Citation: Ying Fang, Guo Cheng, Zhongfeng Qu. Optimal reinsurance for both an insurer and a reinsurer under general premium principles[J]. AIMS Mathematics, 2020, 5(4): 3231-3255. doi: 10.3934/math.2020208
[1] | K. Borch, An attempt to determine the optimum amount of stop loss reinsurance, In: Transactions of the 16th International Congress of Actuaries, 1 (1960), 597-610. |
[2] | P. M. Kahn, Some remarks on a recent paper by Borch. ASTIN Bull., 1 (1961), 265-272. |
[3] | K. J. Arrow, Uncertainty and the welfare economics of medical care, Am. Econ. Rev., 53 (1963), 941-973. |
[4] | H. U. Gerber, Pareto-optimal risk exchanges and related decision problems, ASTIN Bull., 10 (1978), 25-33. doi: 10.1017/S0515036100006310 |
[5] | A. Y. Golubin, Pareto-optimal insurance policies in the models with a premium based on the actuarial value, J. Risk Insur., 73 (2006), 469-487. doi: 10.1111/j.1539-6975.2006.00184.x |
[6] | N. L. Bowers, H. U. Gerber, J. C. Hickman, et al. Actuarial Mathematics, 2Eds., The Society of Actuaries, Schaumburg, 1997. |
[7] | S. Vajda, Minimum variance reinsurance, ASTIN Bull., 2 (1962), 257-260. doi: 10.1017/S0515036100009995 |
[8] | M. Kaluszka, A. Okolewski, An extension of Arrow's result on optimal reinsurance contract, J. Risk Insur., 75 (2008), 275-288. doi: 10.1111/j.1539-6975.2008.00260.x |
[9] | J. Cai, K. S. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures, ASTIN Bull., 37 (2007), 93-112. doi: 10.1017/S0515036100014756 |
[10] | J. Cai, K. S. Tan, C. G. Weng, et al. Optimal reinsurance under VaR and CTE risk measures, Insur. Math. Econ., 43 (2008), 185-196. doi: 10.1016/j.insmatheco.2008.05.011 |
[11] | K. C. Cheung, Optimal reinsurance revisited-a geometric approach, ASTIN Bull., 40 (2010), 221-239. doi: 10.2143/AST.40.1.2049226 |
[12] | Y. C. Chi, K. S. Tan, Optimal reinsurance under VaR and CVaR risk measures: A simplified approach, ASTIN Bull., 41 (2011), 547-574. |
[13] | Y. C. Chi, Optimal reinsurance under variance related premium principles, Insur. Math. Econ., 51 (2012), 310-321. doi: 10.1016/j.insmatheco.2012.05.005 |
[14] | Y. C. Chi, K. S. Tan, Optimal reinsurance with general premium principles, Insur. Math. Econ., 52 (2013), 180-189. doi: 10.1016/j.insmatheco.2012.12.001 |
[15] | H. H. Huang, Optimal insurance contract under a value-at-risk constraint, Geneva Risk Ins. Rev., 31 (2006), 91-110. doi: 10.1007/s10713-006-0557-5 |
[16] | Z. Y. Lu, L. P. Liu, S. W. Meng, Optimal reinsurance with concave ceded loss functions under VaR and CTE risk measures, Insur. Math. Econ., 52 (2013), 46-51. doi: 10.1016/j.insmatheco.2012.10.007 |
[17] | K. S. Tan, C. G. Weng, Y. Zhang, Optimality of general reinsurance contracts under CTE risk measure, Insur. Math. Econ., 49 (2011), 175-187. doi: 10.1016/j.insmatheco.2011.03.002 |
[18] | K. Borch, The optimal reinsurance treaties, ASTIN Bull., 5 (1969), 293-297. doi: 10.1017/S051503610000814X |
[19] | J. Cai, Y. Fang, Z. Li, et al. Optimal reciprocal reinsurance treaties under the joint survival probability and the joint profitable probability, J. Risk Insur., 80 (2013), 145-168. doi: 10.1111/j.1539-6975.2012.01462.x |
[20] | Y. Fang, Z. F. Qu, Optimal combination of quota-share and stop-loss reinsurance treaties under the joint survival probability, IMA J. Manag. Math., 25 (2014), 89-103. doi: 10.1093/imaman/dps029 |
[21] | J. Cai, C. Lemieux, F. D. Liu, Optimal reinsurance from the perspectives of both an insurer and a reinsurer, ASTIN Bull., 46 (2016), 815-849. doi: 10.1017/asb.2015.23 |
[22] | A. Lo, A Neyman Pearson perspective on optimal reinsurance with constraints, ASTIN Bull., 47 (2017), 467-499. doi: 10.1017/asb.2016.42 |
[23] | W. J. Jiang, J. D. Ren, R. Zitikis, Optimal reinsurance policies under the VaR risk measure when the interests of both the cedent and the reinsurer are taken into account, Risks, 5 (2017), 1-22. doi: 10.3390/risks5010011 |
[24] | J. Cai, H. Y. Liu, R. D. Wang, Pareto-optimal reinsurance arrangements under general model settings, Insur. Math. Econ., 77 (2017), 24-37. doi: 10.1016/j.insmatheco.2017.08.004 |
[25] | Y. Fang, X. Wang, H. L. Liu, et al. Pareto-optimal reinsurance for both the insurer and the reinsurer with general premium principles, Commun. Stat-Theory. M., 48 (2019), 6134-6154. doi: 10.1080/03610926.2018.1528364 |
[26] | A. Lo, Z. F. Tang, Pareto-optimal reinsurance policies in the presence of individual risk constraints, Ann. Oper. Res., 274 (2019), 395-423. doi: 10.1007/s10479-018-2820-4 |
[27] | Y. X. Huang, C. C. Yin, A unifying approach to constrained and unconstrained optimal reinsurance, J. Comput. Appl. Math., 360 (2019), 1-17. doi: 10.1016/j.cam.2019.03.046 |
[28] | P. Embrechts, G. Puccetti, Bounds for functions of multivariate risks, J. Multivariate Anal., 97 (2006), 526-547. doi: 10.1016/j.jmva.2005.04.001 |
[29] | A. J. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management: Concepts, Techniques, and Tools, Princeton University Press, 2005. |
[30] | J. Dhaene, M. Denuit, M. J. Goovaerts, et al. The concept of comonotonicity in actuarial science and finance: Theory, Insur. Math. Econ., 31 (2002), 3-33. doi: 10.1016/S0167-6687(02)00134-8 |
[31] | M. Shaked, J. G. Shanthikumar, Stochastic Orders, Springer, 2007. |
[32] | Q. Zhao, Structural learning about directed acyclic graphs from multiple databases, Abstra. Appl. Anala., 2012 (2012), 579543. |
[33] | H. Y. Wang, Z. Wu, Eigenvalues of stochastic Hamiltonian systems driven by Poisson process with boundary conditions, Bound Value Probl., 2017 (2017), 1-20. doi: 10.1186/s13661-016-0733-1 |
[34] | X. L. Wang, F. Chen, L. Lin, Empirical likelihood inference for estimating equation with missing data, Sci. China Math., 56 (2013), 1233-1245. doi: 10.1007/s11425-012-4504-x |
[35] | X. L. Wang, Y. Q. Song, L. Lin, Handling estimating equation with nonignorably missing data based on SIR algorithm, J. Comput. Appl. Math., 326 (2017), 62-70. doi: 10.1016/j.cam.2017.05.016 |
[36] | C. Hu, Strong laws of large numbers for sublinear expectation under controlled 1st moment condition, Chinese Ann. Math. B, 39 (2018), 791-804. doi: 10.1007/s11401-018-0096-2 |
[37] | C. Hu, Central limit theorems for sub-linear expectation under the Lindeberg condition, J. Inequal. Appl., 2018 (2018), 1-21. doi: 10.1186/s13660-017-1594-6 |