Beyond the realm of soft topology, soft continuity can aid in the creation of digital images and computational topological applications. This paper investigates soft almost weakly continuous, a novel family of generalized soft continuous functions. The soft pre-continuous and soft weakly continuous function classes are included in this class. We obtain many characterizations of soft almost weakly continuous functions. Furthermore, we investigate the link between soft almost weakly continuous functions and their general topology counterparts. We present adequate conditions for a soft almost weakly continuous function to become soft weakly continuous (soft pre-continuous). We also present various results of soft composition, restriction, preservation, product, and soft graph theorems in terms of soft almost weakly continuous functions.
Citation: Samer Al-Ghour, Jawaher Al-Mufarrij. Soft almost weakly continuous functions and soft Hausdorff spaces[J]. AIMS Mathematics, 2024, 9(12): 35218-35237. doi: 10.3934/math.20241673
Beyond the realm of soft topology, soft continuity can aid in the creation of digital images and computational topological applications. This paper investigates soft almost weakly continuous, a novel family of generalized soft continuous functions. The soft pre-continuous and soft weakly continuous function classes are included in this class. We obtain many characterizations of soft almost weakly continuous functions. Furthermore, we investigate the link between soft almost weakly continuous functions and their general topology counterparts. We present adequate conditions for a soft almost weakly continuous function to become soft weakly continuous (soft pre-continuous). We also present various results of soft composition, restriction, preservation, product, and soft graph theorems in terms of soft almost weakly continuous functions.
[1] | L. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X |
[2] | E. Zarei, M. Yazdi, R. Moradi, A. B. Toroody, Expert judgment and uncertainty in sociotechnical systems analysis, In: E. Zarei, Safety causation anal. sociotech. syst. adv. mod. tech., 2024. https://doi.org/10.1007/978-3-031-62470-4_18 |
[3] | D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19–31. http://dx.doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[4] | J. Yang, Y. Yao, Semantics of soft sets and three-way decision with soft sets, Knowl.-Based Syst., 194 (2020), 105538. http://dx.doi.org/10.1016/j.knosys.2020.105538 doi: 10.1016/j.knosys.2020.105538 |
[5] | J. C. R. Alcantud, The semantics of $N$-soft sets, their applications, and a coda about three-way decision, Inf. Sci., 606 (2022), 837–852. http://dx.doi.org/10.1016/j.ins.2022.05.084 doi: 10.1016/j.ins.2022.05.084 |
[6] | J. Gwak, H. Garg, N. Jan, Hybrid integrated decision-making algorithm for clustering analysis based on a bipolar complex fuzzy and soft sets, Alex. Eng. J., 67 (2023), 473–487. http://dx.doi.org/10.1016/j.aej.2022.12.003 doi: 10.1016/j.aej.2022.12.003 |
[7] | N. Malik, M. Shabir, T. M. Al-shami, R. Gul, A. Mhemdi, Medical decision-making techniques based on bipolar soft information, AIMS Math., 8 (2023), 18185–18205. http://dx.doi.org/10.3934/math.2023924 doi: 10.3934/math.2023924 |
[8] | O. Kguller, A soft set theoretic approach to network complexity and a case study for Turkish Twitter users, Appl. Soft Comput., 143 (2023), 110344. http://dx.doi.org/10.1016/j.asoc.2023.110344 doi: 10.1016/j.asoc.2023.110344 |
[9] | O. Dalkılıc, N. Demirtas, Algorithms for covid-19 outbreak using soft set theory: Estimation and application, Soft Comput., 27 (2022), 3203–3211. http://dx.doi.org/10.1007/s00500-022-07519-5 doi: 10.1007/s00500-022-07519-5 |
[10] | M. A. Balci, L. M. Batrancea, O. Akguller, Network-induced soft sets and stock market applications, Mathematics, 10 ( 2022), 3964. http://dx.doi.org/10.3390/math10213964 |
[11] | H. Qin, Q. Fei, X. Ma, W. Chen, A new parameter reduction algorithm for soft sets based on chi-square test, Appl. Intell., 51 (2021), 7960–7972. http://dx.doi.org/10.1007/s10489-021-02265-x doi: 10.1007/s10489-021-02265-x |
[12] | X. Ma, H. Qin, Soft set based parameter value reduction for decision making application, IEEE Access, 7 (2019), 35499–35511. http://dx.doi.org/10.1109/ACCESS.2019.2905140 doi: 10.1109/ACCESS.2019.2905140 |
[13] | J. C. R. Alcantud, G. Varela, B. Santos-Buitrago, G. Santos-Garc ía, M. F. Jimenez, Analysis of survival for lung cancer resections cases with fuzzy and soft set theory in surgical decision making, Plos One, 14 (2019), e0218283. http://dx.doi.org/10.1371/journal.pone.0218283 doi: 10.1371/journal.pone.0218283 |
[14] | P. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X |
[15] | Z. Xiao, K. Gong, Y. Zou, A combined forecasting approach based on fuzzy soft sets, J. Comput. Appl. Math., 228 (2009), 326–333. https://doi.org/10.1016/j.cam.2008.09.033 doi: 10.1016/j.cam.2008.09.033 |
[16] | J. C. R. Alcantud, A. Z. Khameneh, G. Santos-Garcıa, M. Akram, A systematic literature review of soft set theory, Neural Comput. Applic., 36 (2024), 8951–8975. http://dx.doi.org/10.1007/s00521-024-09552-x |
[17] | J. C. R. Alcantud, Convex soft geometries, J. Comput. Cognitive Eng., 1 (2022), 2–12. https://doi.org/10.47852/bonviewJCCE597820 |
[18] | F. Feng, C. X. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: A tentative approach, Soft Comput., 14 (2010), 899–911. http://dx.doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6 |
[19] | M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. http://dx.doi.org/10.1016/j.camwa.2011.02.006 |
[20] | T. M. Al-shami, M. E. El-Shafei, M. Abo-Elhamayel, Seven generalized types of soft semi-compact spaces, Korean J. Math., 27 (2019), 661–690. https://doi.org/10.11568/kjm.2019.27.3.661 doi: 10.11568/kjm.2019.27.3.661 |
[21] | M. H. Alqahtani, Z. A. Ameen, Soft nodec spaces, AIMS Math., 9 (2024), 3289–3302. https://doi.org/10.3934/math.2024160 |
[22] | S. Al-Ghour, D. Abuzaid, M. Naghi, Soft weakly quasi-continuous functions between soft topological spaces, Mathematics, 12 ( 2024), 3280. https://doi.org/10.3390/math12203280 |
[23] | S. Al Ghour, Between the Classes of soft open sets and soft omega open sets, Mathematics, 10 (2022), 719. https://doi.org/10.3390/math10050719 doi: 10.3390/math10050719 |
[24] | T. M. Al-shami, A. Mhemdi, R. Abu-Gdairi, A Novel framework for generalizations of soft open sets and its applications via soft topologies, Mathematics, 11 (2023), 840. |
[25] | T. M. Al-shami, Soft somewhat open sets: Soft separation axioms and medical application to nutrition, Comput. Appl. Math., 41 (2022), 2016. https://doi.org/10.1007/s40314-022-01919-x |
[26] | S. Al Ghour, Boolean algebra of soft $Q$-Sets in soft topological spaces, Appl. Comput. Intell. Soft Comput., 2022 (2022), 5200590. https://doi.org/10.1155/2022/5200590 |
[27] | A. Mhemdi, Novel types of soft compact and connected spaces inspired by soft $Q$-sets, Filomat, 37 (2023), 9617–9626. https://doi.org/10.2298/FIL2328617M doi: 10.2298/FIL2328617M |
[28] | T. M. Al-shami, M. E. El-Shafei, Partial belong relation on soft separation axioms and decision-making problem, two birds with one stone, Soft Comput., 24 (2020), 5377–5387. https://doi.org/10.1007/s00500-019-04295-7 doi: 10.1007/s00500-019-04295-7 |
[29] | T. M. Al-shami, On soft separation axioms and their applications on decision-making problem, Math. Prob. Eng., 2021 (2021), 1–12. https://doi.org/10.1155/2021/8876978 doi: 10.1155/2021/8876978 |
[30] | X. Guan, Comparison of two types of separation axioms in soft topological spaces, J. Intell. Fuzzy Syst., 44 (2023), 2163–2171. https://doi.org/10.3233/JIFS-212432 doi: 10.3233/JIFS-212432 |
[31] | T. M. Al-shami, L. D. R. Kocinac, B. A. Asaad, Sum of soft topological spaces, Mathematics, 8 (2020), 990. https://doi.org/10.3390/math8060990 doi: 10.3390/math8060990 |
[32] | J. C. R. Alcantud, Soft open bases and a novel construction of soft topologies from bases for topologies, Mathematics, 8 (2020), 672. https://doi.org/10.3390/math8050672 doi: 10.3390/math8050672 |
[33] | P. Majumdar, S. K. Samanta, On soft mappings, Comput. Math. Appl., 60 (2010), 2666–2672. http://dx.doi.org/10.1016/j.camwa.2010.09.004 |
[34] | A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481. http://dx.doi.org/10.1142/S1793005711002025 |
[35] | A. Aygunoglu, H. Aygun, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2012), 113–119. http://dx.doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3 |
[36] | M. Akdag, A. Ozkan, Soft $\alpha $-open sets and soft $\alpha $ -continuous functions, Abstr. Appl. Anal., 2014 (2014), 891341. https://doi.org/10.1155/2014/891341 doi: 10.1155/2014/891341 |
[37] | M. Akdag, A. Ozkan, Soft $\beta $-open sets and soft $\beta $ -continuous functions, Sci. World J., 2014 (2014), 843456. https://doi.org/10.1155/2014/843456 doi: 10.1155/2014/843456 |
[38] | I. Zorlutuna, H. Cakir, On continuity of soft mappings, Appl. Math. Inf. Sci., 9 (2015), 403–409. https://doi.org/10.12785/amis/090147 doi: 10.12785/amis/090147 |
[39] | T. Y. Ozturk, S. Bayramov, Topology on soft continuous function spaces, Math. Comput. Appl., 22 (2017), 32. https://doi.org/10.3390/mca22020032 doi: 10.3390/mca22020032 |
[40] | T. M. Al-shami, I. Alshammari, B. A. Asaad, Soft maps via soft somewhere dense sets, Filomat, 34 (2020), 3429–3440. https://doi.org/10.2298/FIL2010429A doi: 10.2298/FIL2010429A |
[41] | S. Al Ghour, Soft $\omega _{p}$-open sets and soft $\omega _{p}$ -continuity in soft topological spaces, Mathematics, 9 (2021), 2632. https://doi.org/10.3390/math9202632 doi: 10.3390/math9202632 |
[42] | S. Al Ghour, On some weaker forms of soft continuity and their decomposition theorems, J. Math. Comput. Sci., 29 (2023), 317–328. https://doi.org/10.22436/jmcs.029.04.02 doi: 10.22436/jmcs.029.04.02 |
[43] | T. M. Al-shami, Z. A. Ameen, B. A. Asaad, A. Mhemdi, Soft bi-continuity and related soft functions, J. Math. Comput. Sci., 30 (2023), 19–29. https://doi.org/10.22436/jmcs.030.01.03 doi: 10.22436/jmcs.030.01.03 |
[44] | S. Al Ghour, Soft functions via soft semi $\omega $-open sets, J. Math. Comput. Sci., 30 (2023), 133–146. https://doi.org/10.22436/jmcs.030.02.05 doi: 10.22436/jmcs.030.02.05 |
[45] | S. Al Ghour, A. Bin-Saadon, On some generated soft topological spaces and soft homogeneity, Heliyon, 5 (2019), e02061. http://dx.doi.org/10.1016/j.heliyon.2019.e02061 |
[46] | S. Al Ghour, W. Hamed, On two classes of soft sets in soft topological spaces, Symmetry, 12 (2020), 265. https://doi.org/10.3390/sym12020265 doi: 10.3390/sym12020265 |
[47] | D. S. Jankovic, $\theta $-regular spaces, Internat. J. Math. Math. Sci., 8 (1985), 615–619. http://dx.doi.org/10.1155/S0161171285000667 |
[48] | B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inform. Sci., 7 (2013), 287–294. Available from: https://www.naturalspublishing.com/files/published/9n3942j17pww2p.pdf |
[49] | I. Arockiarani, A. Lancy, Generalized soft $g\beta $-closed sets and soft $gs\beta $-closed sets in soft topological spaces, Int. J. Math. Arch., 4 (2013), 1–7. Available from: https://api.semanticscholar.org/CorpusID: 124478886 |
[50] | S. Yuksel, N. Tozlu, Z. G. Ergul, Soft regular generalized closed sets in soft topological spaces, Int. J. Math. Anal., 8 (2014), 355–367. Available from: https://www.jatit.org/volumes/Vol37No1/2Vol37No1.pdf |
[51] | D. N. Georgiou, A. C. Megaritis, V. I. Petropoulos, On soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 1889–1901. http://dx.doi.org/10.12785/amis/070527 |
[52] | J. Mahanta, P. K. Das, On soft topological space via semiopen and semiclosed soft sets, Kyungpook Math. J., 54 (2014), 221–236. http://dx.doi.org/10.5666/KMJ.2014.54.2.221 doi: 10.5666/KMJ.2014.54.2.221 |
[53] | O. R. Sayed, N. Hassan, A. M. Khalil, A decomposition of soft continuity in soft topological spaces, Afr. Mat., 28 (2017), 887–898. http://dx.doi.org/10.1007/s13370-017-0494-8 doi: 10.1007/s13370-017-0494-8 |
[54] | S. S. Thakur, A. S. Rajput, Soft almost $\alpha $-continuous mappings, J. Adv. Stud. Topol., 9 (2018), 94–99. |
[55] | S. Ramkumar, V. Subbiah, Soft separation axioms and soft product of soft topological spaces, Maltepe J. Math., 2 (2020), 61–75. https://doi.org/10.47087/mjm.723886 doi: 10.47087/mjm.723886 |
[56] | M. Akdag, A. Ozkan, On soft preopen sets and soft pre separation axioms, Gazi Univ. J. Sci., 27 (2014), 1077–1083. https://dergipark.org.tr/en/download/article-file/83676 |
[57] | G. Ilango, M. Ravindran, On soft preopen sets in soft topological spaces, Int. J. Math. Res., 4 (2013), 399–409. Available from: http://irphouse.com/ijmr/ijmrv5n4_05.pdf |
[58] | S. Al Ghour, Strong form of soft semi-open sets in soft topological spaces, Int. J. Fuzzy Logic Intell. Syst., 21 (2021), 159–168. http://dx.doi.org/10.5391/IJFIS.2021.21.2.159 |
[59] | S. S. Thakur, A. S. Rajput, Connectedness between soft sets, New Math. Natural Comput., 14 (2018), 53–71. http://dx.doi.org/10.1142/S1793005718500059 doi: 10.1142/S1793005718500059 |
[60] | S. Al Ghour, Z. A. Ameen, On soft submaximal spaces, Heliyon, 8 (2022), e10574. http://dx.doi.org/10.1016/j.heliyon.2022.e10574 |