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1. Introduction

The Fibonacci sequence {Fn} is defined as

Fn = Fn−1 + Fn−2, n ≥ 0,
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with initial conditions F0 = 0 and F1 = 1. This sequence and its generalizations (e.g. k-Fibonacci
sequences and k-Pell sequences), have been investigated extensively and there are applications in many
diverse fields [1–3].

The Pell sequence {Pn} is defined as

Pn = 2Pn−1 + Pn−2, n ≥ 2,

with initial conditions P0 = 0 and P1 = 1. This sequence and its generalizations have also been studied
extensively [4–7]. The Pell p−numbers are defined as follows.

Definition 1.1 ( [8]). For an integer p, the Pell p−numbers, denoted by {P(n, p)}, are

P(n + p + 1) = 2P(n + p) + P(n), n ≥ 0,

where P(0) = P(1) = P(2) = · · · = P(p) = 0, P(p) = 1 and P(p + 1) = 0.

Example 1.1. (i) The Pell p−numbers for p = 2 are given by

P(n + 3) = 2P(n + 2) + P(n), n ≥ 0,

so the sequence is {P(n, 2)}∞0 = {0, 1, 0, 0, 1, 2, 4, 9, 20, . . . }.
(ii) The Pell p−numbers for p = 3 are given by

P(n + 4) = 2P(n + 3) + P(n), n ≥ 0,

so, the sequence is {P(n, 3)}∞0 = {0, 0, 1, 0, 0, 0, 1, 2, 4, 8, 17, 36, 76, 160, . . . }.

The generalized order k-Pell sequences were defined in [9] as the semi-direct product of finite
cyclic groups. In [10], the quaternion-Pell sequence was introduced and extended to finite cyclic
groups. The generalized order k-Pell sequences for special groups of nilpotency class 2 were given
in [11]. Two new identities involving generalized Fibonacci and generalized Lucas numbers were
introduced in [12]. In [13], a Horadam-type of generalization was provided which involves the
generalized Fibonacci, generalized Lucas, Fibonacci, Lucas, Pell, Pell-Lucas, Fermat, Fermat-Lucas,
Jacobsthal, Jacobsthal-Lucas, balancing, and co-balancing numbers. Expressions connecting two
generalized classes of Fibonacci and Lucas polynomials were given in [14]. A class of polynomials
known as convolved Pell polynomials was investigated in [15].

Another important sequence is the Mersenne numbers. The nth Mersenne number has the form
Mn = 2n − 1 where n is a nonnegative integer. A generalization of these numbers is as follows:

Definition 1.2 ( [16]). For k ≥ 3 an integer, the generalized Mersenne numbers, denoted by {M(k, n)}∞0 ,
are

M(k, n) = kM(k, n − 1) − (k − 1)M(k, n − 2), n ≥ 0,

with initial conditions M(k, 0) = 0 and M(k, 1) = 1.

For k = 3, we have
M(3, n) = 3M(3, n − 1) − 2M(3, n − 2), n ≥ 0,

which gives the sequence {M(3, n)}∞0 = {0, 1, 3, 7, · · · }. The Mersenne numbers and their
generalizations and properties have been studied extensively [17–21]. The characteristic polynomials
of the Pell p−numbers and generalized Mersenne numbers are xp+1 − 2xp − 1 and x2 − kx + k − 1,
respectively.

The Hadamard-type product of polynomials f and g is defined as follows:

AIMS Mathematics Volume 9, Issue 5, 13537–13552.



13539

Definition 1.3 ( [22]). The Hadamard-type product of polynomials f and g is f ∗ g =
∑∞

i=0(ai ∗ bi)xi

where

ai ∗ bi =

{
aibi, if aibi , 0,
ai + bi, if aibi = 0,

and f (x) = amxm + · · · + a1x + a0 and g(x) = bnxn + bn−1xn−1 + · · · + b1x + b0.

Diffie-Hellman key exchange is one of the earliest and most widely used public-key cryptographic
primitives [23–26]. It allows two parties who have never met to exchange a secret key over an open
channel. In [27], the Diffie-Hellman key exchange protocol was studied using matrices over
noncommutative rings. A universal algebraic generalization of the Diffie-Hellman scheme was
proposed in [28].

Motivated by the above results and the practical importance of Diffie-Hellman key exchange, we
first generalize the Pell numbers and study their combinatorial representations. Then the characteristic
polynomials of the Pell p−numbers and generalized Mersenne numbers are used to obtain new
sequences. As an application, these sequences are employed to obtain a new Diffie-Hellman key
exchange. This is the first algorithm that uses sequences and matrices to obtain a key.

The remainder of this paper is organized as follows: Section 2 presents the Pell (p, t)−numbers and
their combinatorial representation and matrices are given. In Section 3, the Hadamard-type product
of Pell p−number polynomials and generalized Mersenne numbers are considered. Section 4 provides
a Diffie-Hellman key exchange using the Pell (p, t)−numbers and the Hadamard-type Pell-Mersenne
p−numbers. Finally, some concluding remarks are given in Section 5.

2. The Pell (p, t)−numbers

In this section, we define the Pell (p, t)−numbers and obtain new sequences. Then their structure is
investigated. The Pell (p, t)−numbers, p an integer, are defined as follows.

Definition 2.1. For integers p and t, the Pell (p, t)−numbers, denoted by {Pn(p, t)}, are

Pn(p, t) = 2Pn−1(p, t) + Pn−p−1(p, t) + · · · + Pn−p−t−1(p, t), n ≥ p + t + 1, (2.1)

where P0(p, t) = P1(p, t) = · · · = Pp+t−1(p, t) = 0, Pp+t(p, t) = 1.

Example 2.1. (i) The Pell (p, t)−numbers for p = 2 and t = 1 are given by

Pn(2, 1) = 2Pn−1(2, 1) + Pn−3(2, 1) + Pn−4(2, 1), n ≥ 4,

so the sequence is {Pn(2, 1)}∞0 = {0, 0, 0, 1, 2, 4, 9, 21, 48, 109, 248, 565, . . . }.
(ii) The Pell (p, t)−numbers for p = 3 and t = 1 are given by

Pn(3, 1) = 2Pn−1(3, 1) + Pn−4(3, 1) + Pn−5(3, 1), n ≥ 5,

so the sequence is {Pn(3, 1)}∞0 = {0, 0, 0, 1, 2, 4, 8, 17, 37, 80, 172, . . . }.

Lemma 2.1. Let u(x) be the generating function of the Pell (p, t)−numbers. Then

u(x) =
xp+t

1 − 2x − xp+1 − xp+2 − · · · − xp+t+1 · (2.2)
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Proof. We have

u(x) =
∞∑

n=1

Pn(p, t)xn

= P1(p, t)x + P2(p, t)x2 + · · · + Pp+t(p, t)xp+t +

∞∑
n=p+t+1

Pn(p, t)xn

= xp+t +

∞∑
n=p+t+1

[2Pn−1(p, t) + Pn−p−1(p, t) + · · · + Pn−p−t−1(p, t)]xn

= xp+t +

∞∑
n=p+t+1

2Pn−1(p, t)xn +

∞∑
n=p+t+1

Pn−p−1(p, t)xn + · · · +

∞∑
n=p+t+1

Pn−p−t−1(p, t)xn

= xp+t + 2x
∞∑

n=1

Pn(p, t)xn + xp+1
∞∑

n=1

Pn(p, t)xn + · · · + xp+t+1
∞∑

n=1

Pn(p, t)xn

= xp+t + 2xu(x) + xp+1u(x) + · · · + xp+t+1u(x).

□

Theorem 2.1. The Pell (p, t)−numbers {Pn(p, t)} have the following exponential representation

t(x) = xp+t exp
∞∑

i=1

(x)i

i
(2 + xp + xp+1 + · · · + xp+t)i, p ≥ 2.

Proof. Using (2.2), we have

ln u(x) = ln xp+t − ln(1 − 2x − xp+1 − xp+2 − · · · − xp+t+1).

Since

− ln(1 − 2x − xp+1 − xp+2 − · · · − xp+t+1) = −[−x(2 + xp + xp+1

+ · · · + xp+t) −
1
2

x2(2 + xp + xp+1 + · · · + xp+t)2

− · · · −
1
n

xn(2 + xp + xp+1 + · · · + xp+t)n − . . . ],

the result follows. □

Let t = 1. Then the recurrence relation (2.1) gives

Pn(p, 1)
Pn−1(p, 1)
...

Pn−p−t+1(p, 1)
Pn−p−t(p, 1)


=



2 0 · · · 0 1 1
1 0 · · · 0 1 1
...
...
. . .

...
...
...

0 0 · · · 1 0 0
0 0 · · · 0 1 0





Pn−1(p, 1)
Pn−2(p, 1)
...

Pn−p−t(p, 1)
Pn−p−t−1(p, 1)


.

AIMS Mathematics Volume 9, Issue 5, 13537–13552.



13541

Lemma 2.2. For p = 2, t = 1, and n ≥ 4, we have

(M2(1))n =


Pn+3(2, 1) Pn+1(2, 1) + Pn(2, 1) Pn+2(2, 1) + Pn+1(2, 1) Pn+2(2, 1)
Pn+2(2, 1) Pn(2, 1) + Pn−1(2, 1) Pn+1(2, 1) + Pn(2, 1) Pn+1(2, 1)
Pn+1(2, 1) Pn−1(2, 1) + Pn−2(2, 1) Pn(2, 1) + Pn−1(2, 1) Pn(2, 1)
Pn(2, 1) Pn−2(2, 1) + Pn−3(2, 1) Pn−1(2, 1) + Pn−2(2, 1) Pn−1(2, 1)


4×4

where

M2(1) =


2 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0

 .
Proof. By induction on n. For p = 2, t = 1, and n = 4, we have

(M2(1))4 =


21 6 13 9
9 3 6 4
4 1 3 2
2 0 1 1

 =

P7(2, 1) P5(2, 1) + P4(2, 1) P5(2, 1) + P6(2, 1) P6(2, 1)
P6(2, 1) P4(2, 1) + P3(2, 1) P4(2, 1) + P5(2, 1) P5(2, 1)
P5(2, 1) P3(2, 1) + P2(2, 1) P3(2, 1) + P4(2, 1) P4(2, 1)
P4(2, 1) P2(2, 1) + P1(2, 1) P2(2, 1) + P3(2, 1) P3(2, 1)

 .
Now, assume that the statement holds for n = s. Then for n = s + 1

(M2(1))s+1

=


2 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0

 ×

Ps+3(2, 1) Ps+1(2, 1) + Ps(2, 1) Ps+2(2, 1) + Ps+1(2, 1) Ps+2(2, 1)
Ps+2(2, 1) Ps(2, 1) + Ps−1(2, 1) Ps+1(2, 1) + Ps(2, 1) Ps+1(2, 1)
Ps+1(2, 1) Ps−1(2, 1) + Ps−2(2, 1) Ps(2, 1) + Ps−1(2, 1) Ps(2, 1)
Ps(2, 1) Ps−2(2, 1) + Ps−3(2, 1) Ps−1(2, 1) + Ps−2(2, 1) Ps−1(2, 1)


=


Ps+4(2, 1) Ps+2(2, 1) + Ps+1(2, 1) Ps+3(2, 1) + Ps+2(2, 1) Ps+3(2, 1)
Ps+3(2, 1) Ps+1(2, 1) + Ps(2, 1) Ps+2(2, 1) + Ps+1(2, 1) Ps+2(2, 1)
Ps+2(2, 1) Ps(2, 1) + Ps−1(2, 1) Ps+1(2, 1) + Ps(2, 1) Ps+1(2, 1)
Ps+1(2, 1) Ps−1(2, 1) + Ps−2(2, 1) Ps(2, 1) + Ps−1(2, 1) Ps(2, 1)

 ,
which completes the proof. □

Let Mp(1) = [mi, j](p+2)×(p+2) be the companion matrix for the Pell (p, 1)−numbers. It can be readily
established by mathematical induction on n that for p ≥ 3 and n ≥ p + 2

(Mp(1))n =

Pn+p+1(p, 1) Pn(p, 1) + Pn+1(p, 1) · · · Pn+p(p, 1) + Pn+p−1(p, 1) Pn+p(p, 1)
Pn+p(p, 1) Pn−1(p, 1) + Pn(p, 1) · · · Pn+p−1(p, 1) + Pn+p−2(p, 1) Pn+p−1(p, 1)
...

...
. . .

...
...

Pn+1(p, 1) Pn−p+1(p, 1) + Pn−p(p, 1) · · · Pn(p, 1) + Pn−1(p, 1) Pn(p, 1)
Pn(p, 1) Pn−p(p, 1) + Pn−p−1(p, 1) · · · Pn−1(p, 1) + Pn−2(p, 1) Pn−1(p, 1)


.

Theorem 2.2. For u ∈ N , p ≥ 2 and n ≥ p + 2, we have

(i) (Mp(1))n(Mp(1))u = (Mp(1))n+u.
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(ii) (Mp(1))n(Mp(1))u = (Mp(1))u(Mp(1))n.

Proof. By induction on u. For u = 1 we have

(Mp(1))nMp(1) =

Pn+p+1(p, 1) Pn(p, 1) + Pn+1(p, 1) · · · Pn+p(p, 1) + Pn+p−1(p, 1) Pn+p(p, 1)
Pn+p+(p, 1) Pn−1(p, 1) + Pn(p, 1) · · · Pn+p−1(p, 1) + Pn+p−2(p, 1) Pn+p−1(p, 1)

...
...

. . .
...

...

Pn+1(p, 1) Pn−p+1(p, 1) + Pn−p(p, 1) · · · Pn(p, 1) + Pn−1(p, 1) Pn(p, 1)
Pn(p, 1) Pn−p(p, 1) + Pn−p−1(p, 1) · · · Pn−1(p, 1) + Pn−2(p, 1) Pn−1(p, 1)



×



2 0 0 · · · 0 1 1
1 0 0 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0



=



Pn+p+2(p, 1) Pn+1(p, 1) + Pn+2(p, 1) · · · Pn+p+1(p, 1) + Pn+p(p, 1) Pn+p+1(p, 1)
Pn+p+1(p, 1) Pn(p, 1) + Pn+1(p, 1) · · · Pn+p(p, 1) + Pn+p−1(p, 1) Pn+p(p, 1)

...
...

. . .
...

...

Pn+2(p, 1) Pn−p+2(p, 1) + Pn−p+1(p, 1) · · · Pn+1(p, 1) + Pn(p, 1) Pn+1(p, 1)
Pn+1(p, 1) Pn−p+1(p, 1) + Pn−p(p, 1) · · · Pn(p, 1) + Pn−1(p, 1) Pn(p, 1)


= (Mp(1))n+1.

Now suppose it is true for u = s. Then for u = s + 1

(Mp(1))nMp(1)s+1 = Mp(1)n+sMp(1) =

Pn+s+p+1(p, 1) Pn+s(p, 1) + Pn+s+1(p, 1) · · · Pn+s+p(p, 1) + Pn+s+p−1(p, 1) Pn+s+p(p, 1)
Pn+s+p+(p, 1) Pn+s−1(p, 1) + Pn+s(p, 1) · · · Pn+s+p−1(p, 1) + Pn+s+p−2(p, 1) Pn+s+p−1(p, 1)

...
...

. . .
...

...

Pn+s+1(p, 1) Pn+s−p+1(p, 1) + Pn+s−p(p, 1) · · · Pn+s(p, 1) + Pn+s−1(p, 1) Pn+s(p, 1)
Pn+s(p, 1) Pn+s−p(p, 1) + Pn+s−p−1(p, 1) · · · Pn+s−1(p, 1) + Pn+s−2(p, 1) Pn+s−1(p, 1)



×



2 0 0 · · · 0 1 1
1 0 0 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0


= Mp(1)n+s+1,

which completes the proof of (i). For (ii), using (i) we have

(Mp(1))n(Mp(1))u = (Mp(1))n+u = (Mp(1))u+n = (Mp(1))u(Mp(1))n.

□
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For n < 0, the Pell (p, t)−numbers are defined as

P−n(p, t) = P−n+p+t+1(p, t) − 2P−n+p+t(p, t) + P−n+t(p, t) + · · · + P−n(p, t), n ≥ 0.

For n < 0, the companion matrix of the Pell (p, 1)−numbers are defined as follows. For n = −1 we
have

(Mp(1))−1 =



0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 0 0 1
1 −2 0 · · · 0 −1 −1


and by induction on n, we obtain

(Mp(1))−n =

P−n+p+1(p, 1) P−n(p, 1) + P−n+1(p, 1) · · · P−n+p(p, 1) + P−n+p−1(p, 1) P−n+p(p, 1)
P−n+p(p, 1) P−n−1(p, 1) + P−n(p, 1) · · · P−n+p−1(p, 1) + P−n+p−2(p, 1) P−n+p−1(p, 1)

...
...

. . .
...

...

P−n+1(p, 1) P−n−p+1(p, 1) + P−n−p(p, 1) · · · P−n(p, 1) + P−n−1(p, 1) P−n(p, 1)
P−n(p, 1) P−n−p(p, 1) + P−n−p−1(p, 1) · · · P−n−1(p, 1) + P−n−2(p, 1) P−n−1(p, 1)


.

Theorem 2.3. For u ∈ N, p ≥ 2, and n ≥ p + 2, we have

(i) (Mp(1))−n(Mp(1))−u = (Mp(1))−(n+u).

(ii) (Mp(1))−n(Mp(1))−u = (Mp(1))−u(Mp(1))−n.

Proof. The proof is similar to that of Theorem 2.2 and so is omitted. □

3. The Hadamard-type Pell-Mersenne p−numbers

In this section, new sequences are obtained using the Hadamard-type product of the Pell p−numbers
and Mersenne numbers. Then, some results on their structure are obtained. First, we give the new
Hadamard-type Pell-Mersenne p−sequences.

Definition 3.1. For integers k ≥ 3 and p ≥ 3, the Hadamard-type Pell-Mersenne p−sequences, denoted
by {MPn(k, p)}∞0 , are

MPn+p+1(k, p) = 2MPn+p(k, p) − MPn+2(k, p) + kMPn+1(k, p) + (k − 1)MPn(k, p), n ≥ 0, (3.1)

with initial conditions MP0(k, p) = MP1(k, p) = · · · = MPp−1(k, p) = 0 and MPp(k, p) = 1.

For example, the Hadamard-type Pell-Mersenne p−sequence for p = 3 and k = 3 is given by

MPn+4(3, 3) = 2MPn+3(3, 3) − MPn+2(3, 3) + 3MPn+1(3, 3) + 2MPn(3, 3), n ≥ 0,

so {MPn(3, 3)}∞0 = {0, 0, 0, 1, 2, 3, 7, 19, 44, 96, · · · }, and for p = 4 and k = 3 is given by

MPn+5(4, 3) = 2MPn+4(4, 3) − MPn+2(4, 3) + 3MPn+1(4, 3) + 2MPn(4, 3), n ≥ 0,
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so {MPn(4, 3)}∞0 = {0, 0, 0, 0, 1, 2, 3, 8, 24, 58, 133, . . . }.
From the recurrence relation (3.1), we have



MPn+p+1(k, p)
MPn+p(k, p)

...

MPn+2(k, p)
MPn+1(k, p)


=



2 0 · · · 0 −1 k k − 1
1 0 · · · 0 0 0 0
0 1 · · · 0 0 0 0
...
...
. . .

...
...
...

...

0 0 · · · 0 1 0 0
0 0 · · · 0 0 1 0





MPn+p(k, p)
MPn+p−1(k, p)

...

MPn+1(k, p)
MPn(k, p)


.

The Hadamard-type Pell-Mersenne p−numbers have the following companion matrix

Np(k) =



2 0 0 · · · 0 −1 k k − 1
1 0 0 · · · 0 0 0 0
0 1 0 · · · 0 0 0 0
...
...
...
. . .

...
...
...

...

0 0 0 · · · 0 0 1 0


(p+1)×(p+1)

,

and is called the Hadamard-type Pell-Mersenne p−matrix.

Theorem 3.1. For p = 3, k = 3, and n ≥ 4, we have

(N3(3))n =


MPn+3(3, 3) −MPn+2(3, 3) + (3MPn+1(3, 3) + 2MPn(3, 3))
MPn+2(3, 3) −MPn+1(3, 3) + (3MPn(3, 3) + 2MPn−1(3, 3))
MPn+1(3, 3) −MPn(3, 3) + (3MPn−1(3, 3) + 2MPn−2(3, 3))
MPn(3, 3) −MPn−1(3, 3) + (3MPn−2(3, 3) + 2MPn−3(3, 3))

3MPn+2(3, 3) + 2MPn+1(3, 3) 3MPn+2(3, 3)
3MPn+1(3, 3) + 2MPn(3, 3) 3MPn+1(3, 3)
3MPn(3, 3) + 2MPn−1(3, 3) 3MPn(3, 3)

3MPn−1(3, 3) + 2MPn−2(3, 3) 3MPn−1(3, 3)

 := Un(3)

where

N3(3) =


2 −1 3 2
1 0 0 0
0 1 0 0
0 0 1 0


4×4

.

Proof. By induction on n. For n = 4 we have

(N3(3))4 =


1 −1 3 2
1 0 0 0
0 1 0 0
0 0 1 0


4

4×4

=


19 6 27 14
7 5 13 6
3 1 8 4
2 −1 3 2
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=


MP7(3, 3) −MP6(3, 3) + (3MP5(3, 3) + 2MP4(3, 3)) 3MP6(3, 3) + 2MP5(3, 3) 3MP6(3, 3)
MP6(3, 3) −MP5(3, 3) + (3MP4(3, 3) + 2MP3(3, 3)) 3MP5(3, 3) + 2MP4(3, 3) 3MP5(3, 3)
MP5(3, 3) −MP4(3, 3) + (3MP3(3, 3) + 2MP2(3, 3)) 3MP4(3, 3) + 2MP3(3, 3) 3MP4(3, 3)
MP4(3, 3) −MP3(3, 3) + (3MP2(3, 3) + 2MP1(3, 3)) 3MP3(3, 3) + 2MP2(3, 3) 3MP3(3, 3)

 ,
so the statement is true. Now, assume that the statement holds for n = t. Then, for n = t + 1 we have

(N3(3))t+1 =


2 −1 3 2
1 0 0 0
0 1 0 0
0 0 1 0

 ×


MPt+3(3, 3) −MPt+2(3, 3) + (3MPt+1(3, 3) + 2MPt(3, 3))
MPt+2(3, 3) −MPt+1(3, 3) + (3MPt(3, 3) + 2MPt−1(3, 3))
MPt+1(3, 3) −MPt(3, 3) + (3MPt−1(3, 3) + 2MPt−2(3, 3))
MPt(3, 3) −MPt−1(3, 3) + (3MPt−2(3, 3) + 2MPt−3(3, 3))

3MPt+2(3, 3) + 2MPt+1(3, 3) 3MPt+2(3, 3)
3MPt+1(3, 3) + 2MPt(3, 3) 3MPt+1(3, 3)
3MPt(3, 3) + 2MPt−1(3, 3) 3MPt(3, 3)

3MPt−1(3, 3) + 2MPt−2(3, 3) 3MPt−1(3, 3)

 := Ut+1(3),

which completes the proof. □

Corollary 3.1. For p = 3, k ≥ 4, and n ≥ 4, we have

(N3(k))n =


MPn+3(k, 3) −MPn+2(k, 3) + (kMPn+1(k, 3) + (k − 1)MPn(k, 3))
MPn+2(k, 3) −MPn+1(k, 3) + (kMPn(k, 3) + (k − 1)MPn−1(k, 3))
MPn+1(k, 3) −MPn(k, 3) + (kMPn−1(k, 3) + (k − 1)MPn−2(k, 3))
MPn(k, 3) −MPn−1(k, 3) + (kMPn−2(k, 3) + (k − 1)MPn−3(k, 3))

kMPn+2(k, 3) + (k − 1)MPn+1(k, 3) kMPn+2(k, 3)
kMPn+1(k, 3) + (k − 1)MPn(k, 3) kMPn+1(k, 3)
kMPn(k, 3) + (k − 1)MPn−1(k, 3) kMPn(k, 3)

kMPn−1(k, 3) + (k − 1)MPn−2(k, 3) kMPn−1(k, 3)

 ,
where

N3(k) =


2 −1 k k − 1
1 0 0 0
0 1 0 0
0 0 1 0


4×4

.

Using induction on p ≥ 4 and n ≥ p + 1 gives

(N3(3))n =



MPn+p(k, p) kMPn+p−1(k, p) + (k − 1)MPn+p−2(k, p) (k − 1)MPn+p−1(k, p)
MPn+p−1(k, p) kMPn+p−2(k, p) + (k − 1)MPn+p−3(k, p) (k − 1)MPn+p−2(k, p)

... N∗3
...

...

MPn+1(k, p) kMPn(k, p) + (k − 1)MPn−1(k, p) (k − 1)MPn(k, p)
MPn(k, p) kMPn−1(k, p) + (k − 1)MPn−2(k, p) (k − 1)MPn−1(k, p)



N∗3 =



−MPn+2(k, p) + (kMPn+1(k, p) + (k − 1)MPn(k, p)) · · ·

−MPn+1(k, p) + (kMPn(k, p) + (k − 1)MPn−1(k, p)) · · ·
...

...

−MPn−(p−3)(k, p) + (kMPn( p−2)(k, p) + (k − 1)MPn−(p−1)(k, p)) · · ·
−MPn−(p−2)(k, p) + (kMPn( p−1)(k, p) + (k − 1)MPn−p(k, p)) · · ·
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−MPn+p−1(k, p) + (kMPn+p−2(k, p) + (k − 1)MPn+p−3(k, p))
−MPn+p−2(k, p) + (kMPn+p−3(k, p) + (k − 1)MPn+p−4(k, p))

...

−MPn(k, p) + (kMPn−1(k, p) + (k − 1)MPn−2(k, p))
−MPn−1(k, p) + (kMPn−2(k, p) + (k − 1)MPn−3(k, p))


.

Lemma 3.1. Let y(x) be the Hadamard-type Pell-Mersenne p−numbers. Then

y(x) =
xp

1 − 2x + xp−1 − kxp − (k − 1)xp+1 . (3.2)

Proof. We have

y(x) =
∞∑

n=1

MPn(k, p)xn

= MP1(k, p)x1 + MP2(k, p)(k, p)x2 + · · · + MPp−1(k, p)xp−1 + MPp(k, p)xp +

∞∑
n=p+1

MPn(k, p)xn

= xp +

∞∑
n=p+1

[2MPn+p(k, p) − MPn+2(k, p) + kMPn+1(k, p) + (k − 1)MPn(k, p)]xn

= xp +

∞∑
n=p+1

2MPn+p(k, p)xn −

∞∑
n=p+1

MPn+2(k, p)xn + k
∞∑

n=p+1

MPn+1(k, p)xn

+ (k − 1)
∞∑

n=p+1

MPn(k, p)xn

= xp + 2x
∞∑

n=1

MPn(k, p)xn − x2
∞∑

n=1

MPn(k, p)xn + kxp
∞∑

n=1

MPn(k, p)xn

+ (k − 1)xp+1
∞∑

n=1

MPn(k, p)xn

= xp + 2xy(x) − xp−1y(x) + kxpy(x) + (k − 1)xp+1y(x).

□

Theorem 3.2. The Hadamard-type Pell-Mersenne p−numbers sequences {MPn(k, p)} have the
following exponential representation

y(x) = xp exp
∞∑

i=1

(x)i

i
(2 − xp−2 + kxp−1 + (k − 1)xp)i, p ≥ 5.

Proof. Using (3.2), we have

ln(y(x)) = ln xp − ln(1 − 2x + xp−1 − kxp − (k − 1)xp+1).

Since

− ln (1 − 2x + xp−1 − kxp − (k − 1)xp+1) = −[−x(2 − xp−2 + kxp−1 + (k − 1)xp)
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−
1
2

x2(2 − xp−2 + kxp−1 + (k − 1)xp)2 − · · · −
1
i

xi(2 − xp−2 + kxp−1 + (k − 1)xp)i − . . . ]

=

∞∑
i=1

(x)i

i
(2 − xp−2 + kxp−1 + (k − 1)xp)i,

the result follows. □

4. Diffie-Hellman Key Exchange Using the Pell (p, 1)−numbers and the Hadamard-type
Pell-Mersenne p−numbers

In this section, we present a new Diffie-Hellman key exchange using the Pell (p, t)−numbers and
Hadamard-type Pell-Mersenne p−numbers matrices. Then, a security analysis is given. Two
algorithms are given below.

Algorithm 1. Alice and Bob want to establish a secret key. They select a Pell (p, t)−numbers matrix
and q a prime number over an insecure channel. Alice chooses a random number a ≥ 4 and sends
Mp(1)a (mod q) to Bob. Bob chooses a random number b ≥ 4 and sends Mp(1)b (mod q) to Alice.
Alice and Bob both compute Mp(1)ab (mod q) and use this as their private key. The algorithm steps
are given below and illustrated in Figure 1.
Step 1. The prime number q and generator Mp(1) are public (assume all users have agreed on the
general linear group over a finite field Fq and Mp(1) as the Pell (p, 1)−matrix).
Step 2. Alice chooses a random number a ≥ 4 and sends Mp(1)a (mod q) to Bob.
Step 3. Bob chooses a random number b ≥ 4 and sends Mp(1)b (mod q) to Alice.
Step 4. Alice and Bob both compute Mp(1)ab (mod q) and use this as the private key for future
communications.

Figure 1. Algorithm 1.

Example 4.1. Let (M2(1), 13) be the public key. Alice chooses a = 4 and using Lemma 2.2 computes
M2(1)4 (mod 13)

(M2(1))4 =


21 6 13 9
9 3 6 4
4 1 3 2
2 0 1 1

 ≡

8 6 0 9
9 3 6 4
4 1 3 2
2 0 1 1

 (mod 13),

AIMS Mathematics Volume 9, Issue 5, 13537–13552.



13548

and sends this to Bob. Bob chooses b = 7 and obtains M2(1)7 (mod 13)

(M2(1))7 =


248 69 157 109
109 30 69 48
48 13 30 21
21 6 13 9

 ≡

1 4 1 5
5 4 4 9
9 0 4 8
8 6 0 9

 (mod 13),

and sends this to Alice. From Theorem 2.2, we have M2(1)4M2(1)7 = M2(1)7M2(1)4, so Alice and Bob
both compute

(M2(1))7(M2(1))4 =


248 69 157 109
109 30 69 48
48 13 30 21
21 6 13 9



8 6 0 9
9 3 6 4
4 1 3 2
2 0 1 1


=


1 4 1 5
5 4 4 9
9 0 4 8
8 6 0 9



21 6 13 9
9 3 6 4
4 1 3 2
2 0 1 1

 =

6 6 6 6
6 7 6 0
0 6 7 6
6 1 6 2

 (mod 13).

This is used as the private key for future communications.

Algorithm 2. This algorithm is the same as Algorithm 1 but in Step 1 Np(k) is used.

Example 4.2. Let (N3(3), 11) be the public key. Alice chooses a = 5 and using Lemma 2.2 computes
N3(3)5 (mod 11)

(N3(3))5 =


44 8 71 38
19 6 27 14
7 5 13 6
3 1 8 4

 ≡

0 8 5 5
8 6 5 3
7 5 2 6
3 1 8 4

 (mod 11),

and sends this to Bob. Bob chooses b = 6 and obtains N3(3)6 (mod 11)

(N3(3))6 =


96 27 170 88
44 8 71 38
19 6 27 14
7 5 13 6

 ≡

8 5 5 0
0 8 5 5
8 6 5 3
7 5 2 6

 (mod 11),

and sends this to Alice. From Theorem 2.2, we have N3(3)5N3(3)6 = N3(3)6N3(3)5, so Alice and Bob
both compute

(N3(3))5(N3(3))6 =


0 8 5 5
8 6 5 3
7 5 2 6
3 1 8 4



8 5 5 0
0 8 5 5
8 6 5 3
7 5 2 6

 ≡

9 9 9 8
4 1 2 8
4 7 5 1
6 3 2 9

 (mod 11).

This is used as the private key for future communications.
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One way for an adversary to obtain the key is to generate all possible matrices. Since q can be a
very large prime number, it is intractable to check all qm2

matrices where m is the matrix size. Because
the matrices used to make the key are invertible, it is possible to check only the order of the general
linear group GLm(Fq) which also can be made intractable by choosing q a very large prime number and
m large.

GLm(Fq), q a prime number, consists of all invertible matrices of order m × m over Fq [29]. This
group has order

| GLm(Fq) |= (qm − qm−1)(qm − qm−2) · · · (qm − 1).

Consider Mp(1). Since Mp(1) is a (p + 2) × (p + 2) matrix, we must check

| GLp+2(Fq) |= (qp+2 − qp+1)(qp+2 − qp) · · · (qp+2 − q)(qp+2 − 1), (4.1)

matrices. For example, for M48(1) over F37, we have

| GL50(F37) |= (3750 − 3749)(3750 − 3748) · · · (3750 − 37)(3750 − 1) = 3.1 × 103920,

and for the key Np(k)

| GLp+1(Fq) |= (qp+1 − qp)(qp+1 − qp−1) · · · (qp+1 − q)(qp+1 − 1). (4.2)

Table 1 gives Np(k), q, and | GLp(Fq) | for 2 ≤ p ≤ 4 and 2 ≤ q ≤ 11. This shows that as p and
q increase, the number of matrices grows significantly. Thus, it can be made intractable to break the
protocol. From (4.1) and (4.2), it is clear that the key size increases with p, i.e. | GLp(Fq) |→ ∞.
Therefore, if the key space is large it is not practical to break the system via a brute-force attack [30].

Table 1. Np(k), q, and | GLp(Fq) | for 2 ≤ p ≤ 4 and 2 ≤ q ≤ 11.

Np(k) q | GLp(Fq) |
N2(k) 2 | GL3(F2) |= (23 − 22)(23 − 2)(23 − 1) = 168

3 | GL3(F3) |= (33 − 32)(33 − 3)(33 − 1) = 11232
5 | GL3(F5) |= (53 − 52)(53 − 5)(53 − 1) = 1488000
7 | GL3(F7) |= (73 − 72)(73 − 7)(73 − 1) = 28613088
11 | GL3(F11) |= (113 − 112)(113 − 11)(113 − 1) = 2124276000

N3(k) 2 | GL4(F2) |= (24 − 23)(24 − 22)(24 − 2)(23 − 1) = 20160
3 | GL4(F3) |= (34 − 33)(34 − 32)(34 − 3)(33 − 1) = 24261120
5 | GL4(F5) |= (54 − 53)(54 − 52)(54 − 5)(54 − 1) = 116064000000
7 | GL4(F7) |= (74 − 73)(74 − 72)(74 − 7)(74 − 1) = 27811094169600
11 | GL4(F11) |= (114 − 113)(114 − 112)(114 − 11)(114 − 1) = 4.13 × 1016

N4(k) 2 | GL5(F2) |= (25 − 24)(25 − 23)(25 − 22)(25 − 2)(25 − 1) = 9999360
3 | GL5(F3) |= 475566474240
5 | GL5(F5) |= 2.26 × 1017

7 | GL5(F7) |= 1.8 × 1025

11 | GL5(F11) |= 9.7 × 1024
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5. Conclusions

In this paper, two new sequences were defined using the Pell and Mersenne sequences. Their
structures were examined and some results obtained using them. Then, they were used to develop a
new Diffie-Hellman key exchange protocol that provides high security. The matrices MP(1) and NP(k)
are constructed using these sequences so calculations are fast when a and b are very large, but it is
intractable for an adversary to determine the key. This is the first algorithm that uses sequences and
matrices to obtain a key. The sequences presented are suitable for constructing private keys. Note
that other sequences such as Fibonacci and Pell sequences can be used with the proposed approach to
construct keys. In general, any matrix sequence that has the commutative property for multiplication
is suitable for use with this algorithm. As future work, the new sequences presented in this paper can
be used in other private or public key encryption algorithms.
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22. Y. Akuzum, Ö. Deveci, The Hadamard-type k-step Fibonacci sequences in groups, Commun.
Algebra, 48 (2020), 2844–2856. https://doi.org/10.1080/00927872.2020.1723609

23. L. Chen, Y. Chen, The n-Diffie-Hellman problem and multiple-key encryption, Int. J. Inf. Secur.,
11 (2012), 305–320. https://doi.org/10.1007/s10207-012-0171-8

AIMS Mathematics Volume 9, Issue 5, 13537–13552.

http://dx.doi.org/https://doi.org/10.1016/j.cam.2006.10.071
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2007.09.081
http://dx.doi.org/https://doi.org/10.1080/00927872.2018.1468906
http://dx.doi.org/https://doi.org/10.1080/00927872.2021.1988959
http://dx.doi.org/https://doi.org/10.1007/s13226-018-0282-7
http://dx.doi.org/https://doi.org/10.3934/math.2022718
http://dx.doi.org/https://doi.org/10.3390/math10132342
http://dx.doi.org/https://doi.org/10.3934/math.2024030
http://dx.doi.org/http://dx.doi.org/10.17951/a.2018.72.1.69-76
http://dx.doi.org/https://doi.org/10.7546/nntdm.2021.27.1.7-13
http://dx.doi.org/https://doi.org/10.3103/S0146411614040063
http://dx.doi.org/https://doi.org/10.34198/ejms.8122.83120
http://dx.doi.org/https://doi.org/10.1155/2015/760823
http://dx.doi.org/https://doi.org/10.1080/00927872.2020.1723609
http://dx.doi.org/https://doi.org/10.1007/s10207-012-0171-8


13552

24. H. Chien, Provably secure authenticated Diffie-Hellman key exchange for resource-limited smart
card, J. Shanghai Jiaotong Univ. (Sci.), 19 (2014), 436–439. https://doi.org/10.1007/s12204-014-
1521-7

25. D. Coppersmith, A. M. Odlzyko, R. Schroeppel, Discrete logarithms in GF(p), Algorithmica, 1
(1986), 1–15. https://doi.org/10.1137/0406010

26. L. Harn, C. Lin, Efficient group Diffie-Hellman key agreement protocols, Comput. Electr. Eng., 40
(2014), 1972–1980. https://doi.org/10.1016/j.compeleceng.2013.12.018

27. M. Eftekhari, A Diffie-Hellman key exchange protocol using matrices over noncommutative rings,
Groups Complex. Cryptol., 4 (2012), 167–176. https://doi.org/10.1515/gcc-2012-0001

28. J. Partala, Algebraic generalization of Diffie-Hellman key exchange, J. Math. Cryptol., 12 (2018),
1–21. https://doi.org/10.1515/jmc-2017-0015

29. P. A. Grillet, Abstract Algebra, 2 Eds., Berlin: Springer, 2007.

30. W. Stallings, Cryptography and Network Security: Principles and Practice, 7 Eds., Harlow:
Pearson, 2017.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 5, 13537–13552.

http://dx.doi.org/https://doi.org/10.1007/s12204-014-1521-7
http://dx.doi.org/https://doi.org/10.1007/s12204-014-1521-7
http://dx.doi.org/https://doi.org/10.1137/0406010
http://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2013.12.018
http://dx.doi.org/https://doi.org/10.1515/gcc-2012-0001
http://dx.doi.org/https://doi.org/10.1515/jmc-2017-0015
http://creativecommons.org/licenses/by/4.0

	Introduction
	The Pell (p,t)-numbers
	The Hadamard-type Pell-Mersenne p-numbers
	Diffie-Hellman Key Exchange Using the Pell (p,1)-numbers and the Hadamard-type Pell-Mersenne p-numbers
	Conclusions

