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Abstract: In this paper, we consider the problem of optimal investment-reinsurance for the insurer
and reinsurer under the stochastic volatility model. The surplus process of the insurer is described
by a diffusion model. The insurer can purchase proportional reinsurance from the reinsurer and the
premium charged by the insurer and reinsurer follows the variance principle. Both the insurer and
reinsurer are allowed to invest in risk-free assets and risky assets, and the market price of risk depends
on a Markovian, affine-form, and square-root stochastic factor process. Our goal is to maximize the
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By solving the HJB equation, we obtain the optimal investment-reinsurance strategies, and present the
proof of the verification theorem. Finally, we demonstrate a numerical analysis, and the economic
implications of our findings are illustrated.
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1. Introduction

The insurance industry has developed rapidly in recent decades. Reinsurance and investment are
important research issues in the field of actuarial science and have been widely studied. Reinsurance
can protect insurance companies from potentially huge losses, while the investment of premiums
enables insurance companies to achieve certain management goals. For example, [1] proposes two
criteria of maximizing terminal wealth utility and minimizing bankruptcy probability under
continuous time. The author of [2] studied the optimal investment strategy to maximize the expected
exponential utility of terminal wealth under the jump-diffusion model. The author of [3] investigated
optimal reinsurance and investments that take into account transaction costs. The author of [4] studied
the optimal proportional reinsurance and investment strategy under the CEV model. The author of [5]
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studied the problem of optimal portfolio and reinsurance with two different risk assets. Moreover, a
multitude of scholars have directed their focus towards diverse optimization objectives. For
instance, [6–10] explored the optimal reinsurance and investment problem under the mean-variance
criterion. In addition, [11–15] investigated the optimal problem for insurers and aim to minimize ruin
probability.

Although there is a large literatures on optimal reinsurance and investment issues, most of the
articles are conducted under the expected value premium principle. The expected value premium
principle is widely used in the reinsurance premium principle because of its practicality. However,
the variance of the same expected risk is not necessarily the same, so the fluctuation in claims needs
to be taken into account when we set the premium. In recent years, the variance or mean-variance
premium principle has received more and more attention. For example, [16,17] investigated the optimal
reinsurance under the mean–variance premium principle. The author of [18] considered the optimal
proportional reinsurance strategy for dependent risks and the variance premium principle under the
expected utility maximization criterion. The author of [19] used the generalized variance premium
principle to get the optimal investment–reinsurance strategy, which maximizes the expected utility of
terminal wealth and minimizes the ruin probability. By applying the generalized variance premium
principle, the author of [20] obtained the optimal reinsurance and investment strategy for insurance
companies with defaulted bonds.

In addition, most of the above studies are conducted under the assumption that the prices of risky
assets have constant or determined volatility, which contradicts the evidence supporting the existence
of stochastic volatility, such as volatility smiles and volatility clustering. Previously, the author of [21]
made a detailed study of stochastic volatility. In recent years, as an important feature of asset price
models, stochastic volatility has attracted the attention of many scholars. They study the optimal
reinsurance and investment of risk asset prices under a stochastic volatility model, such as the CEV
model ( [7, 22–24]) and the Heston model ( [25–27]). We tend to consider a more general stochastic
volatility model, which includes both the CEV model and the Heston model. The author of [28]
studied the asset–liability management problem involving mean–variance with an affine diffusion
factor process and a reinsurance option, providing us with a good idea.

Most of the existing literature considers the optimization of the insurer, but in reality there is
always an interest relationship between the insurer and reinsurer, and the role of the reinsurer cannot
be ignored. And both the insurer and the reinsurer want to maximize their own benefits, so it is
necessary to maintain a good dynamic balance between the insurer and the reinsurer. From [29], we
know that the two companies should negotiate to maximize their mutual profits and that they must
reach a compromise. The author of [30] derived the expectation formula of the common survival
profit of the insurer and reinsurer in a fixed time. Furthermore, the author of [31] studied the joint
survival and profitable probabilities of the insurer and reinsurer. The author of [32] studied the
optimal proportional reinsurance and investment to maximize the utility of the insurer and reinsurer
under the CEV model. The author of [33] considered the interests of both the insurer and reinsurer. In
addition, [34–37] studied the optimal reinsurance and investment problem using the weighted sum
method for the wealth processes of the insurer and reinsurer.

To the best of our knowledge, there is little literature on the maximization of the common terminal
wealth utility of the insurer and reinsurer. In this paper, adopting the idea of [23] and [39], we mainly
study the optimal investment and reinsurance problem of the insurer and reinsurer under the joint
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exponential utility. The surplus process of the insurer is described by a diffusion model. The insurer
can purchase proportional reinsurance from the reinsurer, and the premium charged by the insurer and
reinsurer follows the variance principle. Furthermore, both the insurer and reinsurer are allowed to
invest in risk-free assets and risky assets, and the market price of risk depends on a Markovian,
affine-form, and square-root stochastic factor process, which is a more general stochastic volatility
model including both the CEV model and the Heston one. Then, we obtain the HJB equation under
the optimization criterion of maximizing the terminal joint exponential utility. By solving the HJB
equation, we obtain the optimal investment–reinsurance strategies, and present the proof of the
verification theorem. Finally, we demonstrate a numerical analysis, and the economic implications of
our findings are illustrated.

The innovation of this paper is the use of a more general stochastic volatility model to describe the
price process of risky assets, which is also is the difference of the paper from [23]. Under the criterion
of maximizing the terminal joint exponential utility, we study the optimal investment-reinsurance
strategies of the insurer and reinsurer in the process where the market price of risk depends on a
Markovian, affine-form, and square-root stochastic factor. The model incorporates the situation in
which the insurer and reinsurer can invest in different risk assets. We believe that this model will be
more general than CEV model. Moreover, we present the explicit expression of the value function,
and give the proof of the case m1 = m2, which [23] did not consider.

The rest of this article proceeds as follows. Section 2 introduces our mathematical model. Section 3
obtains the HJB equation under the objective of maximizing the joint exponential utility of terminal
wealth and presents the optimal strategy and value function along with a verification theorem. Section 4
provides some special cases. Section 5 illustrates our results through numerical simulation. Section 6
concludes the whole paper. And the appendix contains the proof of some theorems.

2. Model setup

Let (Ω,F , {Ft}0≤t≤T ,P) be a filtered, complete probability space satisfying the usual conditions, and
let T > 0 be a finite time horizon representing the term of the contract. Ft stands for the information
available until time t. We assume that all stochastic processes are adapted processes in this filtered
probability space. The insurer’s surplus process is described by the classical compound Poisson risk
model:

R(t) = x0 + ct −C(t) = x0 + ct −
N(t)∑
i=1

Zi, t ≥ 0,

where x0 ≥ 0 is the initial surplus of the insurer, c represents the insurer’s premium rate, and {Zi, i ≥ 1}
are independent and identically distributed positive variables representing the successive individual
claim amounts with first moment E(Zi) = µZ and second moment E[Z2

i ] = σ2
Z, they have common

distribution F(z). Here E(·) denotes the mean value under the probability measure P, and N(t) denotes
the number of claims up to time t, and process {N(t); t ≥ 0} is an ordinary homogeneous renewal
Poisson process with intensity λ. In addition, we assume that N(t) is independent of the claim sizes
{Zi, i ≥ 1}. In this paper, both the insurance and reinsurance premiums are calculated according to the
variance principle. Thus, the insurance premium c can be obtained by c = λµZ + λα1σ

2
Z, where α1 > 0

is a given constant, being called the safety loading of the insurer.
Assume that the insurer is permitted to purchase proportional reinsurance to disperse the underlying
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insurance risk. Let q(t) be the reinsurance proportion at time t. i.e., for a claim Zi occurring, the insurer
pays q(t)Zi, while the reinsurer needs to pay (1 − q(t))Zi. Then the corresponding surplus process of
the insurer and reinsurer can be described by

R1(t) = x1 + c1t − q(t)
N(t)∑
i=1

Zi,

and

R2(t) = x2 + c2t − (1 − q(t))
N(t)∑
i=1

Zi,

where
c1 =λµZ + λα1σ

2
Z − [λµZ(1 − q(t)) + λα2σ

2
Z(1 − q(t))2]

=λµZq(t) + λα1σ
2
Z − λα2σ

2
Z(1 − q(t))2,

c2 =λµZ(1 − q(t)) + λα2σ
2
Z(1 − q(t))2,

and α2 denotes the safety loading of the reinsurer, x2 is the initial surplus of the reinsurer. Suppose that
α2 > α1, otherwise, arbitrage will exist. According to [38], the surplus processes of the insurer and
reinsurer can be respectively approximated by the following diffusion processes:

dR1(t) = [λα1σ
2
Z − α2λσ

2
Z(1 − q(t))2]dt + q(t)

√
λσ2

ZdW0(t),

and
dR2(t) = α2λσ

2
Z(1 − q(t))2dt + (1 − q(t))

√
λσ2

ZdW0(t),

where W0(t) is a standard Brownian motion on the complete probability space (Ω,F , {Ft}0≤t≤T ,P).

Remark 2.1. In this paper, we require that the risk exposure q(t) must meet the net profit condition,
so through λα1σ

2
Z − α2λσ

2
Z(1 − q(t))2 ≥ 0 we get 0 < 1 −

√
α1
α2
≤ q(t) ≤ 1. Fulfilling the net

profit requirement means that the enterprise’s earnings, after all expenses, costs, and taxes have been
subtracted, are not in the red.

In addition to reinsurance, both the insurer and the reinsurer can invest the company’s surplus in a
financial market consisting of one risk-free asset and two risky assets. The price process of the risk-free
asset satisfies the ordinary differential equation

dS 0(t) = r0S 0(t)dt, S 0(0) = s0, (2.1)

where r0 > 0 represents the risk-free interest rate. The risk assets that the insurer and reinsurer can
invest in are represented by S 1(t) and S 2(t), respectively. The price process of the risk asset S i(t) is
described by

dS i(t) = S i(t)[µi(t)dt + σi(t)dWi(t)], S i(0) = s0i > 0, (2.2)

where µi(t), σi(t) > 0 are the appreciation rate and volatility rate of risk assets at time t, respectively.
Wi(t)(i = 1, 2) is a standard Brownian motion and independent of {W j(t)}( j = 0, 1, 2, j , i),
{N(t)}t∈[0,T ], {Zi, i ≥ 1}.We assume that {µi(t)}t∈[0,T ] and {σi(t)}t∈[0,T ] are Ft-predictable processes and
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that they are continuously bounded deterministic functions or stochastic processes. The market price
of risk {ωi(t)}t∈[0,T ] is

ωi(t) :=
µi(t) − r0

σi(t)
,∀t ∈ [0,T ]. (2.3)

{ωi(t)}t∈[0,T ] is related to a stochastic factor process {ϑi(t)}t∈[0,T ] as

ωi(t) = ωi

√
ϑi(t),∀t ∈ [0,T ], ωi ∈ R0 := R\{0}, (2.4)

where {ϑi(t)}t∈[0,T ] satisfies the following Markovian, affine-form square-root model

dϑi(t) = κi[ϕi − ϑi(t)]dt +
√
ϑi(t)

[
ρi1dWi(t) + ρi2dW i(t)

]
, ϑi(0) = ϑ0i ≥ 0, (2.5)

and κi, ϕi, ρi1, ρi2 are positive constants. {W i(t)}(i = 1, 2) is another standard Brownian motion that is
independent of {W i(t)}( j = 1, 2, j , i), {Wi(t)}(i = 0, 1, 2) and {N(t)}t∈[0,t], {Zi, i ≥ 1}. In addition, we
assume that the solution to the square-root model (2.5) is non negative for all t ∈ [0,T ].

Remark 2.2. The model that the insurer and reinsurer are allowed to invest in two different types of
risky assets, respectively, is more common. In reality, the insurer and reinsurer are two
individuals/companies who may choose different risk assets to invest in. If all parameters of both risk
assets are the same, then both the insurer and the reinsurer invest in the same risk asset, which is the
special case of our model.

Remark 2.3. According to [9], let µi(t) = µi, σi(t) = σi(S i(t))νi , where µi, r0, σi ≥ 1 and νi ∈ R such
that µi , r0, then the risk asset price is given by CEV model

dS i(t) = S i(t)
[
µidt + σi(S i(t))νidWi(t)

]
, S i(0) = s0i > 0, (2.6)

where νi is the elasticity parameter of the risky asset. Set

ϑi(t) = (S i(t))−2νi , κi = 2νiµi, ϕi = (νi +
1
2

)
σ2

i

µi
, ρi1 = −2νiσi, ρi2 = 0 and ωi =

µi − r0

σi
,

then applying Itô’s formula to S −2νi
i (t), we obtain

d(S i(t))−2νi = 2νiµi

[(
νi +

1
2

)
σ2

i

µi
− (S i(t))−2νi

]
dt − 2νiσi(S i(t))−νidWi(t). (2.7)

It is a special case of the CEV model. If νi = 0 in equation (2.6), the CEV model reduces to the GBM
model.

And if µi(t) = r0 + ωiϑi(t), σi(t) =
√
ϑi(t), ρi1 = σ0iρi, ρi2 = σ0i

√
1 − ρ2

i , where r0, σi > 0, ωi ∈

R0, ρi ∈ (−1, 1), then the risky asset’s price is reduced to the Heston model

dS i(t) = S i(t)
[
(r0 + ωiϑi(t))dt +

√
ϑi(t)dWi(t)

]
, S i(0) = s0i > 0, (2.8)

and
dϑi(t) = κi[ϕi − ϑi(t)]dt +

√
ϑi(t)

[
σ0iρidWi(t) + σ0i

√
1 − ρ2

i dW i(t)
]
,

ϑi(0) = ϑ0i ≥ 0,
(2.9)

AIMS Mathematics Volume 9, Issue 12, 35181–35217.



35186

where {ϑi(t)}t∈[0,T ] is the variance process, κi is the variance rate, ϕi is the long-run level, σ0i is the
volatility of risky asset and ρi is the correlation coefficient between the risky asset’s price and the
variance. In the Heston model, the market price of risk is ωi(t) = ωi

√
ϑi(t). It is required that the Feller

condition is satisfied, i.e., 2κiϕi ≥ σ
2
0i for all t ∈ [0,T ].

Denote π1(t) and π2(t) as the money amounts invested in the first risky asset S 1(t) and the second
risky asset S 2(t) by the insurer and reninsurer at the time t, respectively. Then X1(t) − π1(t) and X2(t) −
π2(t) are the money amounts invested in the risk-free asset by the insurer and reinsurer, respectively.
An investment-reinsurance strategy is described by u := {(π1(t), π2(t), q(t))}t∈[0,T ]. Then the insurer’s
wealth process Xu

1(t) and the reinsurer’s wealth process Xu
2(t) follow the following dynamic:

dXu
1(t) =[r0Xu

1(t) + (µ1(t) − r0)π1(t) + λα1σ
2
Z − λα2σ

2
Z(1 − q(t))2]dt

+
π1(t)(µ1(t) − r0)
ω1
√
ϑ1(t)

dW1(t) + q(t)
√
λσ2

ZdW0(t),

X1(0) =x01,

(2.10)

and 
dXu

2(t) =[r0Xu
2(t) + (µ2(t) − r0)π2(t) + λα2σ

2
Z(1 − q(t))2]dt

+
π2(t)(µ2(t) − r0)
ω2
√
ϑ2(t)

dW2(t) + (1 − q(t))
√
λσ2

ZdW0(t),

X2(0) =x02.

(2.11)

3. The optimal strategy for the insurer and reinsurer

In this paper, we consider the expected utility maximization of the terminal wealth for the insurer
and reinsurer. Inspired by [39], we suppose that the insurer and reinsurer have the joint exponential
utility function

U(x, y) = −
1

m1m2
e−m1 x−m2y,m1 , m2,

where m1,m2 > 0 are the risk aversion coefficients of the insurer and reinsurer, respectively.

Definition 3.1. (Admissible strategy). An investment–reinsurance strategy u = {(π1(t), π2(t), q(t)}t∈{0,T }
is said to be admissible if
(1) ∀t ∈ [0,T ], q(t) ∈ [1 −

√
α1
α2
, 1].

(2) E{
∫ T

0
[(π1(t)σ1(t))2 + (π2(t)σ2(t))2 + q(t)2]dt} < ∞ and u is Ft-progres-sively measurable.

(3) ∀(t, x1, x2, v1, v2) ∈ [0,T ]×R×R×R+×R+, Eqs (2.10) and (2.11) have unique solution {Xu
1(t)}t∈[0,T ]

and {Xu
2(t)}t∈[0,T ] with Xu

1(t) = x1, Xu
2(t) = x2, ϑ1(t) = v1 and ϑ2 = v2, respectively.

(4) Eu{U[X(T ),Y(T )]|X1(t) = x1, X2(t) = x2, ϑ1(t) = v1, ϑ2(t) = v2} < ∞, where u ∈ U, t ∈ [0,T ] is the
proportional reinsurance and investment strategy, andU is the set of all admissible strategies u.

Suppose that we are interested in maximizing the joint exponential utility of terminal wealth at a
fixed time T. In order to apply the classical tools of stochastic optimal control, we now introduce the
relevant value function.

V(t, x1, x2, v1, v2) = sup
u∈U

E{U[X(T ),Y(T )]|X1(t) = x1, X2(t) = x2,

ϑ1(t) = v1, ϑ2(t) = v2}, t ∈ [0,T ],
(3.1)
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with boundary condition V(T, x1, x2, v1, v2) = U(x1, x2).
To resolve the problem outlined above, we adopt the dynamic programming method. Let

C1,2,2,2,2([0,T ] × R × R × R+ × R+
)

is the space of V(t, x1, x2, v1, v2), which are first-order continuously
differentiable in t ∈ [0,T ], second-order continuously differentiable in
x1 ∈ R, x2 ∈ R, v1 ∈ R

+, v2 ∈ R
+. Denote Vt,Vx1 ,Vx2 ,Vv1 ,Vv2 ,Vx1 x1 ,Vx2 x2 ,Vv1v1 ,Vv2v2 ,Vx1v1 ,Vx2v2 and

Vx1 x2 as the first and second partial derivatives of V, which are continuous on
C1,2,2,2,2([0,T ] × R × R × R+ × R+

)
. Then we define a variational operator Au: for ∀(t, x1, x2, v1, v2) ∈

[0,T ] × R × R × R+ × R+,∀V(t, x1, x2, v1, v2) ∈ C1,2,2,2,2([0,T ] × R × R × R+ × R+), denote

AuV(t, x1, x2, v1, v2)
=Vt + [r0x1 + (µ1(t) − r0)π1(t) + λα1σ

2
Z − λα2σ

2
Z(1 − q)2]Vx1

+ [r0x2 + (µ2(t) − r0)π2(t) + λα2σ
2
Z(1 − q)2]Vx2 + κ1[ϕ1 − v1]Vv1

+ κ2[ϕ2 − v2]Vv2 +
v1(ρ2

11 + ρ
2
12)

2
Vv1v1 +

v2(ρ2
21 + ρ

2
22)

2
Vv2v2

+ [
π2

1(µ1(t) − r0)2

2ω2
1v1

+
1
2
λσ2

Zq2]Vx1 x1 + [
π2

2(µ2(t) − r0)2

2ω2
2v2

+
1
2
λσ2

Z(1 − q)2]Vx2 x2

+
π1(µ1(t) − r0)ρ11

ω1
Vx1v1 +

π2(µ2(t) − r0)ρ21

ω2
Vx2v2 + λσ

2
Zq(1 − q)Vx1 x2 .

(3.2)

Then V satisfies the following Hamilton–Jacobi–Bellman (HJB) equation:

sup
u∈U
AuV(t, x1, x2, v1, v2) = 0. (3.3)

Lemma 3.1. If ψ(t, x1, x2, v1, v2) is the solution of HJB equation (3.3) with the boundary
ψ(T, x1, x2, v1, v2) = U(x, y), then we have

E[ψ(t, Xu∗
1 (t), Xu∗

2 (t), ϑ1(t), ϑ2(t))]2 < ∞.

Proof. See the Appendix. □

Theorem 3.2. (Verification theorem). Let ψ(t, x1, x2, v1, v2) ∈ C1,2,2,2,2, and ψ satisfies HJB
equation (3.3) with boundary conditions ψ(T, x1, x2, v1, v2) = U(x, y). Let
u∗(t) = (π∗1(t), π∗2(t), q∗(t)) ∈ U such that Au∗V(t, x1, x2, v1, v2) = 0, then the value function
V(t, x1, x2, v1, v2) = ψ(t, x1, x2, v1, v2) and u∗ is the optimal strategy.

Proof. See the Appendix. □

Remark 3.1. Due to differences in the model, the proof of Lemma 3.1 is significantly different from
that of Lemma 3.2 in [23], and the equation in the proof of Theorem 3.2 also differs from the one
presented in [23].

Theorem 3.3. (The optimal strategy and value function). Denote t1 = T − ln ∆̂1
r0
, t2 = T − ln ∆̂2

r0
, where

∆̂1 =
2α2

(m2−m1) , ∆̂2 =
2α2

[m2+m1(
√

α2
α1
−1)]

. Therefore, we can deduce that ∆̂1 > ∆̂2 > 0 when m1 < m2, and
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∆̂2 > 0 > ∆̂1 when m1 > m2, i.e., 0 ≤ t1 < t2 ≤ T when m1 < m2, and 0 ≤ t2 ≤ T when m1 > m2. For
problem (3.1), the optimal investment strategies are given by

π∗1(t) =


ω2

1v1(c1−c2e−
ρ2

12
2 (c1−c2)(T−t))+ρ11ω1v1c1c2(1−e−

ρ2
12
2 (c1−c2)(T−t))

(µ1(t)−r0)m1(c1−c2e−
ρ2

12
2 (c1−c2)(T−t))

e−r0(t−t), ρ12 , 0,

2ω2
1v1(κ1+ω1ρ11)+ω3

1ρ11v1(e−(κ1+ω1ρ11)(T−t)−1)
2(µ1(t)−r0)m1(κ1+ω1ρ11) e−r0(T−t), ρ12 = 0,

(3.4)

and

π∗2(t) =


ω2

2v2(d1−d2e−
ρ2

22
2 (d1−d2)(T−t))+ρ21ω2v2d1d2(1−e−

ρ2
22
2 (d1−d2)(T−t))

(µ2(t)−r0)m1(d1−d2e−
ρ2

22
2 (d1−d2)(T−t))

e−r0(T−t), ρ22 , 0,

2ω2
2v2(κ2+ω2ρ21)+ω3

2ρ21v2(e−(κ2+ω2ρ21)(T−t)−1)
2(µ2(t)−r0)m2(κ2+ω2ρ21) e−r0(T−t), ρ22 = 0.

(3.5)

The optimal reinsurance strategies are given by

Case (I), If m1 > m2 and ∆̂2 ≥ 1, then

q∗ =

 1 −
√

α1
α2
, 0 ≤ t ≤ t2,

q̂(t), t2 ≤ t ≤ T.

Case (II), If m1 > m2 and ∆̂2 < 1, then

q∗ = 1 −
√
α1

α2
, 0 ≤ t ≤ T.

Case (III), If m1 < m2 and ∆̂1 > ∆̂2 ≥ 1, when L
(
1 −

√
α1
α2

)
≥ L(1), then

q∗ =


1, 0 ≤ t ≤ t1,

1 −
√

α1
α2
, t1 ≤ t ≤ t2,

1, t2 ≤ t ≤ T,

when L
(
1 −

√
α1
α2

)
< L(1), then

q∗ =

 1, 0 ≤ t ≤ t1,

1 −
√

α1
α2
, t1 ≤ t ≤ T.

Case (IV), If m1 < m2 and ∆̂2 < 1 ≤ ∆̂1, then

q∗ =

 1, 0 ≤ t ≤ t1,

1 −
√

α1
α2
, t1 ≤ t ≤ T.

Case (V), If m1 < m2 and ∆̂2 < ∆̂1 < 1, then

q∗ = 1, 0 ≤ t ≤ T.
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When q∗ takes different values, the explicit expression of the value function is as follows:

V(t, x1, x2, v1, v2) = −
1

m1m2
e[−m1 x1−m2 x2−d(t)]er0(T−t)+g(t,v1,v2), (3.6)

where
g(t, v1, v2) = I(t) + J1(t)v1 + J2(t)v2.

(1) When q∗ = 1 −
√

α1
α2

,

d(t) = −
m2λα1µ2

r0
[e−r0(T−t) − 1] +

σ2
0

2r0

[(1
2
−

√
α1

α2

)
m2

1 +
α1

2α2
(m1 − m2)2

+

√
α1

α2
m1m2

]
× [e−r0(T−t) − er0(T−t)],

(3.7)

I(t) =



κ1ϕ1c1(T − t) − 2κ1ϕ1

ρ2
12

ln c1e
ρ2

12
2 (c1−c2)(T−t)

−c2
c1−c2

+κ2ϕ2d1(T − t) − 2κ2ϕ2

ρ2
22

ln d1e
ρ2

22
2 (d1−d2)(T−t)

−d2
d1−d2

, ρi2 , 0,
κ1ϕ1ω

2
1

2(κ1+ω1ρ11) [
1−e−(κ1+ω1ρ11)(T−t)

κ1+ω1ρ11
− (T − t)]

+
κ2ϕ2ω

2
2

2(κ2+ω2ρ21) [
1−e−(κ2+ω2ρ21)(T−t)

κ2+ω2ρ21
− (T − t)], ρi2 = 0,

(3.8)

J1(t) =


c1c2(1−e−

ρ2
12
2 (c1−c2)(T−t))

c1−c2e−
ρ2

12
2 (c1−c2)(T−t)

, ρi2 , 0,

ω2
1

2(κ1+ω1ρ11) (e
−(κ1+ω1ρ11)(T−t) − 1), ρi2 = 0,

(3.9)

and

J2(t) =


d1d2(1−e−

ρ2
22
2 (d1−d2)(T−t))

d1−d2e−
ρ2

22
2 (d1−d2)(T−t)

, ρi2 , 0,

ω2
2

2(κ2+ω2ρ21) (e
−(κ2+ω2ρ21)(T−t) − 1), ρi2 = 0.

(3.10)

(2) When q∗ = q̂(t),

d(t) = −
λσ2

Zm1α1

r0
[e−r0(T−t) − 1], (3.11)

I(t) =κ1ϕ1c1(T − t) −
2κ1ϕ1

ρ2
12

ln
c1e

ρ2
12
2 (c1−c2)(T−t) − c2

c1 − c2

+ κ2ϕ2d1(T − t) −
2κ2ϕ2

ρ2
22

ln
d1e

ρ2
22
2 (d1−d2)(T−t) − d2

d1 − d2

+
2λα2

2σ
2
Zm2

1

r0(m1 − m2)2 ln
∣∣∣∣∣ 2α2 + (m1 − m2)
2α2 + (m1 − m2)er0(T−t)

∣∣∣∣∣
+

λα2σ
2
Zm2

1

r0(m1 − m2)
[er0(T−t) − 1], ρi2 , 0,

(3.12)
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and

I(t) =
κ1ϕ1ω

2
1

2(κ1 + ω1ρ11)
[
1 − e−(κ1+ω1ρ11)(T−t)

κ1 + ω1ρ11
− (T − t)]

+
κ2ϕ2ω

2
2

2(κ2 + ω2ρ21)
[
1 − e−(κ2+ω2ρ21)(T−t)

κ2 + ω2ρ21
− (T − t)]

+
2λα2

2σ
2
Zm2

1

r0(m1 − m2)2 ln
∣∣∣∣∣ 2α2 + (m1 − m2)
2α2 + (m1 − m2)er0(T−t)

∣∣∣∣∣
+

λα2σ
2
Zm2

1

r0(m1 − m2)
[er0(T−t) − 1], ρi2 = 0.

(3.13)

J1(t) and J2(t) are given by Eqs (3.9) and (3.10), respectively.
(3) When q∗ = 1,

d(t) =
m2

1σ
2
0

4r0
[e−r0(T−t) − er0(T−t)] +

m1λα1µ2

r0
[1 − e−r0(T−t)]. (3.14)

I(t), J1(t), and J2(t) are given by Eqs (3.8)–(3.10), respectively, where

q̂(t) =
2α2 − m2er0(T−t)

2α2 + (m1 − m2)er0(T−t) = 1 −
m1er0(T−t)

2α2 + (m1 − m2)er0(T−t) ,

c1 =
κ1 + ω1ρ11 +

√
∆1

ρ2
12

, c2 =
κ1 + ω1ρ11 −

√
∆1

ρ2
12

,

d1 =
κ2 + ω2ρ21 +

√
∆2

ρ2
22

, d2 =
κ2 + ω2ρ21 −

√
∆2

ρ2
22

,

∆i = (κi + ωiρi1)2 + ω2
i ρ

2
i2 > 0, i = 1, 2,

L(1 −
√
α1

α2
) = (m1 − m2)er0(T−t)λα1σ

2
Z + [

α1

2α2
(m1 − m2)2

+ (
1
2
−

√
α1

α2
)m1

2 +

√
α1

α2
m1m2]λσ2

Ze2r0(T−t),

L(1) =
1
2
λσ2

Ze2r0(T−t)m2
1.

Proof. See the Appendix. □

Remark 3.2. Since we employ a more general stochastic volatility model to describe the price
dynamics of risky assets, the analytical solution of the entire model becomes more complex, and the
research findings have broader applications in the financial market.

Theorem 3.4. For the optimal problem with m1 = m2, π∗1 and π∗2 given in Eqs (3.4) and (3.5), they
are also the optimal investment strategies for the insurer and reinsurer, and any measurable function
q∗(t) : [0,T ] → [1 −

√
α1
α2
, 1] is an optimal reinsurance strategy. Furthermore, the optimal value

function is
V(t, x1, x2, v1, v2) = −

1
m1m2

e[−m1 x1−m2 x2−d(t)]er0(T−t)+g(t,v1,v2),

where d(t) is given by equation (3.12), and

g(t, v1, v2) = I(t) + J1(t)v1 + J2(t)v2,
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where I(t), J1(t), and J2(t) are given by Eqs (3.8)–(3.10), respectively.

Proof. If m1 = m2, then equation (6.12) can be rewritten as

[r0d(t) − dt − m1λα1σ
2
Z +

1
2

m2
1λσ

2
Zer0(T−t)]er0(T−t) + gt + κ1[ϕ1 − v1]gv1

+ κ2[ϕ2 − v2]gv2 +
v1(ρ2

11 + ρ
2
12)

2
(gv1v1 + g2

v1
) +

v2(ρ2
21 + ρ

2
22)

2
(gv2v2 + g2

v2
)

−
v1(ω1 + ρ11gv1)

2

2
−

v2(ω2 + ρ21gv2)
2

2
) = 0.

(3.15)

Equation (3.15) is independent of q∗(t) and can be divided into the following two equations:

r0d(t) − dt − m1λα1σ
2
Z +

1
2

m1
2λσ2

Zer0(T−t) = 0, (3.16)

and Eq (6.20). Thus, we obtain the expressions of g(t, v1, v2), I(t), J1(t), and J2(t) by Eqs (6.22)
and (3.8)–(3.10).

Note that Eq (3.16) is a linear ordinary differential equation with the boundary condition d(T ) = 0;
it is not difficult to derive that

d(t) = −
m1λα1µ2

r0
[e−r0(T−t) − 1] +

λσ2
Z

4r0
m2

1[e−r0(T−t) − er0(T−t)], (3.17)

then we can get the explicit expression of the value function V(t, x1, x2, v1, v2). Similar to Theorem 3.3,
we can easily derive the optimal investment strategies for the insurer and reinsurer. The procedure is
similar to that of m1 , m2, so we omit it here. □

4. Special cases

This section is devoted to seeking optimal reinsurance and investment strategies for some of the
relevant models and corresponding value functions.

4.1. Optimal strategy for the insurer and reinsurer under the CEV model

In this case, we discuss the optimization problem under the CEV model in Remark 2.3. Then the
wealth process (2.10) and (2.11) are rewritten as

dXu
1(t) =[r0Xu

1(t) + (µ1(t) − r0)π1(t) + λα1σ
2
Z − λα2σ

2
Z(1 − q(t))2]dt

+ π1(t)σ1(S 1(t))ν1dW1(t) + q(t)
√
λσ2

ZdW0(t),

X1(0) =x01,

(4.1)

and 
dXu

2(t) =[r0(t)Xu
2(t) + (µ2 − r0)π2(t) + λα2σ

2
Z(1 − q(t))2]dt

+ π2(t)σ2(S 2(t))ν2dW2(t) + (1 − q(t))
√
λσ2

ZdW0(t),

X2(0) =x02.

(4.2)
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Proposition 4.1. For optimization problem (3.1), if the price process of risky asset S i(t)(i = 1, 2) is
governed by the CEV model, the optimal investment strategies are given by

π∗1(t) =
2(µ1 − r0) − (µ1 − r0)2(e−2r0ν1(T−t) − 1)

2r0m1σ
2
1(s1)2ν1

e−r0(T−t), (4.3)

and

π∗2(t) =
2(µ2 − r0) − (µ2 − r0)2(e−2r0ν2(T−t) − 1)

2r0m2σ
2
2(s2)2ν2

e−r0(T−t). (4.4)

The optimal reinsurance strategies are given by

Case (I), If m1 > m2 and ∆̂2 ≥ 1, then

q∗ =

 1 −
√

α1
α2
, 0 ≤ t ≤ t2,

q̂(t), t2 ≤ t ≤ T.

Case (II), If m1 > m2 and ∆̂2 < 1, then

q∗ = 1 −
√
α1

α2
, 0 ≤ t ≤ T.

Case (III), If m1 < m2 and ∆̂1 > ∆̂2 ≥ 1, when L
(
1 −

√
α1
α2

)
≥ L(1), then

q∗ =


1, 0 ≤ t ≤ t1,

1 −
√

α1
α2
, t1 ≤ t ≤ t2,

1, t2 ≤ t ≤ T,

when L
(
1 −

√
α1
α2

)
< L(1), then

q∗ =

 1, 0 ≤ t ≤ t1,

1 −
√

α1
α2
, t1 ≤ t ≤ T.

Case (IV), If m1 < m2 and ∆̂2 < 1 ≤ ∆̂1, then

q∗ =

 1, 0 ≤ t ≤ t1,

1 −
√

α1
α2
, t1 ≤ t ≤ T.

Case (V), If m1 < m2 and ∆̂2 < ∆̂1 < 1, then

q∗ = 1, 0 ≤ t ≤ T.

Case (VI), If m1 = m2, then any measurable function q∗(t) : [0,T ] → [1 −
√

α1
α2
, 1] is an optimal

reinsurance strategy.
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When q∗ takes different values, the explicit expression of the value function is as follows:

V(t, x1, x2, v1, v2) = −
1

m1m2
e[−m1 x1−m2 x2−d(t)]er0(T−t)+g(t,v1,v2),

where
g(t, v1, v2) = I(t) + J1(t)v1 + J2(t)v2.

(1) When q∗ = 1 −
√

α1
α2

,

d(t) = −
m2λα1µ2

r0
[e−r0(T−t) − 1] +

σ2
0

2r0

[(1
2
−

√
α1

α2

)
m2

1 +
α1

2α2
(m1 − m2)2

+

√
α1

α2
m1m2

]
× [e−r0(T−t) − er0(T−t)],

(4.5)

I(t) =
(2ν1 + 1)(µ1 − r0)2

4r0
[
1 − e−2ν1r0(T−t)

2ν1r0
− (T − t)]

+
(2ν2 + 1)(µ2 − r0)2

4r0
[
1 − e−2ν2r0(T−t)

2ν2r0
− (T − t)],

(4.6)

J1(t) =
(µ1 − r0)2

4r0ν1σ
2
1

(e−2r0ν1(T−t) − 1), (4.7)

and

J2(t) =
(µ2 − r0)2

4r0ν2σ
2
2

(e−2r0ν2(T−t) − 1). (4.8)

(2) When q∗ = q̂(t),

d(t) = −
λσ2

Zm1α1

r0
[e−r0(T−t) − 1], (4.9)

I(t) =
(2ν1 + 1)(µ1 − r0)2

4r0
[
1 − e−2ν1r0(T−t)

2ν1r0
− (T − t)]

+
(2ν2 + 1)(µ2 − r0)2

4r0
[
1 − e−2ν2r0(T−t)

2ν2r0
− (T − t)]

+
2λα2

2σ
2
Zm2

1

r0(m1 − m2)2 ln
∣∣∣∣∣ 2α2 + (m1 − m2)
2α2 + (m1 − m2)er0(T−t)

∣∣∣∣∣
+

λα2σ
2
Zm2

1

r0(m1 − m2)
[er0(T−t) − 1].

(4.10)

J1(t) and J2(t) are given by Eqs (4.7) and (4.8), respectively.
(3) When q∗ = 1,

d(t) =
m2

1σ
2
0

4r0
[e−r0(T−t) − er0(T−t)] +

m1λα1µ2

r0
[1 − e−r0(T−t)]. (4.11)

I(t), J1(t) and J2(t) are given by Eqs (4.6)–(4.8), respectively.
Specifically, when m1 = m2, d(t), J1(t), J2(t), and I(t) are given by Eqs (3.18) and (4.6)–(4.8),

respectively.
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Remark 4.1. The CEV model is a mathematical model used to describe the volatility of financial
asset returns. By introducing an elasticity parameter, it provides a more flexible and realistic
framework to describe and analyze the volatility of financial asset prices, enabling investors and risk
managers to make more precise decisions in derivatives pricing, risk management, and the
formulation of quantitative investment strategies.

4.2. Optimal strategy for the insurer and reinsurer under the Heston model

In this case, we discuss the optimization problem under the Heston model in Remark 2.4. Then the
wealth process (2.10) and (2.11) are rewritten as

dXu
1(t) =[r0(t)Xu

1(t) + ω1ϑ1(t)π1(t) + λα1σ
2
Z − λα2σ

2
Z(1 − q(t))2]dt

+ π1(t)
√
ϑ1(t)dW1(t) + q(t)

√
λσ2

ZdW0(t),

X1(0) =x01,

(4.12)

and 
dXu

2(t) =[r0(t)Xu
2(t) + ω2ϑ2(t)π2(t) + λα2σ

2
Z(1 − q(t))2]dt

+ π2(t)
√
ϑ2(t)dW2(t) + (1 − q(t))

√
λσ2

ZdW0(t),

X2(0) =x02.

(4.13)

Proposition 4.2. For optimization problem (3.1), if the price process of risky asset S i(t)(i = 1, 2) is
governed by the Heston model, the optimal investment strategies are given by

π∗1(t) =
ω1(c1 − c2e−

σ2
01(1−ρ2

1)
2 (c1−c2)(T−t))

σ01ρ1c1c2(1 − e−
σ2

01(1−ρ2
1)

2 (c1−c2)(T−t))
e−r0(T−t)

+
σ01ρ1c1c2(1 − e−

σ2
01(1−ρ2

1)
2 (c1−c2)(T−t))

σ01ρ1c1c2(1 − e−
σ2

01(1−ρ2
1)

2 (c1−c2)(T−t))
e−r0(T−t),

(4.14)

and

π∗2(t) =
ω2(d1 − d2e−

σ2
02(1−ρ2

2)
2 (d1−d2)(T−t))

m2(d1 − d2e−
σ2

02(1−ρ2
2)

2 (d1−d2)(T−t))
e−r0(T−t)

+
σ02ρ2d1d2(1 − e−

σ2
02(1−ρ2

2)
2 (d1−d2)(T−t))

m2(d1 − d2e−
σ2

02(1−ρ2
2)

2 (d1−d2)(T−t))
e−r0(T−t).

(4.15)

The optimal reinsurance strategies are given by:

Case (I), If m1 > m2 and ∆̂2 ≥ 1, then

q∗ =

 1 −
√

α1
α2
, 0 ≤ t ≤ t2,

q̂(t), t2 ≤ t ≤ T.

Case (II), If m1 > m2 and ∆̂2 < 1, then

q∗ = 1 −
√
α1

α2
, 0 ≤ t ≤ T.
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Case (III), If m1 < m2 and ∆̂1 > ∆̂2 ≥ 1, when L
(
1 −

√
α1
α2

)
≥ L(1), then

q∗ =


1, 0 ≤ t ≤ t1,

1 −
√

α1
α2
, t1 ≤ t ≤ t2,

1, t2 ≤ t ≤ T,

when L
(
1 −

√
α1
α2

)
< L(1), then

q∗ =

 1, 0 ≤ t ≤ t1,

1 −
√

α1
α2
, t1 ≤ t ≤ T.

Case (IV), If m1 < m2 and ∆̂2 < 1 ≤ ∆̂1, then

q∗ =

 1, 0 ≤ t ≤ t1,

1 −
√

α1
α2
, t1 ≤ t ≤ T.

Case (V), If m1 < m2 and ∆̂2 < ∆̂1 < 1, then

q∗ = 1, 0 ≤ t ≤ T.

Case (VI), If m1 = m2, then any measurable function q∗(t) : [0,T ] → [1 −
√

α1
α2
, 1] is an optimal

reinsurance strategy.
When q∗ takes different values, the explicit expression of the value function is as follows:

V(t, x1, x2, v1, v2) = −
1

m1m2
e[−m1 x1−m2 x2−d(t)]er0(T−t)+g(t,v1,v2),

where
g(t, v1, v2) = I(t) + J1(t)v1 + J2(t)v2.

(1) When q∗ = 1 −
√

α1
α2

,

d(t) = −
m2λα1µ2

r0
[e−r0(T−t) − 1] +

σ2
0

2r0

[(1
2
−

√
α1

α2

)
m2

1 +
α1

2α2
(m1 − m2)2

+

√
α1

α2
m1m2

]
× [e−r0(T−t) − er0(T−t)],

(4.16)

I(t) =κ1ϕ1c1(T − t) −
2κ1ϕ1

σ01(1 − ρ2
1)

ln
c1e

σ01(1−ρ2
1)

2 (c1−c2)(T−t) − c2

c1 − c2

+ κ2ϕ2d1(T − t) −
2κ2ϕ2

σ02(1 − ρ2
2)

ln
d1e

σ02(1−ρ2
2)

2 (d1−d2)(T−t) − d2

d1 − d2
,

(4.17)
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J1(t) =
c1c2(1 − e−

σ01(1−ρ2
1)

2 (c1−c2)(T−t))

c1 − c2e−
σ01(1−ρ2

1)
2 (c1−c2)(T−t)

, (4.18)

and

J2(t) =
d1d2(1 − e−

σ02(1−ρ2
2)

2 (d1−d2)(T−t))

d1 − d2e−
σ02(1−ρ2

2)
2 (d1−d2)(T−t)

. (4.19)

(2) When q∗ = q̂(t),

d(t) = −
λσ2

Zm1α1

r0
[e−r0(T−t) − 1], (4.20)

and

I(t) =κ1ϕ1c1(T − t) −
2κ1ϕ1

σ01(1 − ρ2
1)

ln
c1e

σ01(1−ρ2
1)

2 (c1−c2)(T−t) − c2

c1 − c2

+ κ2ϕ2d1(T − t) −
2κ2ϕ2

σ02(1 − ρ2
2)

ln
d1e

σ02(1−ρ2
2)

2 (d1−d2)(T−t) − d2

d1 − d2

+
2λα2

2σ
2
Zm2

1

r0(m1 − m2)2 ln
∣∣∣∣∣ 2α2 + (m1 − m2)
2α2 + (m1 − m2)er0(T−t)

∣∣∣∣∣
+

λα2σ
2
Zm2

1

r0(m1 − m2)
[er0(T−t) − 1].

(4.21)

J1(t) and J2(t) are given by Eqs (4.18) and (4.19), respectively.

(3) When q∗ = 1, where

d(t) =
m2

1σ
2
0

4r0
[e−r0(T−t) − er0(T−t)] +

m1λα1µ2

r0
[1 − e−r0(T−t)]. (4.22)

I(t), J1(t) and J2(t) are given by Eqs (4.17)–(4.19), respectively, where

c1 =
κ1 + ω1σ01ρ1 +

√
∆1

σ01(1 − ρ2
1)

, c2 =
κ1 + ω1σ01ρ1 −

√
∆1

σ01(1 − ρ2
1)

,

d1 =
κ2 + ω2σ02ρ2 +

√
∆2

σ02(1 − ρ2
2)

, d2 =
κ2 + ω2σ02ρ2 −

√
∆2

σ02(1 − ρ2
2)

,

∆i = (κi + ωiσ0iρi)2 + ω2
iσ0i(1 − ρ2

i ) > 0, i = 1, 2.

Specially, when m1 = m2, d(t), J1(t), J2(t) and I(t) and are given by Eqs (3.18) and (4.17)–(4.19),
respectively.

Remark 4.2. The Heston model is a stochastic volatility model used for pricing financial derivatives.
By introducing stochastic volatility and the mean-reverting characteristic of volatility, it provides a
framework for derivative pricing that is closer to the actual behavior of financial markets. This model
allows investors and risk managers to make more precise decisions in derivative pricing, risk
management, and the formulation of quantitative investment strategies.
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Remark 4.3. The CEV model and the Heston model are two distinct models within the field of
financial mathematics, each playing a unique role and offering advantages in the areas of option
pricing and financial derivatives analysis. Depending on the specific risk market environment,
different models are chosen, and there is no inclusion relationship between these two models.

5. Numerical experiment and analysis

In this section, we provide some numerical examples to show the effects of some model parameters
on the optimal reinsurance and investment strategy. We assume that the claim size Zi follows an
exponential distribution with parameter λZ, i.e., the density function of Zi is given by f (z) = λZe−λZz, z ≥
0. Throughout this section, unless otherwise stated, the basic parameters are given by Tables 1–3.
Specifically, we have set the risk-free interest rate r0 = 0.1.

5.1. Effects of model parameters on the optimal reinsurance strategy

Table 1. Model general parameters.

Time parameters Insurer parameters
T t α1 m1

5 0 0.8 1.8
Reinsurer parameters Insurance claim parameters
α2 m2 λZ λ

1.2 1.3 1 1

In Figure 1, we let ∆2 > 1 with α2 = 1.1, 1.2,m1 = 1.8,m2 = 1.3, and ∆2 < 1 with
α2 = 1.1, 1.2,m1 = 2,m2 = 1.9. From Theorem 3.2, the optimal reinsurance strategy is a fixed
constant 1 −

√
α1
α2

when ∆2 < 1. When ∆2 > 1, we find that the initial retention level q increases with
the increase of α2, and the larger α2 is, the earlier the optimal strategy changes. This result can be
explained by the fact that the larger α2, the higher the reinsurance price and the less reinsurance the
insurer buys.

Let m2 = 1.2, then we get ∆2 > 1 with m1 = 1.9 ∼ 2.1, and we obtain q∗ = q̂ when t ∈ (t2,T ).
Figure 2 shows that the optimal reinsurance strategy q∗ is a decreasing function of the insurer’s risk
aversion coefficient m1. We find that when the risk aversion coefficient of the reinsurer is constant, the
insurer with a higher risk aversion coefficient is willing to buy more reinsurance.

Figure 3 displays that the optimal reinsurance strategy q∗ is a decreasing function of the reinsurer’s
risk aversion coefficient m2. Let m1 = 2, then we can calculate ∆2 > 1 with m2 = 1.2 ∼ 1.4, and we
obtain q∗ = q̂ when t ∈ (t2,T ). We find that when the risk aversion coefficient of the insurer is constant,
the reinsurer with higher risk aversion coefficient is willing to accept more claim risk. One possible
reason for this is that the reinsurer with a higher risk aversion invest less in risky assets and have more
cash to hedge against claims.

Figure 4 shows that q∗ increases with time t and the security load of reinsurer α2. It can be explained
that the greater the safety load of the reinsurer, the more premium the insurer will pay, and then the
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insurer will appropriately reduce the reinsurance ratio and increase the retention level.

Figure 1. The optimal reinsurance retention level q∗ varies over time when m1 > m2.

Figure 2. The effect of m1 on the optimal reinsurance retention level q∗.

Figure 3. The effect of m2 on the optimal reinsurance retention level q∗.
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Figure 4. The effect of α2 on the optimal reinsurance retention level q∗.

5.2. Effects of model parameters on the optimal investment strategy under the CEV model

Table 2. CEV model parameters.

Financial market parameters under the CEV model
s1 s2 µ1 µ2 ν1 ν2 σ1 σ2

1 2 0.2 0.3 -0.8 -0.7 1 2

Figure 5 shows that the optimal investment strategy decreases with the increase of the risk aversion
coefficient. The reason is that when the risk aversion coefficient becomes larger, the insurer will
increase the reinsurance proportion and reduce the investment amount of risky assets.

Figure 5. The effect of m1 on the optimal investment strategy π∗1 under the CEV model.

From Figure 6, we find that near the initial time, the greater the risk aversion coefficient of the
reinsurer, the greater the amount of investment in risky assets. This is because the greater the risk
aversion coefficient, the more reinsurance premiums reinsurance companies charge, and they can invest
more money in risky assets. In addition, we also find that the amount of investment in risky assets by
reinsurers increases more gently with the increase of the risk aversion coefficient.
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Figure 6. The effect of m2 on the optimal investment strategy π∗2 under the CEV model.

Figures 7 and 8 present that when the risk-free intersets rate is fixed and the instantaneous rate of
return of risky assets increases, both the insurer and the reinsurer will increase their investment in risky
assets. This is consistent with our intuition.

Figure 7. The effect of µ1 on the optimal investment strategy π∗1 under the CEV model.

Figure 8. The effect of µ2 on the optimal investment strategy π∗2 under the CEV model.
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5.3. Effects of model parameters on the optimal investment strategy under the Heston model

In Figure 9, we know that the insurer’s investment strategy π∗1 decreases with m1, which means that
when m1 becomes larger, the insurer will reduce its investment in risky assets. Figure 10 also displays
the negative correlation between the reinsurer’s optimal investment strategy π∗2 and its risk aversion
coefficient m2.

Table 3. Heston model parameters.

Financial market parameters under the Heston model
ω1 ω2 κ1 κ2 σ01 σ02 ρ1 ρ2

2 1.2 3 1 1 1 0.3 0.3

Figure 9. The effect of m1 on the optimal investment strategy π∗1 under the Heston model.

Figure 10. The effect of m2 on the optimal investment strategy π∗2 under the Heston model.

Figure 11 demonstrates that the optimal investment strategy π∗1 increases with respect to ω1. A
larger ω1 leads to a higher appreciation rate of the risky asset. Thus, the insurer will invest more in
the risky asset when ω1 becomes larger. Figure 12 also exhibits the positive correlation between the
reinsurer’s optimal investment strategy π∗2 and ω2.
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Figure 11. The effect of ω1 on the optimal investment strategy π∗1 under the Heston model.

Figure 12. The effect of ω2 on the optimal investment strategy π∗2 under the Heston model.

6. Conclusions

In this paper, the problem of optimal investment and proportional reinsurance with a joint
exponential effect between the insurer and reinsurer is studied under the stochastic volatility model.
Our aim is to maximize the expectation of the joint exponential utility of the terminal wealth of the
insurer and reinsurer over a certain period of time. The surplus process of the insurer is described by a
diffusion model. The insurer can purchase proportional reinsurance from the reinsurer, and the
premium charged by the insurer and reinsurer follows the variance principle. Both the insurer and
reinsurer are allowed to invest in risk-free assets and risky assets. The price process of risky assets is
described by a Markov, affine-form, square-root stochastic factor process, which is a general
stochastic volatility model, including the CEV model and Heston model. By solving the extended
HJB equation, the optimal proportional reinsurance and investment strategy and its corresponding
value function are explicitly derived. It is found that the optimal reinsurance strategy can be divided
into several cases, which are related to the risk aversion coefficient of the insurer and reinsurer, and
are not related to the price of risk assets. There are still some issues to be discussed in the future. For
example, other reinsurance may be considered, such as overage or stop-loss reinsurance. Dependent
risk model, such as common-shock dependence or thinning dependence, can also be taken into
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account. Or consider a financial market consisting of one risk-free asset and n risky assets, where the
risk premium is dependent on the affine diffusion factor process.
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strategies with a general Lévy process risk model, Syst. Sci. Control Eng., 12 (2024), 2306831.
https://doi.org/10.1080/21642583.2024.2306831

11. V. Young, Optimal investment strategy to minimize the probability of lifetime ruin, N. Amer. Actuar.
J., 8 (2004), 106–126. https://doi.org/10.1080/10920277.2004.10596174

12. S. Promislow, V. Young, Minimizing the probability of ruin when claims
follow brownian motion with drift, N. Amer. Actuar. J., 9 (2005), 110–128.
https://doi.org/10.1080/10920277.2005.10596214

13. S. Chen, Z. Li, K. Li, Optimal investment-reinsurance policy for an insurance
company with var constraint, Insur. Math. Econ., 47 (2010), 144–153.
https://doi.org/10.1016/j.insmatheco.2010.06.002

14. Y. Cao, X. Zeng, Optimal proportional reinsurance and investment with minimum probability of
ruin, Appl. Math. Comput., 218 (2012), 5433–5438. https://doi.org/10.1016/j.amc.2011.11.031

15. E. Bayraktar, Y. Zhang, Minimizing the probability of lifetime ruin under ambiguity aversion,
SIAM J. Control Optim., 53 (2015), 58–90. https://doi.org/10.2139/ssrn.2391987

16. M. Kaluszka, Optimal reinsurance under mean-variance premium principles, Insur. Math. Econ.,
28 (2001), 61–67. https://doi.org/10.1016/S0167-6687(00)00066-4

17. M. Kaluszka, Mean-variance optimal reinsurance arrangements, Scand. Actuar. J., 1 (2004), 28–41.
https://doi.org/10.1080/03461230410019222

18. Z. Liang, K. Yuen, Optimal dynamic reinsurance with dependent risks: variance premium
principle, Scand. Actuar. J., 1 (2016), 18–36. https://doi.org/10.1080/03461238.2014.892899

19. X. Zhang, H. Meng, Y. Zeng, Optimal investment and reinsurance strategies for insurers with
generalized mean-variance premium principle and no-short selling, Insur. Math. Econ., 67 (2016),
125–132. https://doi.org/10.1016/j.insmatheco.2016.01.001

20. Y. Deng, M. Li, Y. Huang, H. Meng, J. Zhou, Robust optimal strategies for an insurer under
generalized mean-variance premium principle with defaultable bond, Commun. Stat. Theory Meth.,
50 (2021), 5126–5159. https://doi.org/10.1080/03610926.2020.1726391

21. K. French, G. Schwert, R. Stambaugh, Expected stock returns and volatility, J. Fina. Econ., 19
(1987), 3–29. https://doi.org/10.1016/0304-405X(87)90026-2

AIMS Mathematics Volume 9, Issue 12, 35181–35217.

https://dx.doi.org/https://doi.org/10.1007/s00186-007-0195-4
https://dx.doi.org/https://doi.org/10.1016/j.cam.2015.01.038
https://dx.doi.org/https://doi.org/10.1016/j.insmatheco.2015.10.012
https://dx.doi.org/https://doi.org/10.1080/03610926.2021.1873379
https://dx.doi.org/https://doi.org/10.1080/21642583.2024.2306831
https://dx.doi.org/https://doi.org/10.1080/10920277.2004.10596174
https://dx.doi.org/https://doi.org/10.1080/10920277.2005.10596214
https://dx.doi.org/https://doi.org/10.1016/j.insmatheco.2010.06.002
https://dx.doi.org/https://doi.org/10.1016/j.amc.2011.11.031
https://dx.doi.org/https://doi.org/10.2139/ssrn.2391987
https://dx.doi.org/https://doi.org/10.1016/S0167-6687(00)00066-4
https://dx.doi.org/https://doi.org/10.1080/03461230410019222
https://dx.doi.org/https://doi.org/10.1080/03461238.2014.892899
https://dx.doi.org/https://doi.org/10.1016/j.insmatheco.2016.01.001
https://dx.doi.org/https://doi.org/10.1080/03610926.2020.1726391
https://dx.doi.org/https://doi.org/10.1016/0304-405X(87)90026-2


35205

22. A. Gu, X. Guo, Z. Li, Y. Zeng, Optimal control of excess-of-loss reinsurance and
investment for insurers under a CEV model, Insur. Math. Econ., 51 (2012), 674–684.
https://doi.org/10.1016/j.insmatheco.2012.09.003

23. L. Chen, X. Hu, M. Chen, Optimal investment and reinsurance for the insurer and reinsurer
with the joint exponential utility under the CEV model, AIMS Math., 8 (2023), 15383–15410.
https://doi.org/10.3934/math.2023786

24. W. Jiang, Z. Yang, Optimal robust reinsurance contracts with investment strategy
under variance premium principle, Math. Control Relat. Fields, 14 (2024), 199–214.
https://doi.org/10.3934/mcrf.2023001

25. Z. Li, Y. Zeng, Y. Lai, Optimal time-consistent investment and reinsurance strategies
for insurers under Heston’s SV model, Insur. Math. Econ., 51 (2012), 191–203.
https://doi.org/10.1016/j.insmatheco.2011.09.002

26. H. Zhao, X. Rong, Y. Zhao, Optimal excess-of-loss reinsurance and investment problem for an
insurer with jump-diffusion risk process under the Heston model, Insur. Math. Econ., 53 (2013),
504–514. https://doi.org/10.1016/j.insmatheco.2013.08.004

27. J. Ma, Z. Lu, D. Chen, Optimal reinsurance-investment with loss aversion under rough Heston
model, Quant. Finance, 33 (2023), 95–109. https://doi.org/10.1080/14697688.2022.2140308

28. Z. Sun, X. Zhang, K. Yuen, Mean-variance asset-liability management with affine
diffusion factor process and a reinsurance option, Scand. Actuar. J., 3 (2020), 218–244.
https://doi.org/10.1080/03461238.2019.1658619

29. K. Borch, Reciprocal reinsurance treaties, ASTIN Bull.: J. IAA, 1 (1960), 170–191.
https://doi.org/10.1017/S0515036100009557

30. V. Kaishev, Optimal retention levels, given the joint survival of cedent and reinsurer, Scand. Actuar.
J., 6 (2004), 401–430. https://doi.org/10.1080/03461230410020437

31. J. Cai, Y. Fang, Z. Li, G. Willmot, Optimal reciprocal reinsurance treaties under the joint
survival probability and the joint profitable probability, J. Risk Insur., 80 (2013), 145–168.
https://doi.org/10.1111/j.1539-6975.2012.01462.x

32. D. Li, X. Rong, H. Zhao, Optimal reinsurance-investment problem for maximizing the product of
the insurer’s and the reinsurer’s utilities under a CEV model, J. Comput. Appl. Math., 255 (2014),
671–683. https://doi.org/10.1016/j.cam.2013.06.033

33. H. Zhao, C. Weng, Y. Shen, Y. Zeng, Time-consistent investment-reinsurance strategies towards
joint interests of the insurer and the reinsurer under CEV models, Sci. China Math., 60 (2017),
317–344. https://doi.org/10.2139/ssrn.2432207

34. D. Li, X. Rong, H. Zhao, Optimal reinsurance and investment problem for an insurer and a reinsurer
with jump-diffusion risk process under the Heston model, Comput. Appl. Math., 35 (2016), 533–
557. https://doi.org/10.1007/s40314-014-0204-1

35. Y. Bai, Z. Zhou, R. Gao, H. Xiao, Nash equilibrium investment-reinsurance strategies for an insurer
and a reinsurer with intertemporal restrictions and common interests, Mathematics, 8 (2020), 139.
https://doi.org/10.3390/math8010139

AIMS Mathematics Volume 9, Issue 12, 35181–35217.

https://dx.doi.org/https://doi.org/10.1016/j.insmatheco.2012.09.003
https://dx.doi.org/https://doi.org/10.3934/math.2023786
https://dx.doi.org/https://doi.org/10.3934/mcrf.2023001
https://dx.doi.org/https://doi.org/10.1016/j.insmatheco.2011.09.002
https://dx.doi.org/https://doi.org/10.1016/j.insmatheco.2013.08.004
https://dx.doi.org/https://doi.org/10.1080/14697688.2022.2140308
https://dx.doi.org/https://doi.org/10.1080/03461238.2019.1658619
https://dx.doi.org/https://doi.org/10.1017/S0515036100009557
https://dx.doi.org/https://doi.org/10.1080/03461230410020437
https://dx.doi.org/https://doi.org/10.1111/j.1539-6975.2012.01462.x
https://dx.doi.org/https://doi.org/10.1016/j.cam.2013.06.033
https://dx.doi.org/https://doi.org/10.2139/ssrn.2432207
https://dx.doi.org/https://doi.org/10.1007/s40314-014-0204-1
https://dx.doi.org/https://doi.org/10.3390/math8010139


35206

36. Y. Yuan, Z. Liang, X. Han, Minimizing the penalized probability of drawdown for a general
insurance company under ambiguity aversion, Math. Meth. Oper. Res., 96 (2022), 259–290.
https://doi.org/10.1007/s00186-022-00794-w

37. F. Wu, X. Zhang, Z. Liang, Optimal reinsurance-investment problem for a general insurance
company under a generalized dynamic contagion claim model, Math. Control Relat. Fields, 13
(2023), 533–557. https://doi.org/10.3934/mcrf.2022030

38. J. Grandell, Aspects of risk theory, New York: Springer, 1991.

39. Y. Huang, Y. Ouyang, L. Tang, J. Zhou, Robust optimal investment and reinsurance problem for the
product of the insurer’s and the reinsurer’s utilities, J. Comput. Appl. Math., 344 (2018), 532–552.
https://doi.org/10.1016/j.cam.2018.05.060

Appendix

Proof of Lemma 3.1

Plugging u∗ into Eqs (2.10) and (2.11), respectively, we have

Xu∗
1 (t) =x01er0t +

∫ t

0
er0(t−s)A1(s)ds +

∫ t

0
er0(t−s)π

∗
1(s)(µ1(s) − r0)

ω1
√
ϑ1(s)

dW1(s)

+

∫ t

0
er0(t−s)q∗(s)

√
λσ2

ZdW0(s),

and

Xu∗
2 (t) =x02er0t +

∫ t

0
er0(t−s)A2(s)ds +

∫ t

0
er0(t−s)π

∗
2(s)(µ2(s) − r0)

ω2
√
ϑ2(s)

dW2(s)

+

∫ t

0
er0(t−s)q∗(s)

√
λσ2

ZdW0(s),

where A1(s) = (µ1(s)− r0)π∗1(s)+λα1σ
2
Z −λα2σ

2
Z(1− q(s)∗)2 and A2(s) = (µ2(s)− r0)π∗2(s)+λα2σ

2
Z(1−

q(s)∗)2. Then

ψ(t, Xu∗
1 (t), Xu∗

2 (t), ϑ1(t), ϑ2(t))2 =
1

m2
1m2

2

e[−2m1Xu∗
1 −2m2Xu∗

2 −2d(t)]er0(T−t)+2g(t,ϑ1(t),ϑ2(t)).

Furthermore, due to d(t), g(t, ϑ1(t), ϑ2(t)), x01er0t, x02er0t,
∫ t

0
er0(t−s)A1(s)ds and

∫ t

0
er0(t−s)A2(s)ds are

deterministic and bounded, so we can get the following estimate with a apprppriate positive
constant M

ψ(t, Xu∗
1 (t), Xu∗

2 (t), ϑ1(t), ϑ2(t))2 ≤MD1(t)D2(t)D3(t)D4(t),

where

D1(t) = e
−2m1er0(T−t)

∫ t
0 er0(t−s) π

∗
1(s)(µ1(s)−r0)

ω1
√
ϑ1(s)

dW1(s)
,

D2(t) = e−2m1er0(T−t)
∫ t

0 er0(t−s)q∗(s)
√
λσ2

ZdW0(s),

D3(t) = e
−2m2er0(T−t)

∫ t
0 er0(t−s) π

∗
2(s)(µ2(s)−r0)

ω2
√
ϑ2(s)

dW2(s)
,

D4(t) = e−2m2er0(T−t)
∫ t

0 er0(t−s)q∗(s)
√
λσ2

ZdW0(s).
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It is evident that D1(t),D2(t),D3(t) and D4(t) are all martingales. Hence

E[ψ(t, Xu∗
1 (t), Xu∗

2 (t), ϑ1(t), ϑ2(t))]2 < ∞.

Proof of Theorem 3.2

Since ψ is a function in C1,2,2,2,2([0,T ]×R×R×R+ ×R+
)
, for all t ∈ [0,T ], u ∈ U and any stopping

time τ ∈ [0,∞), applying Itô’s formula to ψ between t and T ∧ τ, we obtain that

ψ(T ∧ τ, Xu
1(T ∧ τ), Xu

2(T ∧ τ), ϑ1(T ∧ τ), ϑ2(T ∧ τ))

= ψ(t, x1, x2, v1, v2) +
∫ T∧τ

t
Auψ(s, , Xu

1(s), Xu
2(s), ϑ1(s), ϑ2(s))ds

+

∫ T∧τ

t
[ψx1q(s) + ψx2(1 − q(s))]

√
λσ2

ZdW0(s)

+

∫ T∧τ

t
[ψx1

π1(s)(µ1(s) − r0)
ω1
√
ϑ1(s)

+ ψv1ρ11

√
ϑ1(s)]dW1(s)

+

∫ T∧τ

t
[ψx2

π2(s)(µ2(s) − r0)
ω2
√
ϑ2(s)

+ ψv2ρ21

√
ϑ2(s)]dW2(s)

+

∫ T∧τ

t
ψv1ρ12

√
ϑ1(s)dW1(s) +

∫ T∧τ

t
ψv2ρ22

√
ϑ2(s)dW2(s).

Since the last five terms are square-integrable martingales with zero expectation, taking conditional
expectation given (t, x1, x2, v1, v2) on both sides of the above formula and taking Eq (3.3) into account
result that

Et,x1,x2,v1,v2[ψ(T ∧ τ, Xu
1(T ∧ τ), Xu

2(T ∧ τ), ϑ1(T ∧ τ), ϑ2(T ∧ τ))]

= ψ(t, x1, x2, v1, v2) + Et,x1,x2,v1,v2
[ ∫ T∧τ

t
Auψ(s, , Xu

1(s), Xu
2(s), ϑ1(s), ϑ2(s))ds

]
≤ ψ(t, x1, x2, v1, v2).

By virtue of Lemma 3.1, ψ(τi∧T, Xu
1(τi∧T ), Xu

2(τi∧T ), ϑ1(τi∧T ), ϑ1(τi∧T )), i = 1, 2, ...are uniformly
integrable. Thus we have

V(t, x1, x2, v1, v2) = sup
u∈U

Et,x1,x2,v1,v2[U[Xu(T ),Yu(T )]

= lim
i→∞

Et,x1,x2,v1,v2[ψ(τi ∧ T, Xu
1(τi ∧ T ), Xu

2(τi ∧ T ), ϑ1(τi ∧ T ), ϑ1(τi ∧ T ))]

≤ ψ(t, x1, x2, v1, v2).

Assuming that u∗ is a measurable function valued in the setU, such that

−
∂ψ

∂t
(t, x1, x2, v1, v2) − sup

u∈U
Luψ(t, x1, x2, v1, v2) = −

∂ψ

∂t
(t, x1, x2, v1, v2) − Lu∗ψ(t, x1, x2, v1, v2) = 0.

Thus, it’s easy for the aforementioned inequality to become an equality when u = U. Theorem 3.2 is
proved.
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Proof of Theorem 3.3

Substituting Eq (3.2) into (3.3), we have the following HJB equation

sup
u∈U

{
Vt + [r0x1 + (µ1(t) − r0)π1(t) + λα1σ

2
Z − λα2σ

2
Z(1 − q)2]Vx1

+ [r0x2 + (µ2(t) − r0)π2(t) + λα2σ
2
Z(1 − q)2]Vx2 + κ1[ϕ1 − v1]Vv1

+ κ2[ϕ2 − v2]Vv2 +
v1(ρ2

11 + ρ
2
12)

2
Vv1v1 +

v2(ρ2
21 + ρ

2
22)

2
Vv2v2

+ [
π2

1(µ1(t) − r0)2

2ω2
1v1

+
1
2
λσ2

Zq2]Vx1 x1 + [
π2

2(µ2(t) − r0)2

2ω2
2v2

+
1
2
λσ2

Z(1 − q)2]Vx2 x2

+
π1(µ1(t) − r0)ρ11

ω1
Vx1v1 +

π2(µ2(t) − r0)ρ21

ω2
Vx2v2 + λσ

2
Zq(1 − q)Vx1 x2

}
= 0.

(6.1)

Inspried by [23], we try a solution to equation (6.1) by

V(t, x1, x2, v1, v2) = −
1

m1m2
e[−m1 x1−m2 x2−d(t)]er0(T−t)+g(t,v1,v2), (6.2)

with the boundary condition g(T, v1, v2) = 0 and d(T ) = 0. Let gt, gv1 , gv2 , gv1v1 , gv2v2 be the first and
second partial derivatives of g with respect to t, v1, v2, which are given by

Vt = {−r0er0(T−t)[−m1x − m2y − d(t)] − dter0(T−t) + gt}V,

Vx1 = −m1er0(T−t)V,Vx2 = −m2er0(T−t)V,

Vv1 = gv1V,Vv2 = gv2V,Vx1 x1 = m2
1e2r0(T−t)V,Vx2 x2 = m2

2e2r0(T−t)V,

Vv1v1 = (gv1v1 + g2
v1

)V,Vv2v2 = (gv2v2 + g2
v2

)V,
Vx1v1 = −m1er0(T−t)gv1V,Vx2v2 = −m2er0(T−t)gv2V,Vx1 x2 = m1m2e2r0(T−t)V.

(6.3)

Substituting Eq (6.3) into (6.1), we have

inf
u∈U

{
−r0er0(T−t)[−m1x1 − m2x2 − d(t)] − dter0(T−t) + gt

− m1er0(T−t)[r0x1 + (µ1(t) − r0)π1 + λα1σ
2
Z − λα2σ

2
Z(1 − q)2]

− m2er0(T−t)[r0x2 + (µ2(t) − r0)π2 + λα2σ
2
Z(1 − q)2] + κ1[ϕ1 − v1]gv1

+ κ2[ϕ2 − v2]gv2 +
v1(ρ2

11 + ρ
2
12)

2
(gv1v1 + g2

v1
) +

v2(ρ2
21 + ρ

2
22)

2
(gv2v2 + g2

v2
)

+ [
π2

1(µ1(t) − r0)2

2ω2
1v1

+
1
2
λσ2

Zq2]m2
1e2r0(T−t)

+ [
π2

2(µ2(t) − r0)2

2ω2
2v2

+
1
2
λσ2

Z(1 − q)2]m2
2e2r0(T−t) −

π1(µ1(t) − r0)ρ11

ω1
m1e2r0(T−t)gv1

−
π2(µ2(t) − r0)ρ21

ω2
m2e2r0(T−t)gv2 + λσ

2
Zm1m2q(1 − q)e2r0(T−t)} = 0.

(6.4)

Differentiating Eq (6.4) with respect to π1 and π2, we obtain the following first-order optimality
conditions

π∗1(t) =
ω2

1v1 + ρ11ω1v1gv1

(µ1(t) − r0)m1
e−r0(T−t), (6.5)
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π∗2(t) =
ω2

2v2 + ρ21ω2v2gv2

(µ2(t) − r0)m2
e−r0(T−t). (6.6)

Let
L(q, t) =m1er0(T−t)λα2σ

2
Z(1 − q)2 − m2er0(T−t)λα2σ

2
Z(1 − q)2

+ λσ2
Zm1m2q(1 − q)e2r0(T−t) +

1
2
λσ2

Ze2r0(T−t)[m2
1q2 + m2

2(1 − q)2].
(6.7)

In order to find the value of q∗(t) that minimizes L(q, t), we need to take the first and the second
derivatives of L(q, t) w.r.t q. Then ∂L(q,t)

∂q and ∂2L(q,t)
∂q2 are given by

∂L(q, t)
∂q

= (m1 − m2)λσ2
Zer0(T−t)[2α2(q − 1) + q(m1 − m2)er0(T−t) + m2er0(T−t)], (6.8)

and
∂2L(q, t)
∂q2 = (m1 − m2)λσ2

Zer0(T−t)[2α2 + (m1 − m2)er0(T−t)]. (6.9)

Let ∂L(q,t)
∂q = 0, we have

q̂(t) =
2α2 − m2er0(T−t)

2α2 + (m1 − m2)er0(T−t) = 1 −
m1er0(T−t)

2α2 + (m1 − m2)er0(T−t) . (6.10)

We first classify the optimal reinsurance strategy when q takes three different values and give the
corresponding optimal investment π∗1 and π∗2 values, and finally we get the explicit expression of the
corresponding value function. Plugging Eqs (6.5), (6.6) and the optimal reinsurance strategy q∗

into (6.4), we have

− r0er0(T−t)[−m1x1 − m2x2 − d(t)] − dter0(T−t) + gt − m1er0(T−t)[r0x1

+ λα1σ
2
z ] − m2er0(T−t)r0x2 + κ1[ϕ1 − v1]gv1 + κ2[ϕ2 − v2]gv2

+
v1(ρ2

11 + ρ
2
12)

2
(gv1v1 + g2

v1
) +

v2(ρ2
21 + ρ

2
22)

2
(gv2v2 + g2

v2
)

− m1er0(T−t)(µ1(t) − r0)π∗1 +
π∗21 (µ1(t) − r0)2

2ω2
1v1

m2
1e2r0(T−t)

−
π∗1(µ1(t) − r0)ρ11

ω1
m1er0(T−t)gv1 − m2er0(T−t)(µ2(t) − r0)π∗2

+
π∗22 (µ2(t) − r0)2

2ω2
2v2

m2
2e2r0(T−t) −

π∗2(µ2(t) − r0)ρ21

ω2
m2er0(T−t)gv2 + L(q∗, t) = 0.

(6.11)

Simplify Eq (6.11), we get

[r0d(t) − dt − m1λα1σ
2
Z]er0(T−t) + gt + κ1[ϕ1 − v1]gv1 + κ2[ϕ2 − v2]gv2

+
v1(ρ2

11 + ρ
2
12)

2
(gv1v1 + g2

v1
) +

v2(ρ2
21 + ρ

2
22)

2
(gv2v2 + g2

v2
)

−
v1(ω1 + ρ11gv1)

2

2
−

v2(ω2 + ρ21gv2)
2

2
+ L(q∗, t) = 0.

(6.12)
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In order to find the optimal value of q for the minimizes L(q, t) given by Eq (6.7), we need to
discuss the concavity of L(q, t) and the relationship between the sizes of q̂(t), 1 − α1

α2
and 1. We can

easily observe that ∆̂1 > ∆̂2 > 0 when m1 < m2, and ∆̂2 > 0 > ∆̂1 when m1 > m2.
On the hand, ∂2L(q,t)

∂q2 > 0 if and only if one of the following conditions holds

(1) m1 > m2,

(2) m1 < m2, ∆̂1 ≥ 1, 0 ≤ t ≤ t1,

(3) m1 < m2, ∆̂1 < 1, 0 ≤ t ≤ T,

(6.13)

and ∂2L(q,t)
∂q2 < 0 if only and if

m1 < m2, ∆̂1 ≥ 1, t1 ≤ t ≤ T. (6.14)

On the other hand, note that q̂(t) ≤ 1 −
√

α1
α2

if and only if one of the following conditions holds

(1) m1 > m2, ∆̂2 ≥ 1, 0 ≤ t ≤ t2,

(2) m1 > m2, ∆̂2 < 1, 0 ≤ t ≤ T

(3) m1 < m2, ∆̂1 > ∆̂2 ≥ 1, t1 ≤ t ≤ t2,

(4) m1 < m2, ∆̂1 > 1 > ∆̂2, t1 ≤ t ≤ T,

(6.15)

1 −
√

α1
α2
< q̂(t) < 1 if and only if one of the following conditions holds

(1) m1 > m2, ∆̂2 ≥ 1, t2 < t < T,

(2) m1 < m2, ∆̂1 > ∆̂2 ≥ 1, t2 < t < T,
(6.16)

and q̂(t) ≥ 1 if and only if one of the following conditions holds

(1) m1 < m2, ∆̂1 ≥ 1, 0 < t < t1,

(2) m1 < m2, ∆̂1 < 1, 0 < t < T.
(6.17)

Based on the above analysis, we draw the following conclusions.
(1) Combining Eqs (6.13) and (6.15), we get that when m1 > m2, ∆̂2 ≥ 1, 0 ≤ t ≤ t2 or m1 >

m2, ∆̂2 ≥ 1, 0 ≤ t ≤ T is satisfied, there are ∂2L(q,t)
∂q2 > 0 and q̂(t) ≤ 1 −

√
α1
α2

, then q∗ = 1.

(2) Combining Eqs (6.13) and (6.16), we find that when m1 > m2, ∆̂2 ≥ 1, t2 < t < T is satisfied,
there are ∂2L(q,t)

∂q2 > 0 and 1 −
√

α1
α2
< q̂(t) < 1, then q∗ = q̂(t).

(3) Combining Eqs (6.13) and (6.17), we obtain that when m1 < m2, ∆̂1 ≥ 1, 0 < t < t1 or m1 <

m2, ∆̂1 < 1, 0 < t < T is satisfied, there are ∂2L(q,t)
∂q2 > 0 and q̂(t) ≥ 1, then q∗(t) = 1.

(4) Combining Eqs (6.14) and (6.15), we get that when m1 < m2, ∆̂1 > ∆̂2 ≥ 1, t1 ≤ t ≤ t2 or
m1 < m2, ∆̂1 > 1 > ∆̂2, t1 ≤ t ≤ T is satisfied, there are ∂2L(q,t)

∂q2 < 0 and q̂(t) ≤ 1 −
√

α1
α2

, then

q∗ = 1 −
√

α1
α2

.
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(5) Combining Eqs (6.14) and (6.16), we find that when m1 < m2, ∆̂1 > ∆̂2 ≥ 1, t2 < t < T is
satisfied, there are ∂2L(q,t)

∂q2 < 0 and 1 −
√

α1
α2
< q̂(t) < 1, then q∗ = q̂(t).

(6) Combining Eqs (6.14) and (6.17), we find that the intersection of the two is empty. Thus, If
∂2L(q,t)
∂q2 < 0 and q̂(t) ≥ 1, then q∗(t) = 1 does not exist.

Combining above (1)−(6), we get the optimal reinsurance strategy. Next we prove the optimal
investment strategy and the value function when q∗(t) is different.
(1) When q∗(t) = 1 −

√
α1
α2

, substituting it into Eq (6.12) yields

[r0d(t) − dt − m1λα1σ
2
Z]er0(T−t) + [(

1
2
−

√
α1

α2
)m1

2 +
α1

2α2
(m1 − m2)2

+

√
α1

α2
m1m2]λσ2

Ze2r0(T−t) + gt + κ1[ϕ1 − v1]gv1 + κ2[ϕ2 − v2]gv2

+
v1(ρ2

11 + ρ
2
12)

2
(gv1v1 + g2

v1
) +

v2(ρ2
21 + ρ

2
22)

2
(gv2v2 + g2

v2
)

−
v1(ω1 + ρ11gv1)

2

2
−

v2(ω2 + ρ21gv2)
2

2
= 0,

(6.18)

which can be split into following two equations

[r0d(t) − dt − m2λα1σ
2
Z]er0(T−t) + [(

1
2
−

√
α1

α2
)m1

2 +
α1

2α2
(m1 − m2)2

+

√
α1

α2
m1m2]λσ2

Ze2r0(T−t) = 0,
(6.19)

and

gt + κ1[ϕ1 − v1]gv1 + κ2[ϕ2 − v2]gv2 +
v1(ρ2

11 + ρ
2
12)

2
(gv1v1 + g2

v1
)

+
v2(ρ2

21 + ρ
2
22)

2
(gv2v2 + g2

v2
) −

v1(ω1 + ρ11gv1)
2

2
−

v2(ω2 + ρ21gv2)
2

2
= 0.

(6.20)

Note that Eq (6.19) is a linear ordinary differential equation with the boundary condition d(T) = 0, it is
not difficult to derive that

d(t) = −
m2λα1µ2

r0
[e−r0(T−t) − 1] +

λσ2
Z

2r0

[(1
2
−

√
α1

α2

)
m2

1 +
α1

2α2
(m1 − m2)2

+

√
α1

α2
m1m2

]
× [e−r0(T−t) − er0(T−t)].

(6.21)

Trying to solve Eq (6.20), we put

g(t, v1, v2) = I(t) + J1(t)v1 + J2(t)v2, (6.22)

with the boundary condition given by I(T ) = J1(T ) = J2(T ) = 0. Then, we obtain the partial derivatives
of g as

gt = It + J1tv1 + J2tv2, gv1 = J1(t), gv2 = J2(t), gv1v1 = 0, gv2v2 = 0. (6.23)
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Substituting Eq (6.23) into Eq (6.20), we have

It + J1tv1 + J2tv2 + κ1[ϕ1 − v1]J1(t) + κ2[ϕ2 − v2]J2(t) +
v1ρ

2
12

2
J2

1(t)

+
v1ρ

2
22

2
J2

2(t) − v1ω1ρ11J1(t) − v2ω2ρ21J2(t) −
v1ω

2
1

2
−

v2ω
2
2

2
= 0.

(6.24)

We can split Eq (6.24) into three equations:

J1t − (κ1 + ω1ρ11)J1(t) +
ρ2

12

2
J2

1(t) −
ω2

1

2
= 0, (6.25)

J2t − (κ2 + ω2ρ21)J2(t) +
ρ2

22

2
J2

2(t) −
ω2

2

2
= 0, (6.26)

and
It + κ1ϕ1J1(t) + κ2ϕ2J2(t) = 0. (6.27)

Since Eqs (6.25) and (6.26) is linear ordinary differential equations with the boundary condition
J1(T ) = J2(T ) = 0.

Thus, when ρi2 , 0, due to

∆i = (κi + ωiρi1)2 + ω2
i ρ

2
i2 > 0, i = 1, 2.

Thus Eqs (6.25) and (6.26) have two different roots,respectively

c1 =
κ1 + ω1ρ11 +

√
∆1

ρ2
12

, c2 =
κ1 + ω1ρ11 −

√
∆1

ρ2
12

,

d1 =
κ2 + ω2ρ21 +

√
∆2

ρ2
22

, d2 =
κ2 + ω2ρ21 −

√
∆2

ρ2
22

.

(6.28)

Substituting Eq (6.28) into (6.25) and (6.26), we obtain

J1t = −
ρ2

12

2
(J1(t) − c1)(J1(t) − c2)

⇒
1

c1 − c2
(

1
J1(t) − c1

−
1

J1(t) − c2
)J1t = −

ρ2
12

2

⇒

∫ T

t
(

1
J1(t) − c1

−
1

J1(t) − c2
)dJ1(t) = −

ρ2
12

2
(c1 − c2)(T − t),

(6.29)

and

J2t = −
ρ2

22

2
(J2(t) − d1)(J2(t) − d2)

⇒
1

d1 − d2
(

1
J2(t) − d1

−
1

J2(t) − d2
)J2t = −

ρ2
22

2
,

⇒

∫ T

t
(

1
J2(t) − d1

−
1

J2(t) − d2
)dJ2(t) = −

ρ2
22

2
(d1 − d2)(T − t).

(6.30)
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Slove Eqs (6.29) and (6.30), we get

J1(t) =
c1c2(1 − e−

ρ2
12
2 (c1−c2)(T−t))

c1 − c2e−
ρ2

12
2 (c1−c2)(T−t)

, (6.31)

and

J2(t) =
d1d2(1 − e−

ρ2
22
2 (d1−d2)(T−t))

d1 − d2e−
ρ2

22
2 (d1−d2)(T−t)

. (6.32)

Combining Eqs (6.27), (6.31) and (6.32), we have

I(t) =
∫ T

t
[κ1ϕ1J1(s) + κ2ϕ2J2(s)]ds

=κ1ϕ1c1(T − t) −
2κ1ϕ1

ρ2
12

ln
c1e

ρ2
12
2 (c1−c2)(T−t) − c2

c1 − c2

+ κ2ϕ2d1(T − t) −
2κ2ϕ2

ρ2
22

ln
d1e

ρ2
22
2 (d1−d2)(T−t) − d2

d1 − d2
.

(6.33)

Using Eqs (6.5), (6.6), (6.23), (6.31) and (6.32), we obtain

π∗1(t) =
ω1(c1 − c2e−

σ2
01(1−ρ2

1)
2 (c1−c2)(T−t))

σ01ρ1c1c2(1 − e−
σ2

01(1−ρ2
1)

2 (c1−c2)(T−t))
e−r0(T−t)

+
σ01ρ1c1c2(1 − e−

σ2
01(1−ρ2

1)
2 (c1−c2)(T−t))

σ01ρ1c1c2(1 − e−
σ2

01(1−ρ2
1)

2 (c1−c2)(T−t))
e−r0(T−t),

(6.34)

and

π∗2(t) =
ω2(d1 − d2e−

σ2
02(1−ρ2

2)
2 (d1−d2)(T−t))

m2(d1 − d2e−
σ2

02(1−ρ2
2)

2 (d1−d2)(T−t))
e−r0(T−t)

+
σ02ρ2d1d2(1 − e−

σ2
02(1−ρ2

2)
2 (d1−d2)(T−t))

m2(d1 − d2e−
σ2

02(1−ρ2
2)

2 (d1−d2)(T−t))
e−r0(T−t),

(6.35)

when ρi2 = 0, Eqs (6.25) and (6.26) can be rewritten as

J1t − (κ1 + ω1ρ11)J1(t) −
ω2

1

2
= 0, (6.36)

and

J2t − (κ2 + ω2ρ21)J2(t) −
ω2

2

2
= 0. (6.37)

Since Eqs (6.36) and (6.37) are linear ordinary differential equations with the boundary condition
J1(T ) = J2(T ) = 0, we derive that

J1(t) =
ω2

1

2(κ1 + ω1ρ11)
(e−(κ1+ω1ρ11)(T−t) − 1), (6.38)
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and

J2(t) =
ω2

2

2(κ2 + ω2ρ21)
(e−(κ2+ω2ρ21)(T−t) − 1). (6.39)

Combining Eqs (6.27), (6.38) and (6.39), we have

I(t) =
∫ T

t
[κ1ϕ1J1(s) + κ2ϕ2J2(s)]ds

=
κ1ϕ1ω

2
1

2(κ1 + ω1ρ11)
[
1 − e−(κ1+ω1ρ11)(T−t)

κ1 + ω1ρ11
− (T − t)]

+
κ2ϕ2ω

2
2

2(κ2 + ω2ρ21)
[
1 − e−(κ2+ω2ρ21)(T−t)

κ2 + ω2ρ21
− (T − t)].

(6.40)

Using Eqs (6.5), (6.6), (6.23), (6.38) and (6.39), we get

π∗1(t) =
2ω2

1v1(κ1 + ω1ρ11) + ω3
1ρ11v1(e−(κ1+ω1ρ11)(T−t) − 1)

2(µ1(t) − r0)m1(κ1 + ω1ρ11)
e−r0(T−t), (6.41)

and

π∗2(t) =
2ω2

2v2(κ2 + ω2ρ21) + ω3
2ρ21v2(e−(κ2+ω2ρ21)(T−t) − 1)

2(µ2(t) − r0)m2(κ2 + ω2ρ21)
e−r0(T−t). (6.42)

Above all, we obtion the expression of d(t), g(t, v1, v2), I(t), J1(t), and J2(t) by Eqs (6.21), (6.22),
(6.31)–(6.33) and (6.38)–(6.40), then we can get the explicit expression of the value function
V(t, x1, x2, v1, v2).
(2) When q∗(t) = q̂(t), substituting it into Eq (6.12) yields

[r0d(t) − dt − m1λα1σ
2
Z]er0(T−t) + gt + κ1[ϕ1 − v1]gv1 + κ2[ϕ2 − v2]gv2

+
v1(ρ2

11 + ρ
2
12)

2
(gv1v1 + g2

v1
) +

v2(ρ2
21 + ρ

2
22)

2
(gv2v2 + g2

v2
)

−
v1(ω1 + ρ11gv1)

2

2
−

v2(ω2 + ρ21gv2)
2

2
+ L(q̂, t) = 0,

(6.43)

which can be split into following two equations

[r0d(t) − dt − m1λα1σ
2
Z]er0(T−t) = 0, (6.44)

and

gt + κ1[ϕ1 − v1]gv1 + κ2[ϕ2 − v2]gv2 +
v1(ρ2

11 + ρ
2
12)

2
(gv1v1 + g2

v1
)

+
v2(ρ2

21 + ρ
2
22)

2
(gv2v2 + g2

v2
) −

v1(ω1 + ρ11gv1)
2

2
−

v2(ω2 + ρ21gv2)
2

2
+ L(q̂, t) = 0.

(6.45)

Note that Eq (6.44) is a linear ordinary differential equation with the boundary condition d(T ) = 0, it
is not difficult to derive that

d(t) = −
λσ2

Zm1α1

r0
[e−r0(T−t) − 1]. (6.46)
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Since Eq (6.45) is similar with (6.20),we can get the expression of I(t) which is similar with Eqs (6.33)
and (6.40)

I(t) =
∫ T

t
[κ1ϕ1J1(s) + κ2ϕ2J2(s) + L(q̂, s)]ds

=κ1ϕ1c1(T − t) −
2κ1ϕ1

ρ2
12

ln
c1e

ρ2
12
2 (c1−c2)(T−t) − c2

c1 − c1

+ κ2ϕ2d1(T − t) −
2κ2ϕ2

ρ2
22

ln
d1e

ρ2
22
2 (d1−d2)(T−t) − d2

d1 − d1

+

∫ T

t
L(q̂, s)ds,

(6.47)

and

I(t) =
∫ T

t
[κ1ϕ1J1(s) + κ2ϕ2J2(s) + L(q̂, s)]ds

=
κ1ϕ1ω

2
1

2(κ1 + ω1ρ11)
[
1 − e−(κ1+ω1ρ11)(T−t)

κ1 + ω1ρ11
− (T − t)]

+
κ2ϕ2ω

2
2

2(κ2 + ω2ρ21)
[
1 − e−(κ2+ω2ρ21)(T−t)

κ2 + ω2ρ21
− (T − t)]

+

∫ T

t
L(q̂, s)ds,

(6.48)

where
L(q̂, t) =m1er0(T−t)λα2σ

2
Z(1 − q̂)2 − m2er0(T−t)λα2σ

2
Z(1 − q̂)2

+ λσ2
Zm1m2q̂(1 − q̂)e2r0(T−t) +

1
2
λσ2

Ze2r0(T−t)[m2
1q̂2 + m2

2(1 − q̂)2]

=
λα2σ

2
Zm2

1(m1 − m2)e3r0(T−t) + 2λα2
2σ

2
Zm2

1e2r0(T−t)[
2α2 + (m1 − m2)er0(T−t)]2

=
λα2σ

2
Zm2

1(m1 − m2)e3r0(T−t) + (4 − 2)λα2
2σ

2
Zm2

1e2r0(T−t)[
2α2 + (m1 − m2)er0(T−t)]2

= −
1
r0

[ λα2σ
2
Zm2

1e2r0(T−t)

2α2 + (m1 − m2)er0(T−t)

]′
+

er0(T−t)

r0

[ λα2σ
2
Zm2

1er0(T−t)

2α2 + (m1 − m2)er0(T−t)

]′
.

(6.49)

Then ∫ T

t
L(q̂, s)ds =

∫ T

t
−

1
r0

[ λα2σ
2
Zm2

1e2r0(T−s)

2α2 + (m1 − m2)er0(T−s)

]′
+

er0(T−s)

r0

[ λα2σ
2
Zm2

1er0(T−s)

2α2 + (m1 − m2)er0(T−s)

]′
ds

=
2λα2

2σ
2
Zm2

1

r0(m1 − m2)2 ln
∣∣∣∣∣ 2α2 + (m1 − m2)
2α2 + (m1 − m2)er0(T−t)

∣∣∣∣∣
+

λα2σ
2
Zm2

1

r0(m1 − m2)
[er0(T−t) − 1].

(6.50)
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As a result, Eqs (6.47) and (6.48) is converted to

I(t) =
∫ T

t
[κ1ϕ1J1(s) + κ2ϕ2J2(s) + L(q̂, s)]ds

=κ1ϕ1c1(T − t) −
2κ1ϕ1

ρ2
12

ln
c1e

ρ2
12
2 (c1−c2)(T−t) − c2

c1 − c1

+ κ2ϕ2d1(T − t) −
2κ2ϕ2

ρ2
22

ln
d1e

ρ2
22
2 (d1−d2)(T−t) − d2

d1 − d1

+
2λα2

2σ
2
Zm2

1

r0(m1 − m2)2 ln
∣∣∣∣∣ 2α2 + (m1 − m2)
2α2 + (m1 − m2)er0(T−t)

∣∣∣∣∣
+

λα2σ
2
Zm2

1

r0(m1 − m2)
[er0(T−t) − 1],

(6.51)

and

I(t) =
∫ T

t
[κ1ϕ1J1(s) + κ2ϕ2J2(s) + L(q̂, s)]ds

=
κ1ϕ1ω

2
1

2(κ1 + ω1ρ11)
[
1 − e−(κ1+ω1ρ11)(T−t)

κ1 + ω1ρ11
− (T − t)]

+
κ2ϕ2ω

2
2

2(κ2 + ω2ρ21)
[
1 − e−(κ2+ω2ρ21)(T−t)

κ2 + ω2ρ21
− (T − t)]

+
2λα2

2σ
2
Zm2

1

r0(m1 − m2)2 ln
∣∣∣∣∣ 2α2 + (m1 − m2)
2α2 + (m1 − m2)er0(T−t)

∣∣∣∣∣
+

λα2σ
2
Zm2

1

r0(m1 − m2)
[er0(T−t) − 1].

(6.52)

Above all, we get the display expression of the value function V(t, x1, x2, v1, v2).
(3) When q∗(t) = 1, substituting it into Eq (6.12) yields

[r0d(t) − dt − m1λα1σ
2
Z +

1
2
λσ2

Zm2
1er0(T−t)]er0(T−t)

+ gt + κ1[ϕ1 − v1]gv1 + κ2[ϕ2 − v2]gv2

+
v1(ρ2

11 + ρ
2
12)

2
(gv1v1 + g2

v1
) +

v2(ρ2
21 + ρ

2
22)

2
(gv2v2 + g2

v2
)

−
v1(ω1 + ρ11gv1)

2

2
−

v2(ω2 + ρ21gv2)
2

2
= 0.

(6.53)

Also Eq (6.53) can be split into (6.20) and

r0d(t) − dt − m1λα1µ2 +
1
2

m2
1σ

2
0er0(T−t) = 0. (6.54)

Note that Eq (6.54) is a linear ordinary differential equation with the boundary condition d(T ) = 0, it
is not difficult to derive that

d(t) =
m2

1σ
2
0

4r0
[e−r0(T−t) − er0(T−t)] +

m1λα1µ2

r0
[1 − e−r0(T−t)]. (6.55)
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Thus, we get the expression V(t, x1, x2, v1, v2) for the value function when q∗ = 1.
The proof of Theorem 3.3 is completed.
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