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1. Introduction

In the last few decades, an increasing deal of attention has been devoted to the study of fractional
Sobolev spaces and the corresponding nonlocal equations because they can be corroborated as a
model for many physical phenomena, which arose in the research of optimization, fractional quantum
mechanics, the thin obstacle problem, anomalous diffusion in plasma, frames propagation, geophysical
fluid dynamics, American options in finances, image process, game theory and Lévy processes;
see [9, 26, 38, 52, 58].

In this paper, we are concerned with a Kirchhoff type problem driven by the nonlocal fractional
p-Laplacian as follows: M

(
[v]s,p

)
Lv(y) + |v|p−2v

|y|sp = λh(y, v) in Ω,

v = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded open set with Lipschitz boundary ∂Ω, [v]s,p :=
´
RN

´
RN |v(y) −

v(z)|pK(y, z) dy dz, M ∈ C(R+) is a Kirchhoff type function, s ∈ (0, 1), p ∈ (1,+∞), sp < N
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and h : RN × R → R satisfies a Carathéodory condition satisfying the subcritical and p-superlinear
nonlinearity. Here L is non-local operator defined pointwise as

Lv(y) = 2
ˆ
RN
|v(y) − v(z)|p−2(v(y) − v(z))K(y, z)dz for all y ∈ RN ,

where K : RN × RN → (0,+∞) is a kernel function with the following properties

(L1) mK ∈ L1(RN × RN), where m(y, z) = min{|y − z|p, 1};

(L2) there exists a positive constant γ0 such thatK(y, z) ≥ γ0|y− z|−(N+sp) for almost all (y, z) ∈ RN ×RN

and y , z;

(L3) K(y, z) = K(z, y) for all (y, z) ∈ RN × RN .

WhenK(y, z) = |y−z|−(N+sp), the operator L becomes the fractional p-Laplacian operator (−∆)s
p defined

as

(−∆)s
p v(y) = 2 lim

ε↘0

ˆ
RN\Bε(y)

|v(y) − v(z)|p−2 (v(y) − v(z))
|y − z|N+sp dz, y ∈ RN ,

where Bε(y) := {y ∈ RN : |y − z| ≤ ε}.
Let us assume that the Kirchhoff function M : [0,∞)→ R+ fulfills the conditions as follows:

(K1) M ∈ C(R+) fulfils infζ∈R+ M(ζ) ≥ m0 > 0, where m0 is a constant;

(K2) there exist a constant ϑ ≥ 1 and a nonnegative constant K such that ϑM(ζ) = ϑ
´ ζ

0 M(τ)dτ ≥
M(ζ)ζ and

M̂(tζ) ≤ M̂(ζ) + K

for ζ ≥ 0 and t ∈ [0, 1], where M̂(ζ) = ϑM(ζ) − M(ζ)ζ.

In order to study an extension of the classic D’Alembert’s wave equation by taking the changes in
the length of the strings during the vibrations into account, Kirchhoff [37] initially proposed a stationary
version of the equation:

ρ
∂2v
∂ζ2 −

(ρ0

h
+

E
2L

ˆ L

0

∣∣∣∣∣∂v
∂y

∣∣∣∣∣dy
)∂2v
∂y2 = 0,

where ρ, ρ0, h, L and E are constants. The variational problems of Kirchhoff type have attractively
interested diverse applications in physics and have been extensively investigated by many researchers
in recent years; see [3, 5, 13, 15, 27, 30, 41, 43, 44, 48, 49, 54, 63, 67, 69]. Fiscella-Valdinoci [22] first
gave a detailed discussion about the physical meaning underlying the fractional Kirchhoff model.
In particular, by taking into account the mountain pass theorem and a truncation argument, they
established the existence of nontrivial solutions to a nonlocal elliptic problem with the nondegenerate
Kirchhoff terms that is an increasing and continuous function, see also [53]. This increasing condition
gets rid of the case that is not monotone. In 2015, Pucci, Xiang and Zhang [54] established the existence
of multiple solutions to a class of Schrödinger-Kirchhoff type problems involving the fractional p-
Laplacian when the continuous Kirchhoff function M with (K1) satisfies the following condition:

(K3) For 0 < s < 1, there exists ϑ ∈ [1, N
N−sp ) such that ϑM(ζ) ≥ M(ζ)ζ for any ζ ≥ 0.
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Very recently, the existence result of a positive ground state solution for elliptic problem of Kirchhoff

type with critical exponential growth has been investigated [28] when the Kirchhoff function holds the
condition:

(K4) There exists ϑ > 1 such that M(ζ)
ζϑ−1 is nonincreasing for ζ > 0.

From this condition and a simple calculation, it is immediate that M̂(ζ) is nondecreasing for all ζ ≥ 0
and thus we get

(K5) there exists ϑ > 1 such that ϑM(ζ) ≥ M(ζ)ζ for any ζ ≥ 0.

Hence we know that the condition (K3) is weaker than (K5). A typical model for M satisfying (K1)
and (K3) (or (K5)) is given by M(ζ) = 1 + aζϑ with a ≥ 0 for all ζ ≥ 0. Hence the conditions
(K4) and (K5) include the above classical example as well as the case that is not monotone. In this
light, many researchers in recent years have tended to focus on the nonlinear elliptic equations with
Kirchhoff coefficient satisfying (K3) (or (K5)); see [4, 15, 21, 27, 54, 64–66]. However, the present
paper is devoted to deriving the multiplicity result of solutions to our problem on a class of a nonlocal
Kirchhoff coefficient M, which differs slightly from the above related works. For example, let us
consider

M(ζ) =

1 +
ζr√

1 + ζ2r

 ζr−1 + (1 + ζ)−α

with its primitive function

M(ζ) =
1
r

(
ζr +

√
1 + ζ2r − 1

)
+

1
1 − α

(1 + ζ)1−α −
1

1 − α

for all ζ ≥ 0. Then it is clear that

M̂(ζ) =

(
ϑ

r
− 1

)
ζr +

(
ϑ

r
−

ζ2r

1 + ζ2r

) √
1 + ζ2r +

(
ϑ

1 − α
(1 + ζ) − ζ

)
(1 + ζ)−α −

ϑ

1 − α
−
ϑ

r
.

If r = 2 and N = 4 in (K3), then we cannot find a constant ϑ ∈ [1, 2) satisfying M̂(ζ) ≥ 0 for any
ζ ≥ 0 by being limζ→∞ M̂(ζ) = −∞. Also, if we set r = ϑ = 1.5 and 1 < α ≤ r, then we have M̂(ζ) is
not nondecreasing and M̂(ζ) ≥ 0 for all ζ ≥ 0 from a direct computation. Hence this example does not
satisfy the condition (K4). This implies that

M̂(ζ) − M̂(tζ) ≥ 0

does not hold. However we can choose a positive constant K satisfying our condition (K2).
The main reason for considering the Kirchhoff coefficient satisfying (K2) is closely related to

condition (B2) among the following conditions of the nonlinear term h:

(B1) h : Ω × R → R satisfies the Carathéodory condition and there exist a ρ2 > 0 and a function
0 ≤ ρ1 ∈ L∞(Ω) such that

|h(y, ζ)| ≤ ρ1(y) + ρ2 |ζ |
`−1

for all (y, ζ) ∈ Ω × R where p < ` < p∗s;
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(B2) there exists a constant C > 0 such that

H(y, ζ) ≤ H(y, t) + C

for any y ∈ Ω and 0 < ζ < t or t < ζ < 0, where H(y, ζ) =
´ ζ

0 h(y, τ) dτ and H(y, ζ) =

h(y, ζ)ζ − pϑH(y, ζ);

(B3) there exist C > 0, 1 < m < p and a positive function ν ∈ L∞(Ω) such that

lim inf
|ζ |→0

h(y, ζ)
ν(y) |ζ |m−2 ζ

≥ C

uniformly for almost all y ∈ Ω.

Let us consider the function

h(y, ζ) = ρ(y)
(
ν(y) |ζ |m−2 ζ + |ζ |`−2 ζ ln (1 + |ζ |) +

|ζ |`−1 ζ

1 + |ζ |

)
with its primitive function

H(y, ζ) = ρ(y)
(
ν(y)
m
|ζ |m +

1
`
|ζ |` ln (1 + |ζ |)

)
for all ζ ∈ R, where p < ` and ρ ∈ C(RN ,R) with 0 < infy∈Ω ρ(y) ≤ supy∈Ω ρ(y) < ∞ and ν, m are given
in (B3). Then, this example fulfills the assumptions (B1)–(B3).

In particular, the condition (B2) is firstly considered by Miyagaki-Souto [50] in the case of p ≡ 2.
Under this condition, the authors established the existence of a nontrivial solution for the superlinear
problems. Inspired by this work, Li-Yang [40] proved the existence of at least one nontrivial weak
solution to the following elliptic Dirichlet problem−∆pv = λh(y, v) in Ω,

v = 0 on ∂Ω,

see also [46,47]. Some researchers have tried to generalize the results of Miyagaki-Souto. For example,
Wei-Su [61] obtained the existence of infinitely many weak solutions to the fractional Laplacian
problem, and Choudhuri [13] carried out an investigation of the existence of infinitely many solutions
to a fractional p-Kirchhoff-type problem involving a superlinear term and a singular nonlinearity. The
existence of a nontrivial solution for the p(x)-Laplacian Dirichlet problems can be found in Ge [24].
Following basic ideas of Li-Yang [40], Chung-Toan [14] established the existence and multiplicity
results to a class of nonlinear and nonhomogeneous problems in an Orlicz-Sobolev spaces setting.

In order to illustrate such existence results to the superlinear p-Laplacian problems, the
Carathéodory function h : RN × R→ R fulfills the conditions (B1), (B2) and

(h) H(y, ζ) = o(|ζ |p) as ζ → 0 uniformly for all y ∈ Ω.

However, even if we proceed the analogous ways from others’ research [14, 24, 40, 46, 47, 50], the
same existence results cannot be obtained because of the presence of a nonlocal Kirchhoff coefficient
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M. More precisely, under assumptions (B2) and (h) we cannot guarantee the compactness condition
of the Palais-Smale type for an energy functional corresponding to (1.1) when conditions (K1) and
(K5) hold. Especially, to ensure this compactness condition of an energy functional corresponding to
problems of elliptic type with the nonlinear term satisfying (B2), the fact that M̂(ζ) is nondecreasing for
all ζ ≥ 0 is essential. Because of this reason, when (K5) holds, many researchers have considered some
conditions of the nonlinear term which is different from (B2); see [4, 15, 21, 27, 54, 55, 64–66]. From
this perspective, one of the novelties of the present paper is to establish the existence of infinitely many
small energy solutions to (1.1) without the monotonicity of M̂ and without assuming the condition (h)
which is crucial to verify the compactness condition of Palais-Smale type and ensure assumptions in
the Dual Fountain Theorem. These arguments are motivated by the recent work [35].

On the other hand, stationary problems involving singular nonlinearities arise in the context of
chemical catalyst kinetics and chemical heterogeneous catalysts in the theory of heat conduction in
electrically conducting materials, and in the study of relativistic matter in magnetic fluid; see [16, 17,
51]. Moreover, motivated by this large interest, singular problems have been investigated more in the
recent years; see [13, 19, 31–33, 42, 45, 69]. For a very recent study on the existence of solutions to
nonlocal singular problems with variable exponents, we refer to Aberqi and Ouaziz [1]. In the local
setting (s = 1), Ferrara-Bisci [19] studied the existence of at least one nontrivial weak solution of the
following Dirichlet boundary value problem−∆pv = λ |v|

p−2v
|y|p + µh(y, v) in Ω,

v = 0 on ∂Ω,

where µ > 0 and λ ≥ 0 are two real parameters, 1 < p < N and h : Ω × RN → RN is a
Carathéodory function satisfying a suitable subcritical growth condition. The main tool is a refinement
of the variational principle of Ricceri [56]. Inspired by this work and by employing three critical
points theorem [57], Khodabakhshi-Hadjian [33] obtained the existences of three weak solutions of
the following problem: −∆pv + |v|p−2v

|y|p = λ f (y, v) + µh(y, v) in Ω,

v = 0 on ∂Ω
(1.2)

where f and h are Carathódory functions; see [42] for double phase problems. For µ = 0 in (1.2),
Liu-Zhao [45] investigated the existence of triple solutions to problem (1.2) with Dirichlet-Neumann
boundary conditions. Also the multiplicity results of solutions to (1.2) with µ = 0 have been
provided by the works of Khodabakhshi-Aminpour-Afrouzi-Hadjian [31] and Khodabakhshi-Afrouzi-
Hadjian [32]. The main tools for obtaining these existence results of multiple solutions are various
critical point theorems of either Ricceri’s type in [56, 57] or Bonanno’s type in [7, 8]. Another new
aspect of this paper is to consider a different approach from [19,31–33,42,45] to derive the multiplicity
result to the nonlocal elliptic problems involving the Hardy potential. This approach is inspired by
Chen-Thin [12] and Fiscella [20]. The authors in [12] obtained the multiplicity result of solutions to
the nonlocal p1&···&pm fractional Laplacian problems of Kirchhoff type with the Hardy potential when
the Kirchhoff coefficients satisfied (K3) and a condition on h differed from (B2). In [20], the existence
of multiple solutions to fractional p-Laplacian equation of Schrödinger-Kirchhoff-Hardy type in RN

has been investigated when M(ζ) = a + bζϑ (a > 0, b ≥ 0), which can be regarded as a special case
of (K3). The main tool for obtaining such multiplicity results is the Fountain Theorem. In order to
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apply this theorem, the compactness condition of the Palais-Smale type for an energy functional is
essential. However, as mentioned before, we cannot ensure this condition from the analogous way as
in [12, 20] if we assume the conditions (K3) and (B1)–(B3).

To this end, by taking advantage of the Dual Fountain Theorem as the key tool, we illustrate the
existence of a sequence of infinitely many small energy solutions on a class of the Kirchhoff coefficient
M and the nonlinear term h, which are different from the previous related works [4, 12, 15, 20, 21, 27,
54,55,64,65]. To the best of our belief, although the basic idea of our proof for obtaining this existence
result of multiple solutions comes from recent studies [35, 36], this paper is the first effort to establish
the existence of a sequence of small energy solutions to nonlocal problems of Kirchhoff type with
Hardy potential, using the Dual Fountain Theorem as a primary tool.

The outline of this paper is as follows. We present some necessary preliminary knowledge
of function spaces for the present paper. Next, we provide the variational framework related to
problem (1.1), and then we illustrate the existence result of infinitely many nontrivial small energy
solutions under suitable assumptions.

2. Preliminaries

In this section, we shortly present some useful definitions and fundamental properties of the
fractional Sobolev spaces that will be used in the present paper. Let 0 < s < 1 < p < +∞ be real
numbers and p∗s is the fractional critical Sobolev exponent, that is

p∗s :=

 N p
N−sp if sp < N,

+∞ if sp ≥ N.

Let Ω ⊂ RN be a bounded open set with Lipschitz boundary. We define the fractional Sobolev space
W s,p(Ω) as follows:

W s,p(Ω) :=
{
v ∈ Lp(Ω) :

ˆ
RN

ˆ
RN

|v(y) − v(z)|p

|y − z|N+ps dydz < +∞

}
,

endowed with the norm

||v||W s,p(Ω) :=
(
||v||pLp(Ω) + |v|pW s,p(RN )

) 1
p

,

where
||v||pLp(Ω) :=

ˆ
Ω

|v(y)|p dy and |v|pW s,p(RN ) :=
ˆ
RN

ˆ
RN

|v(y) − v(z)|p

|y − z|N+ps dydz.

Then W s,p(Ω) is a separable and reflexive Banach space. The space C∞0 (Ω) is dense in W s,p(Ω), that is
W s,p

0 (Ω) = W s,p(Ω) ( [2, 52]).

Lemma 2.1. Let s ∈ (0, 1) and p ∈ (1,+∞), then the following continuous embeddings hold [52]:

W s,p(Ω) ↪→ Lq(Ω) for all q ∈ [1, p∗s], if sp < N;
W s,p(Ω) ↪→ Lq(Ω) for every q ∈ [1,∞), if sp = N;

W s,p(Ω) ↪→ C0,λ
b (Ω) for all λ < s − N/p, if sp > N.

In particular, the space W s,p(Ω) is compactly embedded in Lq(Ω) for any q ∈ [1, p∗s).
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We define the fractional Sobolev space W s,p
K

(RN) as follows:

W s,p
K

(RN) :=
{
v ∈ Lp(RN) :

ˆ
RN

ˆ
RN
|v(y) − v(z)|pK(y, z) dydz < +∞

}
,

where K : RN × RN \ {(0, 0)} → (0,+∞) is a kernel function with the properties (L1)–(L3). By the
condition (L1), the function

(y, z) 7→ (v(y) − v(z))K
1
p (y, z) ∈ Lp(RN)

for all v ∈ C∞0 (RN). We consider the problem (1.1) in the closed linear subspace defined by

X :=
{
v ∈ W s,p

K
(RN) : v(y) = 0 a.e. in RN\Ω

}
with respect to the norm

||v||X :=
(
||v||pLp(Ω) + |v|pX

) 1
p

,

where

|v|pX :=
ˆ
RN

ˆ
RN
|v(y) − v(z)|pK(y, z) dydz.

The following useful Lemmas 2.2 and 2.3 can be found in [65].

Lemma 2.2. Let 0 < s < 1 < p < +∞ with ps < N, and let K : RN × RN \ {(0, 0)} → (0,∞) be a
kernel function satisfying the conditions (L1)–(L3). If v ∈ X, then v ∈ W s,p(Ω). Moreover, we have

||v||W s,p(Ω) ≤ max{1, γ
− 1

p

0 }||v||X,

where γ0 is given in (L2).

From Lemmas 2.1 and 2.2, we can obtain the following assertion immediately.

Lemma 2.3. Let 0 < s < 1 < p < +∞ with ps < N, and let K : RN ×RN \ {(0, 0)} → (0,∞) satisfy the
conditions (L1)–(L3). Then there exists a positive constant C0 = C0(N, p, s) such that for any v ∈ X
and 1 ≤ q ≤ p∗s,

||v||pLq(Ω) ≤ C0

ˆ
RN

ˆ
RN

|v(y) − v(z)|p

|y − z|N+ps dydz

≤
C0

γ0

ˆ
RN

ˆ
RN
|v(y) − v(z)|pK(y, z) dydz,

where γ0 is given in (L2). Consequently, the space X is continuously embedded in Lq(Ω) for any
q ∈ [1, p∗s]. In addition, the embedding

X ↪→ Lq(Ω)

is compact for q ∈ (1, p∗s).

The following assertion is the fractional Hardy inequality given in research by Frank-Seiringer [23].
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Lemma 2.4. Let N ≥ 1, 0 < s < 1 ≤ p and let K : RN × RN \ {(0, 0)} → (0,∞) satisfy the conditions
(L1)–(L3). Then for all v ∈ X, in case sp < N, and for all v ∈ X\{0}, in case sp > N,

ˆ
Ω

|v(y)|p

|y|sp dy ≤ cH

ˆ
RN

ˆ
RN

|v(y) − v(z)|p

|y − z|N+sp dydz,

≤
cH

γ0

ˆ
RN

ˆ
RN
|v(y) − v(z)|pK(y, z)dydz,

where cH := cH(N, s, p) is a positive constant.

Throughout this paper, the kernel functionK : RN ×RN \ {(0, 0)} → (0,∞) ensures the assumptions
(L1)–(L3). Also, let 0 < s < 1 < p < +∞ with ps < N, and let the Kirchhoff function M satisfy the
conditions (K1) and (K2). Moreover, 〈·, ·〉 denotes the pairing of X and its dual X∗.

3. Variational setting and main result

In this section, the existence result of multiple small energy solutions to (1.1) is provided by taking
into account the Dual Fountain Theorem under appropriate assumptions. Before going to our main
result, we introduce the variational setting corresponding to the problem (1.1).

Definition 3.1. We say that v ∈ X is a weak solution of (1.1) if

M
(
[v]s,p

) ˆ
RN

ˆ
RN
|v(y) − v(z)|p−2(v(y) − v(z))(ω(y) − ω(z))K(y, z) dydz

+

ˆ
Ω

|v(y)|p−2

|y|sp vω dy = λ

ˆ
Ω

h(y, v)ω dy

for any ω ∈ X, where

[v]s,p :=
1
p

ˆ
RN

ˆ
RN
|v(y) − v(z)|pK(y, z) dy dz.

Let us define the functional A : X → R by

A(v) =M
(
[v]s,p

)
+

1
p

ˆ
Ω

|v(y)|p

|y|sp dy.

Thus, it is not difficult to prove that A is well defined on X, and we get the following result if we follow
the lines of the proof of [54, Lemma 2].

Lemma 3.2. The functional A : X → R is of class C1(X,R) and its Fréchet derivative is

〈A′(v), ω〉 =M([v]s,p)
ˆ
RN

ˆ
RN
|v(y) − v(z)|p−2 (v(y) − v(z))(ω(y) − ω(z))K(y, z)dydz

+

ˆ
Ω

|v(y)|p−2

|y|sp vωdy (3.1)

for any v, ω ∈ X.
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Proof. It is easy to show that A has Fréchet derivative in X and (3.1) holds for any v, ω ∈ X. Let
{wn}n∈N ⊂ X be a sequence satisfying wn → w strongly in X as n → ∞. Without loss of generality, we
suppose that wn → w a.e. in RN . Then the sequence{

|wn(y) − wn(z)|p−2(wn(y) − wn(z))K(y, z)
1
p′

}
n∈N

is bounded in Lp′(RN × RN), as well as a.e. in RN × RN

An(y, z) := |wn(y) − wn(z)|p−2(wn(y) − wn(z))K(y, z)
1
p′

−→ A(y, z) := |w(y) − w(z)|p−2(w(y) − w(z))K(y, z)
1
p′ as n→ ∞.

Thus, by virtue of the Brezis-Lieb Lemma [6], one has

lim
n→∞

ˆ
RN

ˆ
RN
|An(y, z) −A(y, z)|p

′

dy dz

= lim
n→∞

ˆ
RN

ˆ
RN

(|wn(y) − wn(z)|pK(y, z) − |w(y) − w(z)|pK(y, z)) dy dz.
(3.2)

The fact that {wn}n∈N converges strongly to w in X as n→ ∞ yields that

lim
n→∞

ˆ
RN

ˆ
RN

(|wn(y) − wn(z)|pK(y, z) − |w(y) − w(z)|pK(y, z)) dy dz = 0.

Owing to (3.2), we infer that

lim
n→∞

ˆ
RN

ˆ
RN
|An(y, z) −A(y, z)|p

′

dy dz = 0. (3.3)

Furthermore, by the continuity of M, we deduce

lim
n→∞

M
(
[wn]s,p

)
= M

(
[w]s,p

)
. (3.4)

On the other hand, the sequence  |wn(y)|p−2wn(y)

|y|
sp
p′


n∈N

is bounded in Lp′(Ω), as well as a.e. in Ω

Ãn(y, z) :=
|wn(y)|p−2wn(y)

|y|
sp
p′

−→ Ã(y, z) :=
|w(y)|p−2w(y)

|y|
sp
p′

as n→ ∞.

Thus, we have

lim
n→∞

ˆ
Ω

∣∣∣Ãn(y, z) − Ã(y, z)
∣∣∣p′ dy = lim

n→∞

ˆ
Ω

(
|wn(y)|p

|y|sp −
|w(y)|p

|y|sp

)
dy. (3.5)

The fact that {wn}n∈N converges strongly to w in X as n→ ∞ and Lemma 2.4 yield that

lim
n→∞

ˆ
Ω

(
|wn(y)|p

|y|sp −
|w(y)|p

|y|sp

)
dy = lim

n→∞

ˆ
Ω

|wn(y) − w(y)|p

|y|sp dy
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≤ lim
n→∞

cH

γ0

ˆ
RN

ˆ
RN
|(wn − w)(y) − (wn − w)(z)|pK(y, z)dydz

≤ lim
n→∞

cH

γ0
||wn − w||pX

= 0. (3.6)

In accordance with (3.5) and (3.6), it follows that

lim
n→∞

ˆ
RN

ˆ
RN

∣∣∣Ãn(y, z) − Ã(y, z)
∣∣∣p′ dy dz = 0. (3.7)

Combining (3.3), (3.4) and (3.7) with the Hölder inequality, we arrive

||A′(wn) − A′(w)||X∗ = sup
w∈X,||w||X=1

|〈A′(wn) − A′(w), ω〉| −→ 0

as n→ ∞. Therefore, we assert A ∈ C1(X,R). �

Let the functional Bλ : X → R be defined by

Bλ(v) = λ

ˆ
Ω

H(y, v) dy.

Then it is obvious that Bλ ∈ C1(X,R) and its Fréchet derivative is

〈
B′λ(v), ω

〉
= λ

ˆ
Ω

h(y, v)ω dy

for any v, ω ∈ X.
Next, the functional Iλ : X → R is defined by

Iλ(v) = A(v) − Bλ(v). (3.8)

Afterward, the functional Iλ ∈ C1(X,R), and its Fréchet derivative is

〈
I′λ(v), ω

〉
=M

(
[v]s,p

)ˆ
RN

ˆ
RN
|v(y) − v(z)|p−2(v(y) − v(z))(ω(y) − ω(z))K(y, z) dy dz

+

ˆ
Ω

|v(y)|p−2

|y|sp vω dy − λ
ˆ

Ω

h(y, v)ω dy

for any v, ω ∈ X.

The following definition was initially provided by Cerami [11].

Definition 3.3. We say that Iλ satisfies the Cerami condition at level c ((C)c-condition for short) in
X, if any (C)c-sequence {vn}n∈N ⊂ X, i.e., Iλ(vn) → c and ||I′λ(vn)||X∗(1 + ||vn||X) → 0 as n → ∞, has a
convergent subsequence in X.

From now on, we present the useful preliminary consequences, which play an indispensable role to
deriving our main result.
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Lemma 3.4. Suppose that (B1) holds, then Bλ and B′λ are weakly strongly continuous on X for any
λ > 0.

Proof. Let us assume that vn ⇀ v in X as n→ ∞. We begin by proving prove that Bλ is weakly strongly
continuous on X, and then it is easy to check that vn → v in Lκ(Ω) where 1 < κ < p∗s by Lemma 2.3.
By the convergence principle, there exist a subsequence, still denoted by {vn}n∈N, in X and a function
u ∈ Lp(Ω) such that vn(y)→ v(y) for almost all y ∈ Ω as n→ ∞ and |vn(y)| ≤ u(y) for all n ∈ N and for
almost all y ∈ Ω. Therefore, taking (B1) into account, we deduce

ˆ
Ω

|H(y, vn) − H(y, v)| dy ≤
ˆ

Ω

ρ1(y)|vn(y)| + ρ2|vn(y)|` + ρ1(y)|v(y)| + ρ2|v(y)|` dy

≤

ˆ
Ω

ρ1(y)|u(y)| + ρ2|u(y)|` + ρ1(y)|v(y)| + ρ2|v(y)|` dy

and thus the integral at the left-hand side is dominated by an integrable function. Since h is the
Carathéodory function, we have that H(y, vn) → H(y, v) as n → ∞ for almost all y ∈ RN by (B1).
By the Lebesgue dominated convergence theorem, we have

ˆ
Ω

H(y, vn) dy→
ˆ

Ω

H(y, v) dy

as n→ ∞. This implies that Bλ is weakly strongly continuous on X.
Next we prove that B′λ is weakly strongly continuous on X. Note that

sup
||ϕ||X≤1

∣∣∣〈B′λ(vn) − B′λ(v), ϕ〉
∣∣∣ = sup

||ϕ||X≤1

∣∣∣∣ˆ
RN

(h(y, vn) − h(y, v))ϕ dy
∣∣∣∣

for any ϕ ∈ X. Since 1 < p < p∗s, the compact embedding

X ↪→↪→ Lp(Ω) implies vn → v in Lp(Ω) as n→ ∞.

This together with the continuity of the Nemytskii operator with h and acting from Lp(Ω) into L`
′

(Ω)
yields that the right side of the equality (3.9) tends to 0 as n → ∞. This implies that B′λ is weakly
strongly continuous in X. Therefore, the proof is completed. �

Lemma 3.5. Suppose that (B1) and (B2) hold. Furthermore, we assume that

(B4) lim|s|→∞
H(y,s)
|s|ϑp = ∞ uniformly for almost all y ∈ RN .

Then, the functional Iλ satisfies the (C)c-condition for any λ > 0.

Proof. For any c ∈ R, let {vn}n∈N be a (C)c-sequence in X, i.e.,

Iλ(vn)→ c and
〈
I′λ(vn), vn

〉
= o(1)→ 0 as n→ ∞. (3.9)

We first prove that {vn}n∈N is bounded in X. To this end, arguing by contradiction, it is assumed that
||vn||X > 1 and ||vn||X → ∞ as n → ∞, and a sequence {ωn}n∈N is defined by ωn = vn/||vn||X. Then, up to a
subsequence, still denoted by {ωn}n∈N, we know ωn ⇀ ω in X as n → ∞, and due to Lemma 2.3, one
has

ωn(y)→ ω(y) a.e. in Ω, and ωn → ω in Lκ(Ω) (3.10)
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as n→ ∞, where κ ∈ [1, p∗s). Due to (K1) and (K2), we have that

Iλ(vn) =M
(
[vn]s,p

)
+

1
p

ˆ
Ω

|vn(y)|p

|y|sp dy − λ
ˆ

Ω

H(y, vn) dy

≥
m0

ϑp

ˆ
RN

ˆ
RN
|vn(y) − vn(z)|pK(y, z) dydz +

1
p

ˆ
Ω

|vn(y)|p

|y|sp dy − λ
ˆ

Ω

H(y, vn)dy

≥
m0

ϑp

ˆ
RN

ˆ
RN
|vn(y) − vn(z)|pK(y, z)dydz − λ

ˆ
Ω

H(y, vn)dy

≥
m0

2ϑp

ˆ
RN

ˆ
RN
|vn(y) − vn(z)|pK(y, z)dydz +

m0γ0

2ϑpC0
||vn||

p
Lp(Ω) − λ

ˆ
Ω

H(y, vn)dy

≥
m0 min {C0, γ0}

2ϑpC0
||vn||

p
X − λ

ˆ
Ω

H(y, vn) dy, (3.11)

where γ0 and C0 are positive constants given in Lemma 2.3. Since ||vn||X → ∞ as n → ∞, we assert
by (3.11) that

λ

ˆ
Ω

H(y, vn) dy ≥
m0 min {C0, γ0}

2ϑpC0
||vn||

p
X − Iλ(vn)→ ∞ as n→ ∞. (3.12)

Observe that M(ζ) ≤ M(1)
(
1 + ζϑ

)
for all ζ ∈ R because if 0 ≤ ζ < 1, then M(ζ) =

´ ζ
0 M(t) dt ≤

M(1), and if ζ > 1, thenM(ζ) ≤ M(1)ζϑ. This together with Lemma 2.4 yields that

Iλ(vn) =M
(
[vn]s,p

)
+

1
p

ˆ
Ω

|vn|
p

|y|sp dy − λ
ˆ

Ω

H(y, vn)dy

≤ M(1)
(
1 + [vn]ϑs,p

)
+

cH

pγ0

ˆ
RN

ˆ
RN
|vn(y) − vn(z)|pK(y, z)dydz − λ

ˆ
Ω

H(y, vn)dy

≤ M(1)
(
1 + [vn]s,p

)ϑ
+

cH

γ0
[vn]p

s,p − λ

ˆ
Ω

H(y, vn)dy

≤ M(1)
(
1 + ||vn||

p
X

)ϑ
+

cH

γ0
||vn||

p
X − λ

ˆ
Ω

H(y, vn)dy

≤ 2ϑM(1)||vn||
pϑ
X +

cH

γ0
||vn||

pϑ
X − λ

ˆ
Ω

H(y, vn)dy

≤

(
2ϑM(1)γ0 + cH

γ0

)
||vn||

pϑ
X − λ

ˆ
Ω

H(y, vn)dy. (3.13)

Then we obtain by the relation (3.13) that

2ϑM(1)γ0 + cH

γ0
≥

1

||vn||
ϑp
X

(
λ

ˆ
Ω

H(y, vn) dy + Iλ(vn)
)
. (3.14)

From (B4), we can choose ζ0 > 1 such that H(y, ζ) > |ζ |ϑp for all y ∈ Ω and |ζ | > ζ0. Using (B1), there
exists a positive constant K such that |H(y, ζ)| ≤ K for all (y, ζ) ∈ Ω × [−ζ0, ζ0]. Hence there exists a
real number K0 such that H(y, ζ) ≥ K0 for all (y, ζ) ∈ Ω × R, and thus

H(y, vn) − K0

||vn||
ϑp
X

≥ 0, (3.15)
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for all y ∈ Ω and for all n ∈ N. Set ∆1 = {y ∈ Ω : w(y) , 0} and suppose that meas(∆1) , 0. By the
convergence (3.10), we infer that |vn(y)| = |wn(y)| ||vn||X → ∞ as n → ∞, for all y ∈ ∆1. Furthermore,
owing to (B4), one has

lim
n→∞

H(y, vn)

||vn||
ϑp
X

= lim
n→∞

H(y, vn)
|vn|

ϑp |wn|
ϑp = ∞ (3.16)

for all y ∈ ∆1. According to (3.12)–(3.16) and Fatou’s Lemma, we deduce that

2ϑM(1)γ0 + cH

γ0
= lim inf

n→∞

λ
(
2ϑM(1)γ0 + cH

) ´
Ω

H(y, vn) dy

λγ0
´

Ω
H(y, vn) dy + Iλ(vn)

≥ λ lim inf
n→∞

ˆ
Ω

H(y, vn)

||vn||
ϑp
X

dy

= λ lim inf
n→∞

ˆ
Ω

H(y, vn)

||vn||
ϑp
X

dy − λ lim sup
n→∞

ˆ
Ω

K0

||vn||
ϑp
X

dy

≥ λ lim inf
n→∞

ˆ
∆1

H(y, vn) − K0

||vn||
ϑp
X

dy

≥ λ

ˆ
∆1

lim inf
n→∞

H(y, vn) − K0

||vn||
ϑp
X

dy

= λ

ˆ
∆1

lim inf
n→∞

H(y, vn)
|vn|

ϑp |wn|
ϑp dy − λ

ˆ
∆1

lim sup
n→∞

K0

||vn||
ϑp
X

dy = ∞,

which is a contradiction. Hence we have that meas(∆1) = 0 and w(y) = 0 for almost all y ∈ Ω. As
Iλ(τvn) is continuous in τ ∈ [0, 1], for each n ∈ N, there exists τn ∈ [0, 1], such that

Iλ(τnvn) := max
τ∈[0,1]

Iλ(τvn).

Let {ak}k∈N be a positive sequence of real numbers satisfying limk→∞ ak = ∞ and ak > 1 for any k.
Then, it is immediate that ||akωn||X = ak > 1 for any k and n. Let k be fixed. Because ωn → 0 strongly
in L`(Ω) as n → ∞, it follows from the continuity of the Nemytskii operator that H(y, akωn) → 0 in
L1(Ω) as n→ ∞. Hence,

lim
n→∞

ˆ
Ω

H(y, akωn) dy = 0. (3.17)

Because ||vn||X → ∞ as n→ ∞, we have ||vn||X > ak for sufficiently large n. Thus, by (3.17), we have

Iλ(τnvn) ≥ Iλ

(
ak

||vn||X
vn

)
= Iλ(akωn)

=M
(
[akωn]s,p

)
+

1
p

ˆ
Ω

|akωn|
p

|y|sp dy − λ
ˆ

Ω

H(y, akωn) dy

≥
m0

ϑp

ˆ
RN

ˆ
RN
|akωn(y) − akωn(z)|pK(y, z) dy dz − λ

ˆ
Ω

H(y, akωn) dy

≥
m0

2ϑp

ˆ
RN

ˆ
RN
|akωn(y) − akωn(z)|pK(y, z) dy dz +

m0γ0

2ϑC0
||akωn||

p
Lp(Ω) − λ

ˆ
Ω

H(y, akωn) dy

≥
m0 min {C0, γ0}

2ϑpC0
||akωn||

p
X − λC1
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for sufficiently large n and a positive constant C1. From this, letting n and k tend to infinity, we have

lim
n→∞

Iλ(τnvn) = ∞. (3.18)

Because Iλ(0) = 0 and Iλ(vn) → c as n → ∞, it proves that τn ∈ (0, 1) and
〈
I′λ(τnvn), τnvn

〉
= 0.

Therefore, by (K2), (B2) and (3.9), we have

Iλ(τnvn) = Iλ(τnvn) −
1

pϑ
〈
I′λ(τnvn), τnvn

〉
=M

(
[τnvn]s,p

)
−

1
pϑ

M
(
[τnvn]s,p

) (ˆ
RN

ˆ
RN
|τnvn(y) − τnvn(z)|pK(y, z) dy dz

)
+

1
p

ˆ
Ω

|τnvn|
p

|y|sp dy −
1

pϑ

ˆ
Ω

|τnvn|
p

|y|sp dy

+ λ

ˆ
Ω

(
1

pϑ
h(y, τnvn)τnvn − H(y, τnvn)

)
dy

≤ M
(
[τnvn]s,p

)
−

1
ϑ

M
(
[τnvn]s,p

)
[τnvn]s,p +

ϑ − 1
pϑ

ˆ
Ω

|τnvn|
p

|y|sp dy

+
λ

pϑ

ˆ
Ω

(h(y, τnvn)τnvn − pϑH(y, τnvn)) dy

=
1
ϑ
M̂

(
[τnvn]s,p

)
+
ϑ − 1

pϑ

ˆ
Ω

|τnvn|
p

|y|sp dy +
λ

pϑ

ˆ
Ω

H(y, τnvn) dy

≤
1
ϑ
M̂

(
[vn]s,p

)
+
ϑ − 1

pϑ

ˆ
Ω

|vn|
p

|y|sp dy dy +
λ

pϑ

ˆ
Ω

H(y, vn) dy + K + C

≤ M
(
[vn]s,p

)
+

1
p

ˆ
Ω

|vn|
p

|y|sp dy − λ
ˆ

Ω

H(y, vn) dy

−
1

pϑ
M

(
[vn]s,p

) (ˆ
RN

ˆ
RN
|vn(y) − vn(z)|pK(y, z) dy dz

)
−

1
pϑ

ˆ
Ω

|vn|
p

|y|sp dy +
λ

pϑ

ˆ
Ω

h(y, vn)vn dy + K + C

= Iλ(vn) −
1

pϑ
〈
I′λ(vn), vn

〉
+ K + C → c + K + C

as n→ ∞, which contradicts to (3.18) and so {vn}n∈N is bounded in X.
Passing to the limit, if necessary, to a subsequence by Lemma 2.3, we have

vn ⇀ v in X, vn(y)→ v(y) a.e. in Ω and vn → v in Lκ(Ω) as n→ ∞, (3.19)

where κ ∈ [1, p∗s). To prove that {vn}n∈N converges strongly to v in X as n → ∞, let ϕ ∈ X be fixed and
let Φ̃ϕ denote the linear functional on X with

Φ̃ϕ(w) =

ˆ
RN

ˆ
RN
|ϕ(y) − ϕ(z)|p−2(ϕ(y) − ϕ(z))(w(y) − w(z))K(y, z) dy dz

for all w ∈ X. By the Hölder inequality, Φ̃ϕ is also continuous, as∣∣∣Φ̃ϕ(w)
∣∣∣ ≤ (ˆ

RN

ˆ
RN
|ϕ(y) − ϕ(z)|pK(y, z) dy dz

) p−1
p
(ˆ
RN

ˆ
RN
|w(y) − w(z)|pK(y, z) dy dz

) 1
p
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≤
(ˆ
RN

ˆ
RN
|ϕ(y) − ϕ(z)|pK(y, z) dy dz

) p−1
p
||w||X (3.20)

for any w ∈ X. Hence, relation (3.20) yields

lim
n→∞

[
M

(
[vn]s,p

)
− M

(
[v]s,p

)]
Φ̃z(vn − v) = 0, (3.21)

because the sequence
{
M

(
[vn]s,p

)
− M

(
[v]s,p

)}
n∈N

is bounded in Ω. Using (B1) and (3.19), it follows
that

ˆ
Ω

|(h(y, vn) − h(y, v))(vn − v)| dy ≤
ˆ

Ω

ρ2(|vn|
`−1 + |v|`−1) |vn − v| dy

≤ ρ2

(
||vn||

`−1
L`(Ω) + ||v||`−1

L`(Ω)

)
||vn − v||L`(Ω).

Then, due to (3.19), one has

lim
n→∞

ˆ
Ω

(h(y, vn) − h(y, v))(vn − v) dy = 0. (3.22)

Because vn ⇀ v in X and I′λ(vn)→ 0 in X∗ as n→ ∞, we have

〈I′λ(vn) − I′λ(v), vn − v〉 → 0 as n→ ∞. (3.23)

We then infer that

〈I′λ(vn) − I′λ(v), vn − v〉

= M
(
[vn]s,p

)
Φ̃vn(vn − v) − M

(
[v]s,p

)
Φ̃v(vn − v)

+

ˆ
Ω

|vn|
p−2 vn(vn − v)
|y|sp dy −

ˆ
Ω

|v|p−2 v(vn − v)
|y|sp dy

− λ

ˆ
Ω

h(y, vn)(vn − v) dy + λ

ˆ
Ω

h(y, v)(vn − v) dy

= M
(
[vn]s,p

) (
Φ̃vn(vn − v) − Φ̃v(vn − v)

)
+

(
M

(
[vn]s,p

)
− M

(
[v]s,p

))
Φ̃v(vn − v)

+

ˆ
Ω

(|vn|
p−2 vn − |v|p−2 v)(vn − v)

|y|sp dy − λ
ˆ

Ω

(h(y, vn) − h(y, v))(vn − v) dy.

This together with (3.21)–(3.23) yields

lim
n→∞

(
M

(
[vn]s,p

) [
Φ̃vn(vn − v) − Φ̃v(vn − v)

]
+

ˆ
Ω

(|vn|
p−2 vn − |v|p−2 v)(vn − v)

|y|sp dy
)
= 0.

By convexity and (K1), we have in particular

M
(
[vn]s,p

)[
Φ̃vn(vn − v) − Φ̃v(vn − v)

]
≥ 0 (3.24)
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and ˆ
Ω

(|vn|
p−2 vn − |v|p−2 v)(vn − v)

|y|sp dy ≥ 0, (3.25)

and then it follows that
lim
n→∞

(
Φ̃vn(vn − v) − Φ̃v(vn − v)

)
= 0 (3.26)

and

lim
n→∞

ˆ
Ω

(|vn|
p−2 vn − |v|p−2 v)(vn − v)

|y|sp dy = 0.

Note that there are the well-known useful inequalities

|ξ − η|p ≤


C2(|ξ|p−2 ξ − |η|p−2 η)(ξ − η) if p ≥ 2,

C3

(
(|ξ|p−2 ξ − |η|p−2 η)(ξ − η)

) p
2

×(|ξ|p + |η|p)
2−p

2 if 1 < p < 2 and (ξ, η) , (0, 0),

(3.27)

for all ξ, η ∈ RN , where C2 and C3 are positive constants; see [59].
It is now assumed that p ≥ 2. Then, by (3.27),

ˆ
RN

ˆ
RN
|(vn − v)(y) − (vn − v)(z)|pK(y, z) dy dz

=

ˆ
RN

ˆ
RN
|vn(y) − vn(z) − v(y) + v(z)|pK(y, z) dy dz

≤ C2

ˆ
RN

ˆ
RN

(
|vn(y) − vn(z)|p−2(vn(y) − vn(z)) − |v(y) − v(z)|p−2(v(y) − v(z))

)
× (vn(y) − vn(z) − v(y) + v(z))K(y, z) dy dz

= C2

(
Φ̃vn(vn − v) − Φ̃v(vn − v)

)
. (3.28)

On the other hand, we consider the case 1 < p < 2. As {vn}n∈N is bounded in X, there exist positive
constants K0 and K1 such that

ˆ
RN

ˆ
RN
|vn(y) − vn(z)|pK(y, z) dy dz ≤ K0 and

ˆ
RN

ˆ
RN
|v(y) − v(z)|pK(y, z) dy dz ≤ K1 (3.29)

for all n ∈ N. By (3.27), (3.29) and the Hölder inequality, we have for n large enough
ˆ
RN

ˆ
RN
|(vn − v)(y) − (vn − v)(z)|pK(y, z) dy dz

≤ C3

ˆ
RN

ˆ
RN

( (
|vn(y) − vn(z)|p−2(vn(y) − vn(z)) − |v(y) − v(z)|p−2(v(y) − v(z))

)
× (vn(y) − vn(z) − v(y) + v(z))

) p
2 (|vn(y) − vn(z)|p + |v(y) − v(z)|p)

2−p
2 K(y, z) dy dz

≤ C3

(
Φ̃vn(vn − v) − Φ̃v(vn − v)

) p
2

×

(ˆ
RN

ˆ
RN
|vn(y) − vn(z)|pK(y, z) dy dz +

ˆ
RN

ˆ
RN
|v(y) − v(z)|pK(y, z) dy dz

) 2−p
2
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≤ C3(K0 + K1)
2−p

p
(
Φ̃vn(vn − v) − Φ̃v(vn − v)

) p
2
. (3.30)

From (3.26), (3.28) and (3.30), we obtain that
ˆ
RN

ˆ
RN
|(vn − v)(y) − (vn − v)(z)|pK(y, z) dy dz→ 0 as n→ ∞.

Since vn → v in Lp(Ω) as n → ∞ by (3.19), we get ||vn − v||X → 0 as n → ∞. Hence, Iλ satisfies the
(C)c-condition. This completes the proof. �

Let X be a reflexive and separable Banach space. Then it is known [18,68] that there are {en}n∈N ⊆ X

and { f ∗n }n∈N ⊆ X
∗ such that

X = span{en : n = 1, 2, · · · }, X∗ = span{ f ∗n : n = 1, 2, · · · },

and

〈
f ∗j , ei

〉
=

 1 if j = i

0 if j , i.

Let us denote Xn = span{en}, Fk =
⊕k

n=1 Xn, and Gk =
⊕∞

n=k Xn.

Definition 3.6. Suppose that (X, || · ||) is a real separable and reflexive Banach space. We say that
F ∈ C1(X,R) satisfies the (C)∗c-condition (with respect to Fk) if any sequence {wk}k∈N ⊂ X for which
wk ∈ Fk for any k ∈ N,

F (wk)→ c and ||(F |Fk)
′(wk)||X∗(1 + ||wk||)→ 0 as k → ∞,

possesses a subsequence converging to a critical point of F .

Proposition 3.7. (Dual Fountain Theorem [29]) Suppose that (X, || · ||) is a Banach space and F ∈
C1(X,R) is an even functional. If there is k0 > 0 so that, for each k ≥ k0, there exist βk > αk > 0 such
that

(D1) inf{F (v) : ||v||X = βk, v ∈ Gk} ≥ 0;

(D2) bk := max{F (v) : ||v||X = αk, v ∈ Fk} < 0;

(D3) ck := inf{F (v) : ||v||X ≤ βk, v ∈ Gk} → 0 as k → ∞;

(D4) F fulfills the (C)∗c-condition for every c ∈ [ck0 , 0),

then F admits a sequence of negative critical values cn < 0 satisfying cn → 0 as n→ ∞.

Lemma 3.8. Assume that (B1)–(B4) hold, then Iλ satisfies the (C)∗c-condition.

Proof. Let c ∈ R and let the sequence {vn}n∈N in X be such that vn ∈ Fn, for any n ∈ N,

Iλ(vn)→ c and ||(Iλ|Fn)
′(vn)||X∗(1 + ||vn||)→ 0 as n→ ∞.
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Therefore, we get c = Iλ(vn) + on(1) and
〈
I′λ(vn), vn

〉
= on(1), where on(1) → 0 as n → ∞. Repeating

the argument from the proof of Lemma 3.5, we derive the boundedness of {vn}n∈N in X.
Let {vn}n∈N be any sequence in X such that vn ⇀ v in X as n→ ∞ and

lim sup
n→∞

〈A′(vn) − A′(v), vn − v〉 ≤ 0.

Then, we know by using the notation in Lemma 3.5 that

lim sup
n→∞

{
M([vn]s,p)

(
Φ̃vn(vn − v) − Φ̃v(vn − v)

)
+

ˆ
Ω

(|vn|
p−2 vn − |v|p−2 v)(vn − v)

|y|sp dy
}
≤ 0.

By (3.24) and (3.25) we have
lim
n→∞
〈A′(vn) − A′(v), vn − v〉 = 0.

Therefore, using (3.19), (3.28) and (3.30), we get vn → v in X as n → ∞, i.e., A′ is mapping of type
(S +).

According to Lemma 3.4, B′ is a compact operator on X. Since X is a reflexive Banach space, the
idea of the rest of the proof is essentially the same as those in Lemma 3.12 [29]. �

Theorem 3.9. Suppose that (B1)–(B4) hold. If h(y,−ζ) = −h(y, ζ) holds for all (y, ζ) ∈ Ω × R, then
the problem (1.1) has a sequence of nontrivial solutions {vn}n∈N in X such that Iλ(vn) → 0 as n → ∞
for all λ > 0.

Proof. With the aid of the oddness of h and Lemma 3.8, we derive that the functional Iλ is even
and the (C)∗c-condition is ensured for every c ∈ R. Thus we will show that conditions (D1)–(D3) in
Proposition 3.7 are verified.

(D1): For the sake of convenience, we denote

ζ1,k = sup
||v||X=1,v∈Gk

||v||Lp(Ω) and ζ2,k = sup
||v||X=1,v∈Gk

||v||L`(Ω).

Then, it is immediate to ensure that ζ1,k → 0 and ζ2,k → 0 as k → ∞ (see [29]). Let us denote ζk =

max
{
ζ1,k, ζ2,k

}
. From (K1), (K2), (B1), the definition of ζk and the analogous argument as in (3.11), it

follows that

Iλ(v) =M
(
[v]s,p

)
+

1
p

ˆ
Ω

|v|p

|y|sp dy − λ
ˆ

Ω

H(y, v) dy

≥
m0 min {C0, γ0}

2ϑpC0
||v||pX − λ

ˆ
Ω

H(y, v) dy

≥
m0 min {C0, γ0}

2ϑpC0
||v||pX − λ||ρ1||Lp′ (Ω)||v||Lp(Ω) −

λρ2

`
||v||`L`(Ω)

≥
m0 min {C0, γ0}

2ϑpC0
||v||pX − λ||ρ1||Lp′ (Ω)ζk||v||X −

λρ2

`
ζ`k ||v||

2`
X

for k large enough and ||v||X ≥ 1, where C0 and γ0 are given in Lemma 2.3. Choose

βk =

(
4ϑpC0λρ2

m0 min {C0, γ0} `
ζ`k

) 1
p−2`

. (3.31)
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Let v ∈ Gk with ||v||X = βk > 1 for k large enough. Then, there exists k0 ∈ N such that

Iλ(v) ≥
m0 min {C0, γ0}

2ϑpC0
||v||pX − λ||ρ1||Lp′ (Ω)ζk||v||X −

λρ2

`
ζ`k ||v||

2`
X

≥
m0 min {C0, γ0}

4ϑpC0
β

p
k − λζ

p−`
p−2`

k ||ρ1||Lp′ (Ω)

(
4ϑpλρ2

m0 min {C0, γ0} `

) 1
p−2`

≥ 0

for all k ∈ N with k ≥ k0, because limk→∞ βk = ∞. Therefore,

inf{Iλ(v) : v ∈ Gk, ||v||X = βk} ≥ 0.

(D2): Since Fk is finite dimensional, all the norms are equivalent. Then, we can choose positive
constants ς1,k and ς2,k such that

ς1,k||v||X ≤ ||v||Lm(ν,Ω) and ||v||L`(Ω) ≤ ς2,k||v||X

for any v ∈ Fk. Let v ∈ Fk with ||v||X ≤ 1. In accordance with (B1) and (B3), there are C1,C2 > 0 such
that

H(y, ζ) ≥ C1ν(y)|ζ |m − C2|ζ |
`

for almost all (y, ζ) ∈ Ω × R. Observe that
ˆ
RN

ˆ
RN

1
p
|v(y) − v(z)|pK(y, z) dy dz ≤ C3

for a positive constant C3. Then we have

Iλ(v) =M
(
[v]s,p

)
+

1
p

ˆ
Ω

|v|p

|y|sp dy − λ
ˆ

Ω

H(y, v) dy

≤

(
sup

0≤ξ≤C3

M(ξ)
)ˆ
RN

ˆ
RN

1
p
|v(y) − v(z)|pK(y, z) dy dz +

cH

p γ0

ˆ
RN

ˆ
RN
|v(y) − v(z)|pK(y, z)dydz

− λC1

ˆ
Ω

ν|v|mdy + λC2

ˆ
Ω

|v|` dy

≤
1
p

(
sup

0≤ξ≤C3

M(ξ) +
cH

γ0

)
||v||pX − λC1

ˆ
Ω

ν|v|mdy + λC2

ˆ
Ω

|v|` dy

≤ C4||v||
p
X − λC1||v||mLm(ν,Ω) + λC2||v||`L`(Ω)

≤ C4||v||
p
X − λC1ς

m
1,k||v||

m
X + λC2ς

`
2,k||v||

`
X,

where C4 = 1
p

(
sup0≤ξ≤C3

M(ξ) + cH
γ0

)
. Let g(x) = C4xp − λC1ς

m
1,kxm + λC2ς

`
2,kx`. Since m < p < `, we

infer g(x) < 0 for all x ∈ (0, x0) for sufficiently small x0 ∈ (0, 1). Hence, Iλ(v) < 0 for all v ∈ Fk with
||v||X = x0. Choosing αk = x0 for all k ∈ N, one has

bk := max{Iλ(v) : v ∈ Fk, ||v||X = αk} < 0.

If necessary, we can replace k0 with a large value, so that βk > αk > 0 for all k ≥ k0.
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(D3): Because Fk ∩ Gk , φ and 0 < αk < βk, we have ck ≤ bk < 0 for all k ≥ k0. For any v ∈ Gk

with ||v||X = 1 and 0 < δ < βk, one has

Iλ(δv) =M
(
[δv]s,p

)
+

1
p

ˆ
Ω

|δv|p

|y|sp dy − λ
ˆ

Ω

H(y, δv) dy

≥
m0 min {C0, γ0}

2ϑpC0
||δv||pX − λ||ρ1||Lp′ (Ω)||δv||Lp(Ω) −

λρ2

`
||δv||`L`(Ω)

≥ −λ||ρ1||Lp(Ω)βkζk −
λρ2

`
β`kζ

`
k

for large enough k. Hence, the definition of βk implies that

0 > ck ≥ −λ||ρ1||Lp′ (Ω)βkζk −
λρ2

`
β`kζ

`
k

= −λ||ρ1||Lp′ (Ω)

(
4ϑpC0λρ2

m0 min {C0, γ0} `

) 1
p−2`

ζ
p−`
p−2`

k

−
λρ2

`

(
4ϑpC0λρ2

m0 min {C0, γ0} `

) `
p−2`

ζ
`(p−`)
p−2`

k . (3.32)

Because p < ` and ζk → 0 as k → ∞, we derive that limk→∞ ck = 0.
Consequently, all conditions of the Dual Fountain Theorem in Proposition 3.7 hold, and we arrive

that problem (1.1) possesses a sequence of nontrivial solutions {vn}n∈N in X satisfying Iλ(vn) → 0 as
n→ ∞ for all λ > 0. �

Finally, in terms of applying the Dual Fountain Theorem, we illustrate the differences between the
present paper and the previous related studies [5, 25, 29, 39, 44, 60, 62, 67].

Remark 3.10. In order to apply the Dual Fountain Theorem, numerous researchers [5, 44, 60, 62, 67]
considered the existence of two sequences 0 < αk < βk → 0 as k → ∞. However, our approach is
different from the above sources. This is based on the papers [10,25,29,39]. In view of these papers, the
conditions (B4) and (h) play an important role in proving assumptions of the Dual Fountain Theorem.
Under these two conditions, researchers established the existence of two sequences 0 < αk < βk large
enough [10, 25, 29, 34, 39]. Regrettably, by utilizing the analogous argument [25, 29], we cannot show
the property (D3) in Theorem 3.9. More precisely, if we change βk in (3.31) into

β̂k =

(
4ϑpC0λρ2

m0 min {C0, γ0} `
ζ`k

) 1
p−`

,

then in the estimate (3.32),

β̂kζk =

(
4ϑpC0λρ2

m0 min {C0, γ0} `

) `
p−`

ζ
p

p−`

k → ∞ as k → ∞

and thus we cannot obtain the property (D3) in β̂k. However, researchers [10, 34, 39] overcame this
difficulty from a new setting for βk as in (3.31). Although the basic idea for proving the conditions
(D1)–(D3) in the Dual Fountain Theorem is similar to the technique above, we derive these conditions
without assuming (B4) and (h) in the present paper. For this reason, the proof of Theorem 3.9 is slightly
different from that of the previous related works.
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4. Conclusions

In the present paper, on a class of the Kirchhoff coefficient M and the nonlinear term h which differ
from the previous related works, we give the existence result of multiple small energy solutions to
nonlocal problems of Kirchhoff type involving Hardy potential. One of the novelties of the present
paper is to provide our main result when we do not assume the monotonicity of M̂ in (K2), and the
condition (h), which are crucial to prove the compactness condition of Palais-Smale type and ensuring
all assumptions in the Dual Fountain Theorem. The second novelty is to consider a different approach
from other works [19, 31–33, 42, 45] to derive the multiplicity result by using the Dual Fountain
Theorem instead of various critical point theorems as mentioned in the introduction.

Additionally, a new research direction is the study of Kirchhoff-Schrödinger type problems:

M
(
[v]s,p

)
Lv(y) +V(y)|v|p−2w = µ

|v|p−2v
|y|p

+ λh(y, v) in RN ,

where 1 < p < p∗s, µ ∈ (−∞, µ∗) for a positive constant µ∗ andV : RN → (0,∞) is a potential function
with

(V) V ∈ L1
loc(R

N), ess in fy∈RNV(y) > 0, and lim|y|→∞V(y) = +∞.

Let us consider the condition

( f 2) There is a positive constant θ ≥ 1 such that

θH(y, ζ) ≥ H(y, tζ)

for (y, ζ) ∈ RN × R and t ∈ [0, 1], whereH(y, ζ) = h(y, ζ)ζ − pϑH(y, ζ).

When µ , 0, the classical variational approach is not applicable to our treatment according to the
presence of the term µ|v|p−2v|y|−p. The reason is that the Hardy inequality only guarantees that the
embedding of the fractional Sobolev space W s,p

0 (Ω) into the Lebesgue space Lp(Ω) with weight |y|−p,
also denoted by Lp(Ω, |y|−p) is continuous, but not compact. Hence, this situation with µ , 0 should be
much more delicate than this paper because of the lack of compactness.
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