′

k=0

Re
{

Φ

(
kπ

b − a

)
eikπ x−a

b−a

}
cos

(
kπ

y − a
b − a

)
, (3.9)

where
∑′ implies the summation whose first term is divided by two, Re{·} denotes taking the real part

of a complex number, and Φ(u) is the conditional characteristic function of f (y|x).
Replacing f (y|x) in (3.8) with its approximation (3.9), and interchanging summation and

integration, we can derive the the price of a European option:

P (x, v, τ) = e−rτ
N−1∑′

k=0

Re
{

Φ

(
kπ

b − a

)
eikπ x−a

b−a

}
Vk, (3.10)

where

Vk =
2

b − a

∫ b

a
v(y,T ) cos

(
kπ

y − a
b − a

)
dy.

Clearly, the only unknown term in the pricing formula is the coefficient Vk, deriving which yields a
completely analytical solution. In particular, for a European call option, we have

χk (x1, x2) =

∫ x2

x1

ex cos
(
kπ

x − a
b − a

)
dx

=
1

1 +
(

kπ
b−a

)2

[
cos

(
kπ

x2 − a
b − a

)
ex2 − cos

(
kπ

x1 − a
b − a

)
ex1

+
kπ

b − a
sin

(
kπ

x2 − a
b − a

)
ex2 +

kπ
b − a

sin
(
kπ

x1 − a
b − a

)
ex1

]
,

(3.11)
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and

ψk (x1, x2) =

∫ x2

x1

cos
(
kπ

x − a
b − a

)
dx

=


b−a
kπ

[
sin

(
kπ x2−a

b−a

)
− sin

(
kπ x1−a

b−a

)]
, k , 0,

x2 − x1, k = 0.

(3.12)

After some algebraic calculation, we can arrive at

Vcall
k =

2
b − a

∫ b

0
K (ey − 1) cos

(
kπ

y − a
b − a

)
dy

=
2

b − a
K (χk(0, b) − ψk(0, b)) ,

where ψk and χk are given by Eqs (3.11) and (3.12), respectively. This completes the proof.
By comparing the properties of European call and put options under the same model setup, we can

find that the derivation of European put options is almost similar to the proof of Theorem 2, except for
the calculation of the coefficient V put (a1, b1). Therefore, without going to details, the corresponding
European put option pricing formula is presented in the following corollary.
Corollary 1. Under the model dynamics (2.1) and (2.2), the pricing formula of European put option
can be presented as:

P (x, v, τ) = e−rτ
N−1∑′

k=0

Re
{

Φ

(
kπ

b − a

)
eikπ x−a

b−a

}
V put

k ,

where

V put
k =

2
b − a

K (−χk(a, 0) + ψk(a, 0)) .

4. Numerical analysis

Once an approximation formula is successfully derived, it is important to check its accuracy.
Moreover, it is also interesting to investigate the influence of liquidity on option prices. Both of these
will be addressed in this section.

4.1. Accuracy tests

In this subsection, numerical experiments are used to verify the pricing performance of the proposed
method against the Monte Carlo simulation and the FFT method [14, 27, 28]. Without loss of the
generality, we will only take European call options as an example.

Following Fang and Oosterlee (2008), [a, b] can be calculated as

[a, b] =

[
c1 + a0 − L

√
c2 +

√
c4, c1 + a0 + L

√
c2 +

√
c4

]
AIMS Mathematics Volume 7, Issue 6, 10364–10377.
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where a0 = ln S 0, L = 10, and cn is the n-cumulant of ln S T , whose computing formula is:

cn =
1
in

∂n (ln Φ(u))
∂un

∣∣∣∣∣
u=0

.

We set the number of simulation paths 100, 000, the number of time steps is chosen to be 252,
N = 210, and the damping factor is 2.55. The values of the remaining parameters* for numerical
examples are displayed in Table 1. All of the numerical examples were implemented in Matlab R2020a
on a PC with an Intel Core i5 CPU.

Table 2 presents our approximate prices, FFT and Monte Carlo simulation results of European call
options with different strike prices and expiry times. The relative error (R.E.COS ) between the COS
method and Monte Carlo simulation is calculated as:

R.E.COS =
|Pcos − Pmc|

Pmc
× 100%,

where Pcos and Pmc denote the prices of European options computed from Theorem 2 and Monte Carlo
simulation. Similarly, the relative error (R.E.FFT ) between the FFT and Monte Carlo simulation is
defined as:

R.E.FFT =
|PFFT − Pmc|

Pmc
× 100%,

where PFFT denotes the price of European options computed from the FFT method. It is not difficult
to find that R.E.COS and R.E.FFT are both less than 2%, while R.E.COS is no greater than (R.E.FFT in all
cases. In addition, Table 2 also indicates that the CPU time to calculate the prices of European options
using the different methods. We can observe that the Monte Carlo simulation generally takes about
three times as long as our approach, and the FFT method is also slower than our approach. All of these
clearly reveal that our approach is quite accurate and efficient.

Table 1. Parameter values for the numerical experiments.

Parameter value Parameter value
r 0.05 k 1.15
θ 0.25 σ 0.76
ρ -0.81 β 0.15
l 0.5 S 0 10

v0 0.332

*These parameter values are selected for test purposes, the magnitude of which is consistent with a number of different literatures
[10, 17, 20].
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Table 2. A comparative analysis of European call option prices.

T K COS MC FFT R.E.COS R.E.FFT

9 1.3902 1.3992 1.3848 0.64% 1.03%

9.5 1.0597 1.0656 1.0591 0.55% 0.61%

1/4 10 0.7821 0.7839 0.7783 0.23% 0.71%

10.5 0.5584 0.5555 0.5452 0.52% 1.85%

11 0.3854 0.3785 0.3860 1.82% 1.98%

9 1.7514 1.7614 1.7489 0.57% 0.71%

9.5 1.4507 1.4573 1.4504 0.46% 0.47%

1/2 10 1.1862 1.1885 1.1838 0.19% 0.40%

10.5 0.9576 0.9552 0.9479 0.25% 0.76%

11 0.7633 0.7563 0.7649 0.93% 1.14%

9 2.3443 2.3557 2.3419 0.48% 0.56%

9.5 2.0727 2.0811 2.0728 0.40% 0.40%

1 10 1.8250 1.8296 1.8249 0.25% 0.26%

10.5 1.6003 1.6009 1.5939 0.04% 0.44%

11 1.3979 1.3944 1.3987 0.25% 0.31%

9 5.0447 5.0690 5.0430 0.48% 0.51%

9.5 4.8697 4.8925 4.8614 0.47% 0.64%

5 10 4.7021 4.7232 4.7013 0.45% 0.46%

10.5 4.5416 4.5607 4.5817 0.42% 0.46%

11 4.3879 4.4050 4.3863 0.39% 0.42%

9 6.7740 6.8029 6.7727 0.42% 0.44%

9.5 6.6587 6.6864 6.6515 0.41% 0.52%

10 10 6.5473 6.5736 6.5454 0.40% 0.43%

10.5 6.4394 6.4645 6.5081 0.39% 0.67%

11 6.3349 6.3588 6.3335 0.38% 0.40%

Time(sec.) 0.511 1.680 1.135

The relative error between the COS method and Monte Carlo simulation with respect to the initial
price of the underlying asset S 0 and the maturity time T − t is also shown in Figure 1 using a surface
plot. One can see clearly that the relative error associated with in-the-money and at-the-money is
larger than that of out-of-the money options. Moreover, the shorter the time, the larger the error. This
encourages us to find more effective method to price short-tenor options in future research.
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Figure 1. The price error of European call options under different initial underlying prices
S 0 and the maturity time T − t.

4.2. Sensitivity analysis

In this subsection, we will analyze the impact of market liquidity and stochastic volatility on
European call option prices; such an impact will be studied through the influence of the following
parameters: (1) the time varying level of market liquidity lt and the maturity time T−t, (2) the sensitivity
of market liquidity β and the maturity time T − t, (3) long-term mean θ and risk-free interest rate r, (4)
the initial price of the underlying asset S 0 and the maturity time T − t.

Figure 2 shows the price of European call options with respect to the market liquidity level lt at
different expiry times. Clearly, European call option price is an increasing function of the the maturity
time T − t. In addition, a higher market liquidity level lt leads to higher European call option price.
This is mainly because a large value of lt imply a greater level of illiquidity, which contributes to a
higher underlying price and thus a larger option premium.

What are shown in Figure 3 are European call option prices with respect to the liquidity sensitivity
factor β and the maturity time T − t, and the sensitivity parameter is shown to have a positive impact
on option prices. This can be understood by the fact that for the same level of market liquidity, the
underlying price will be affected more heavily by the market liquidity if it is more sensitive to the
market liquidity, which in turn contributes to higher option prices.

Depicted in Figure 4 is how European call option price changes with respect to the long-term
average of the volatility θ and risk-free interest rate r. Clearly, European call option prices are an
increasing function of the risk-free interest rate, since raising the interest rate is equivalent to increasing
the level of the underlying asset price. One can clearly observe that the price of European call options
increases with the long-term average of volatility θ, which verifies that the price of the European call
option is an increasing function of volatility. This is actually reasonable since a higher level of the
long-term average of volatility tends to increase the long-term volatility level, which means that the
uncertainty of the underlying asset prices increases, leading to a larger intrinsic value of the option and
a higher option price.
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Figure 2. The price of a European call option under different market liquidity level lt and the
maturity time T − t.

Figure 3. The price of a European call option under different sensitivity to market liquidity
β and the maturity time T − t.

Figure 4. The price of a European call option under different sensitivity to market liquidity
β and the maturity time T − t.
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Figure 5 plots European option prices against the underlying asset S 0 and the maturity time T − t,
and as we can observe, a higher level of the underlying asset price tends to increase European call
option prices. The reason behind this is that a greater underlying asset price will raise the intrinsic
value of the option and results in higher option prices.

Figure 5. The price of European call option under different initial price of the underlying
asset S 0 and the maturity time T − t.

5. Conclusions

This paper studies the pricing problem of European options under the non-affine volatility model
in an illiquid market, so that the effect of market liquidity on option prices can be captured. Upon
incorporating the market liquidity into the underlying dynamics, we present an approximation to the
characteristic function of the underlying log-price, based on which an analytical pricing formula for
European options is successfully derived using the COS method. Finally, the sensitivity analysis are
used to demonstrate the validity of the model setup.
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