This paper presents the generalized Pell $ p- $numbers and provides some related results. A new sequence is defined using the characteristic polynomial of the Pell $ p- $numbers and generalized Mersenne numbers. Two algorithms for Diffie-Hellman key exchange are given as an application of these sequences. They are illustrated via numerical examples and shown to be secure against attacks. Thus, these new sequences are practical for encryption and constructing private keys.
Citation: Elahe Mehraban, T. Aaron Gulliver, Salah Mahmoud Boulaaras, Kamyar Hosseini, Evren Hincal. New sequences from the generalized Pell $ p- $numbers and mersenne numbers and their application in cryptography[J]. AIMS Mathematics, 2024, 9(5): 13537-13552. doi: 10.3934/math.2024660
This paper presents the generalized Pell $ p- $numbers and provides some related results. A new sequence is defined using the characteristic polynomial of the Pell $ p- $numbers and generalized Mersenne numbers. Two algorithms for Diffie-Hellman key exchange are given as an application of these sequences. They are illustrated via numerical examples and shown to be secure against attacks. Thus, these new sequences are practical for encryption and constructing private keys.
[1] | N. Jiang, W. Y. Wu, L. Wang, The quantum realization of Arnold and Fibonacci image scrambling, Quantum Inf. Process., 13 (2014), 1223–1236. https://doi.org/10.1007/s11128-013-0721-7 doi: 10.1007/s11128-013-0721-7 |
[2] | B. Prased, Coding theory on Lucas $p$ numbers, Discrete Math. Algorithms Appl., 8 (2016), 1650074. https://doi.org/10.1142/S1793830916500749 doi: 10.1142/S1793830916500749 |
[3] | T. Zhang, S. Li, R. Ge, M. Yuan, Y. Ma, A novel 1D hybrid chaotic map-based image compression and encryption using compressed sensing and Fibonacci-Lucas transform, Math. Probl. Eng., 2016 (2016), 7683687. https://doi.org/10.1155/2016/7683687 doi: 10.1155/2016/7683687 |
[4] | S. Halici, S. Oz, On Gaussian Pell polynomials and their some properties, Palest. J. Math., 7 (2018), 251–256. |
[5] | M. Hashemi, E. Mehraban, Fibonacci length and the generalized order $k$-Pell sequences of the 2-generator $p$-groups of nilpotency class 2, J. Algebra Appl., 22 (2023), 2350061. https://doi.org/10.1142/S0219498823500615 doi: 10.1142/S0219498823500615 |
[6] | J. Hiller, Y. Aküzüm, Ö. Deveci, The adjacency-Pell-Hurwitz numbers, Integers, 18 (2018), A83. https://doi.org/10.5281/zenodo.10682656 doi: 10.5281/zenodo.10682656 |
[7] | E. Kilic, The generalized order-$k$ Fibonacci-Pell sequence by matrix methods, J. Comput. Appl. Math., 209 (2007), 133–145. https://doi.org/10.1016/j.cam.2006.10.071 doi: 10.1016/j.cam.2006.10.071 |
[8] | E. Kilic, The generalized Pell $(p, i)$-numbers and their Binet formulas, combinatorial representations, sums, Chaos Solit. Fractals, 40 (2009), 2047–2063. https://doi.org/10.1016/j.chaos.2007.09.081 doi: 10.1016/j.chaos.2007.09.081 |
[9] | Ö. Deveci, The $k$-nacci sequences and the generalized order $k$-Pell sequences in the semi-direct product of finite cyclic groups, Chiang Mai J. Sci., 40 (2013), 89–98. |
[10] | Ö. Deveci, A. G. Shannon, The quaternion-Pell sequence, Commun. Algebra, 46 (2018), 5403–5409. https://doi.org/10.1080/00927872.2018.1468906 doi: 10.1080/00927872.2018.1468906 |
[11] | M. Hashemi, E. Mehraban, The generalized order $k$-Pell sequences in some special groups of nilpotency class 2, Commun. Algebra, 50 (2021), 1768–1784. https://doi.org/10.1080/00927872.2021.1988959 doi: 10.1080/00927872.2021.1988959 |
[12] | W. M. Abd-Elhameed, N. A. Zeyada, New identities involving generalized Fibonacci and generalized Lucas numbers, Indian J. Pure Appl. Math., 49 (2018), 527–537. https://doi.org/10.1007/s13226-018-0282-7 doi: 10.1007/s13226-018-0282-7 |
[13] | A. K. Amin, N. A. Zeyada, Some new identities of a type of generalized numbers involving four parameters, AIMS Math., 7 (2021), 12962–12980. https://doi.org/10.3934/math.2022718 doi: 10.3934/math.2022718 |
[14] | W. M. Abd-Elhameed, A. N. Philippou, N. A. Zeyada, Novel results for two generalized classes of Fibonacci and Lucas polynomials and their uses in the reduction of some radicals, Mathematics, 10 (2022), 2342. https://doi.org/10.3390/math10132342 doi: 10.3390/math10132342 |
[15] | W. M. Abd-Elhameed, A. Napoli, New formulas of convolved Pell polynomials, AIMS Math., 9 (2024), 565–593. https://doi.org/10.3934/math.2024030 doi: 10.3934/math.2024030 |
[16] | P. Ochalik, A. Wloch, On generalized Mersenne numbers, their interpretations and matrix generators, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 72 (2018), 69–76. https://doi.org/10.17951/a.2018.72.1.69-76 doi: 10.17951/a.2018.72.1.69-76 |
[17] | P. Catarino, H. Campos, P. Vasco, On the Mersenne sequence, Ann. Math. Inform., 46 (2016), 37–53. |
[18] | M. Chelgham, A. Boussayoud, On the $k$-Mersenne-Lucas numbers, Notes Number Theory Discrete Math., 27 (2021), 7–13. https://doi.org/10.7546/nntdm.2021.27.1.7-13 doi: 10.7546/nntdm.2021.27.1.7-13 |
[19] | A. S. Sergeer, Generalized Mersenne matrices and Balonin's conjecture, Autom. Control Comput. Sci., 48 (2014), 214–220. https://doi.org/10.3103/S0146411614040063 doi: 10.3103/S0146411614040063 |
[20] | Y. Soykan, On generalized $p$-Mersenne numbers, Earthline J. Math. Sci., 8 (2022), 83–120. https://doi.org/10.34198/ejms.8122.83120 doi: 10.34198/ejms.8122.83120 |
[21] | Y. Zheng, S. Shon, Exact inverse matrices of Fermat and Mersenne circulant matrix, Abstr. Appl. Anal., 2015 (2015), 760823. https://doi.org/10.1155/2015/760823 doi: 10.1155/2015/760823 |
[22] | Y. Akuzum, Ö. Deveci, The Hadamard-type $k$-step Fibonacci sequences in groups, Commun. Algebra, 48 (2020), 2844–2856. https://doi.org/10.1080/00927872.2020.1723609 doi: 10.1080/00927872.2020.1723609 |
[23] | L. Chen, Y. Chen, The $n$-Diffie-Hellman problem and multiple-key encryption, Int. J. Inf. Secur., 11 (2012), 305–320. https://doi.org/10.1007/s10207-012-0171-8 doi: 10.1007/s10207-012-0171-8 |
[24] | H. Chien, Provably secure authenticated Diffie-Hellman key exchange for resource-limited smart card, J. Shanghai Jiaotong Univ. (Sci.), 19 (2014), 436–439. https://doi.org/10.1007/s12204-014-1521-7 doi: 10.1007/s12204-014-1521-7 |
[25] | D. Coppersmith, A. M. Odlzyko, R. Schroeppel, Discrete logarithms in $GF(p)$, Algorithmica, 1 (1986), 1–15. https://doi.org/10.1137/0406010 doi: 10.1137/0406010 |
[26] | L. Harn, C. Lin, Efficient group Diffie-Hellman key agreement protocols, Comput. Electr. Eng., 40 (2014), 1972–1980. https://doi.org/10.1016/j.compeleceng.2013.12.018 doi: 10.1016/j.compeleceng.2013.12.018 |
[27] | M. Eftekhari, A Diffie-Hellman key exchange protocol using matrices over noncommutative rings, Groups Complex. Cryptol., 4 (2012), 167–176. https://doi.org/10.1515/gcc-2012-0001 doi: 10.1515/gcc-2012-0001 |
[28] | J. Partala, Algebraic generalization of Diffie-Hellman key exchange, J. Math. Cryptol., 12 (2018), 1–21. https://doi.org/10.1515/jmc-2017-0015 doi: 10.1515/jmc-2017-0015 |
[29] | P. A. Grillet, Abstract Algebra, 2 Eds., Berlin: Springer, 2007. |
[30] | W. Stallings, Cryptography and Network Security: Principles and Practice, 7 Eds., Harlow: Pearson, 2017. |