Research article Special Issues

New sequences from the generalized Pell $ p- $numbers and mersenne numbers and their application in cryptography

  • Received: 20 January 2024 Revised: 29 March 2024 Accepted: 03 April 2024 Published: 12 April 2024
  • MSC : 11K31, 11C20, 68P25, 68R01, 68P30, 15A15

  • This paper presents the generalized Pell $ p- $numbers and provides some related results. A new sequence is defined using the characteristic polynomial of the Pell $ p- $numbers and generalized Mersenne numbers. Two algorithms for Diffie-Hellman key exchange are given as an application of these sequences. They are illustrated via numerical examples and shown to be secure against attacks. Thus, these new sequences are practical for encryption and constructing private keys.

    Citation: Elahe Mehraban, T. Aaron Gulliver, Salah Mahmoud Boulaaras, Kamyar Hosseini, Evren Hincal. New sequences from the generalized Pell $ p- $numbers and mersenne numbers and their application in cryptography[J]. AIMS Mathematics, 2024, 9(5): 13537-13552. doi: 10.3934/math.2024660

    Related Papers:

  • This paper presents the generalized Pell $ p- $numbers and provides some related results. A new sequence is defined using the characteristic polynomial of the Pell $ p- $numbers and generalized Mersenne numbers. Two algorithms for Diffie-Hellman key exchange are given as an application of these sequences. They are illustrated via numerical examples and shown to be secure against attacks. Thus, these new sequences are practical for encryption and constructing private keys.



    加载中


    [1] N. Jiang, W. Y. Wu, L. Wang, The quantum realization of Arnold and Fibonacci image scrambling, Quantum Inf. Process., 13 (2014), 1223–1236. https://doi.org/10.1007/s11128-013-0721-7 doi: 10.1007/s11128-013-0721-7
    [2] B. Prased, Coding theory on Lucas $p$ numbers, Discrete Math. Algorithms Appl., 8 (2016), 1650074. https://doi.org/10.1142/S1793830916500749 doi: 10.1142/S1793830916500749
    [3] T. Zhang, S. Li, R. Ge, M. Yuan, Y. Ma, A novel 1D hybrid chaotic map-based image compression and encryption using compressed sensing and Fibonacci-Lucas transform, Math. Probl. Eng., 2016 (2016), 7683687. https://doi.org/10.1155/2016/7683687 doi: 10.1155/2016/7683687
    [4] S. Halici, S. Oz, On Gaussian Pell polynomials and their some properties, Palest. J. Math., 7 (2018), 251–256.
    [5] M. Hashemi, E. Mehraban, Fibonacci length and the generalized order $k$-Pell sequences of the 2-generator $p$-groups of nilpotency class 2, J. Algebra Appl., 22 (2023), 2350061. https://doi.org/10.1142/S0219498823500615 doi: 10.1142/S0219498823500615
    [6] J. Hiller, Y. Aküzüm, Ö. Deveci, The adjacency-Pell-Hurwitz numbers, Integers, 18 (2018), A83. https://doi.org/10.5281/zenodo.10682656 doi: 10.5281/zenodo.10682656
    [7] E. Kilic, The generalized order-$k$ Fibonacci-Pell sequence by matrix methods, J. Comput. Appl. Math., 209 (2007), 133–145. https://doi.org/10.1016/j.cam.2006.10.071 doi: 10.1016/j.cam.2006.10.071
    [8] E. Kilic, The generalized Pell $(p, i)$-numbers and their Binet formulas, combinatorial representations, sums, Chaos Solit. Fractals, 40 (2009), 2047–2063. https://doi.org/10.1016/j.chaos.2007.09.081 doi: 10.1016/j.chaos.2007.09.081
    [9] Ö. Deveci, The $k$-nacci sequences and the generalized order $k$-Pell sequences in the semi-direct product of finite cyclic groups, Chiang Mai J. Sci., 40 (2013), 89–98.
    [10] Ö. Deveci, A. G. Shannon, The quaternion-Pell sequence, Commun. Algebra, 46 (2018), 5403–5409. https://doi.org/10.1080/00927872.2018.1468906 doi: 10.1080/00927872.2018.1468906
    [11] M. Hashemi, E. Mehraban, The generalized order $k$-Pell sequences in some special groups of nilpotency class 2, Commun. Algebra, 50 (2021), 1768–1784. https://doi.org/10.1080/00927872.2021.1988959 doi: 10.1080/00927872.2021.1988959
    [12] W. M. Abd-Elhameed, N. A. Zeyada, New identities involving generalized Fibonacci and generalized Lucas numbers, Indian J. Pure Appl. Math., 49 (2018), 527–537. https://doi.org/10.1007/s13226-018-0282-7 doi: 10.1007/s13226-018-0282-7
    [13] A. K. Amin, N. A. Zeyada, Some new identities of a type of generalized numbers involving four parameters, AIMS Math., 7 (2021), 12962–12980. https://doi.org/10.3934/math.2022718 doi: 10.3934/math.2022718
    [14] W. M. Abd-Elhameed, A. N. Philippou, N. A. Zeyada, Novel results for two generalized classes of Fibonacci and Lucas polynomials and their uses in the reduction of some radicals, Mathematics, 10 (2022), 2342. https://doi.org/10.3390/math10132342 doi: 10.3390/math10132342
    [15] W. M. Abd-Elhameed, A. Napoli, New formulas of convolved Pell polynomials, AIMS Math., 9 (2024), 565–593. https://doi.org/10.3934/math.2024030 doi: 10.3934/math.2024030
    [16] P. Ochalik, A. Wloch, On generalized Mersenne numbers, their interpretations and matrix generators, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 72 (2018), 69–76. https://doi.org/10.17951/a.2018.72.1.69-76 doi: 10.17951/a.2018.72.1.69-76
    [17] P. Catarino, H. Campos, P. Vasco, On the Mersenne sequence, Ann. Math. Inform., 46 (2016), 37–53.
    [18] M. Chelgham, A. Boussayoud, On the $k$-Mersenne-Lucas numbers, Notes Number Theory Discrete Math., 27 (2021), 7–13. https://doi.org/10.7546/nntdm.2021.27.1.7-13 doi: 10.7546/nntdm.2021.27.1.7-13
    [19] A. S. Sergeer, Generalized Mersenne matrices and Balonin's conjecture, Autom. Control Comput. Sci., 48 (2014), 214–220. https://doi.org/10.3103/S0146411614040063 doi: 10.3103/S0146411614040063
    [20] Y. Soykan, On generalized $p$-Mersenne numbers, Earthline J. Math. Sci., 8 (2022), 83–120. https://doi.org/10.34198/ejms.8122.83120 doi: 10.34198/ejms.8122.83120
    [21] Y. Zheng, S. Shon, Exact inverse matrices of Fermat and Mersenne circulant matrix, Abstr. Appl. Anal., 2015 (2015), 760823. https://doi.org/10.1155/2015/760823 doi: 10.1155/2015/760823
    [22] Y. Akuzum, Ö. Deveci, The Hadamard-type $k$-step Fibonacci sequences in groups, Commun. Algebra, 48 (2020), 2844–2856. https://doi.org/10.1080/00927872.2020.1723609 doi: 10.1080/00927872.2020.1723609
    [23] L. Chen, Y. Chen, The $n$-Diffie-Hellman problem and multiple-key encryption, Int. J. Inf. Secur., 11 (2012), 305–320. https://doi.org/10.1007/s10207-012-0171-8 doi: 10.1007/s10207-012-0171-8
    [24] H. Chien, Provably secure authenticated Diffie-Hellman key exchange for resource-limited smart card, J. Shanghai Jiaotong Univ. (Sci.), 19 (2014), 436–439. https://doi.org/10.1007/s12204-014-1521-7 doi: 10.1007/s12204-014-1521-7
    [25] D. Coppersmith, A. M. Odlzyko, R. Schroeppel, Discrete logarithms in $GF(p)$, Algorithmica, 1 (1986), 1–15. https://doi.org/10.1137/0406010 doi: 10.1137/0406010
    [26] L. Harn, C. Lin, Efficient group Diffie-Hellman key agreement protocols, Comput. Electr. Eng., 40 (2014), 1972–1980. https://doi.org/10.1016/j.compeleceng.2013.12.018 doi: 10.1016/j.compeleceng.2013.12.018
    [27] M. Eftekhari, A Diffie-Hellman key exchange protocol using matrices over noncommutative rings, Groups Complex. Cryptol., 4 (2012), 167–176. https://doi.org/10.1515/gcc-2012-0001 doi: 10.1515/gcc-2012-0001
    [28] J. Partala, Algebraic generalization of Diffie-Hellman key exchange, J. Math. Cryptol., 12 (2018), 1–21. https://doi.org/10.1515/jmc-2017-0015 doi: 10.1515/jmc-2017-0015
    [29] P. A. Grillet, Abstract Algebra, 2 Eds., Berlin: Springer, 2007.
    [30] W. Stallings, Cryptography and Network Security: Principles and Practice, 7 Eds., Harlow: Pearson, 2017.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(772) PDF downloads(46) Cited by(2)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog