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Abstract: A reinsurance contract should consider the conflicting interests of the insurer and the
reinsurer. An optimal reinsurance contract for one party may not be optimal for another party and it
might be unacceptable for another party. Therefore, in this paper, we study the optimal reinsurance
models from the perspective of both the insurer and the reinsurer by minimizing their total costs under
the criteria of loss function which is defined by the joint value-at-risk, assuming that the reinsurance
premium principles satisfy risk loading and stop-loss ordering preserving. We derive the optimal
reinsurance policies over three ceded loss function sets, the change-loss reinsurance is optimal among
the class of increasing convex ceded loss functions; when the constraints on both ceded and retained
loss functions are relaxed to increasing functions, the layer reinsurance is shown to be optimal; the
quota-share reinsurance with a limit is always optimal when the ceded loss functions are in the class of
increasing concave functions. We further use the expectation premium principle and Dutch premium
principle to illustrate the application of our results by deriving the optimal parameters.
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1. Introduction

Reinsurance is an effective risk management tool for an insurer to mitigate the underwriting risk
by transferring part of the risk exposure to a reinsurer. Starting from [1, 2], the study of optimal
reinsurance has remained a fascinating topic in actuarial science. Most existing literatures on optimal
reinsurance are from an insurer’s point of view. For example, by maximizing the expected concave
utility function of an insurer’s wealth, Arrow [3] showed that optimal reinsurance for an insurer is a
stop-loss reinsurance. The result has been extended to different settings (see, e.g., [4,5] and references
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therein). It is well known that the optimal reinsurance for an insurer, which minimizes the variance
of the insurer’s loss, is also a stop-loss reinsurance (see [6]). However, Vajda [7] showed that the
optimal reinsurance for a reinsurer, which minimizes the variance of the reinsurer’s loss with a fixed net
reinsurance premium, is a quota-share reinsurance among a class of ceded loss functions that include
stop-loss reinsurance. Kaluszka and Okolewski [8] showed that if an insurer wants to maximize his
expected utility with the maximal possible claim premium principle, the optimal form of reinsurance
for the insurer is a limited stop-loss reinsurance. In recent years, Cai et al. [9, 10] introduced two
classes of optimal reinsurance models by minimizing the value-at-risk (VaR) and the conditional tail
expectation (CTE) of the insurer’s total risk exposure. Cai et al. [10] proved that depending on the risk
measure level of confidence, the optimal reinsurance for an insurer, which minimizes the VaR and CTE
of the total risk of the insurer, can be in the form of a stop-loss reinsurance or a quota-share reinsurance
or a change-loss reinsurance under the expected value principle and among the increasing convex ceded
loss functions. Recent references on VaR-minimization and CTE-minimization reinsurance models can
be found in [11–17] and references therein.

However, a reinsurance contract involves two parties, an insurer and a reinsurer. The two parties
have conflicting interests. An optimal reinsurance contract for an insurer may not be optimal for a
reinsurer and it might be unacceptable for a reinsurer as pointed out by Borch [18]. Therefore, an
interesting question about optimal reinsurance is to design a reinsurance contract so that it considers
the interests of both an insurer and a reinsurer. Borch [1] first discussed the optimal quota-share
retention and stop-loss retention that maximize the product of the expected utility functions of the two
parties’ wealth. Cai et al. derived the optimal reinsurance contracts that maximize the joint survival
probability and joint profitable probability of the two parties, and gave the sufficient conditions for
optimal reinsurance contracts within a wide class of reinsurance policies and under a general
reinsurance premium principle, see [19, 20]. Cai et al. [21] studied the optimal reinsurance strategy,
which based on the minimum convex combination of the VaR of the insurer and the reinsurer under
two types of constraints. Lo [22] discussed the generalized problems of [21] by using the
Neyman-Pearson approach. Based on the optimal reinsurance strategy of [21], Jiang et al. [23] proved
that the optimal reinsurance strategy is a Pareto-optimal reinsurance policy and gave optimal
reinsurance strategies using the geometric method. Cai et al. [24] studied Pareto optimality of
reinsurance arrangements under general model settings and obtained the explicit forms of the
Pareto-optimal reinsurance contracts under TVaR risk measure and the expected value premium
principle. By geometric approach, Fang et al. [25] studied Pareto-optimal reinsurance policies under
general premium principles and gave the explicit parameters of the optimal ceded loss functions under
Dutch premium principle and Wang’s premium principle. Lo and Tang [26] characterized the set of
Pareto-optimal reinsurance policies analytically and visualized the insurer-reinsurer trade-off structure
geometrically. Huang and Yin [27] studied two classes of optimal reinsurance models from
perspectives of both insurers and reinsurers by minimizing their convex combination where the risk is
measured by a distortion risk measure and the premium is given by a distortion premium principle.

In this paper, we study the optimal reinsurance models by minimizing the insurer and the reinsurer’s
total costs under the criteria of loss function assuming that the reinsurance premium principles satisfy
risk loading and stop-loss ordering preserving. The loss function is defined by the joint VaR based on
the binary lower-orthant value-at-risk and the binary upper-orthant value-at-risk, which are proposed
by Embrechts and Puccetti [28]. Methodologically, we determine the optimal reinsurance forms using
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the geometric approach of [11] over three ceded loss function sets, the class of increasing convex ceded
loss functions, the class of ceded loss functions which satisfy both ceded and retained loss functions
are increasing and the class of increasing concave ceded loss functions1∗.

The rest of the paper is organized as follows. In Section 2, we give definitions and propose an
optimal reinsurance problem that takes into consideration the interests of both an insurer and a
reinsurer. In Section 3, we derive optimal reinsurance forms over three ceded loss function sets by the
geometric approach of [11], assuming that the reinsurance premium principles satisfy risk loading and
stop-loss ordering preserving. In Section 4 and Section 5, we determine the corresponding optimal
parameters under expectation premium principle and Dutch premium principle respectively. In
Section 6, we provide four numerical examples. Conclusions are given in Section 7.

2. Problem formulation

Let X be the loss or claim initially assumed by an insurer in a fixed time period. We assumed that
X is a nonnegative random variable with distribution function F(x) = P{X ≤ x}, survival function
S (x) = P{X ≥ x} and mean µ = E(X) (0 < µ < ∞). Under a reinsurance contract, a reinsurer will
cover the part of the loss, say f (X) with 0 ≤ f (X) ≤ X, and the insurer will retain the rest of the
loss, which is denoted by I f (X) = X − f (X). The losses I f (X) and f (X) are called retained loss and
ceded loss, respectively. Since the reinsurer shares the risk X, the insurer will pay an additional cost
in the form of reinsurance premium to the reinsurer. We denote the reinsurance premium by Π f (X)
which corresponds to a ceded loss function f (X). The total cost T f

I of the insurer is composed of two
components: the retained loss I f (X) and the reinsurance premium Π f (X), that is

T f
I = I f (X) + Π f (X), (2.1)

and the total cost of the reinsurer is

T f
R = f (X). (2.2)

For individual company, an important issue is to determine their maximum aggregate loss which
can occur with some given probability, value-at-risk (VaR) serves this purpose.

Definition 2.1. For 0 < α < 1, the VaR of a non-negative random variable X with distribution function
F(x) = P{X ≤ x} at confidence level α is defined as

VaRX(α) = inf
{
x ∈ R : F(x) ≥ α

}
= F−1(α), (2.3)

where, F−1 is the generalized inverse function of the distribution function F(x).

The VaR defined by (2.3) is the maximum loss which is not exceeded at a given probability α. We
list several properties of the VaR or the generalized inverse function F−1.

Proposition 2.1. For any α ∈ (0, 1) and any nonnegative random variable X with distribution function
F(x), the following properties hold:

(1) F(F−1(α)) ≥ α.
(2) F−1(F(x)) ≤ x for x ≥ 0.
(3) If h is an increasing and left-continuous function, then VaRh(X)(α) = h(VaRX(α)).
∗1Throughout this paper, the terms “increasing function” and “decreasing function” mean “non-decreasing function” and “non-

increasing function”, respectively.
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Proof. Properties (1) and (2) follow immediately from Lemma 2.13 of [29] and the definition of the
generalized inverse function, while for property (3), see the proof of Theorem 1 in [30]. 2

In this paper, we assume that the initial loss X has a continuous and strictly increasing distribution
function on (0,∞) with a possible mass at 0 and α ∈ (F(0), 1) to avoid trivial cases, then

F(F−1(α)) = α. (2.4)

For the insurer or the reinsurer, they can use Definition 2.1 to determine their maximum aggregate
cost which can occur with some given probability α. However, if the insurer and the reinsurer are
considered as partners, then the total cost T f is a two-dimensional random vector (T f

I ,T
f

R). For this
case, Definition 2.1 does not make sense since, even for a one to one continuous distribution function,
there are possibly infinitely many vectors (x, y) ∈ [0,∞) × [0,∞) at which G f (x, y) = α, where

G f (x, y) = P
{
T f

I ≤ x, T f
R ≤ y

}
is the distribution function of (T f

I ,T
f

R). Hence we use the definition of multivariate Value-at-Risk which
is proposed by Embrechts and Puccetti (see [28]).

Definition 2.2. For α ∈ (0, 1), the binary lower-orthant value-at-risk at confidence level α for the
distribution function G f (x, y) is the boundary of its α-level set, defined as

VaR f (α) := ∂
{
(x, y) ∈ R2

+ : G f (x, y) ≥ α
}
.

Analogously, the binary upper-orthant value-at-risk at confidence level α for the tail function G
f
(x, y)

is defined as
VaR

f
(α) := ∂

{
(x, y) ∈ R2

+ : G
f
(x, y) ≤ 1 − α

}
,

where
G

f
(x, y) = P

{
T f

I > x, T f
R > y

}
.

We now provide further analysis on the binary lower-orthant value-at-risk at confidence level α for
the distribution function G f (x, y) and the binary upper-orthant value-at-risk at confidence level α for
the tail function G

f
(x, y) over the following three admissible sets of ceded loss functions:

F 1 ,
{
0 6 f (x) 6 x : f (x) is an increasing convex function

}
, (2.5)

F 2 ,
{
0 6 f (x) 6 x : both I f (x) and f (x) are increasing functions

}
, (2.6)

F 3 ,
{
0 6 f (x) 6 x : f (x) is an increasing concave function

}
. (2.7)

In the set F 2, the increasing condition on both ceded and retained loss functions is interesting and
important. Both the insurer and the reinsurer are obligated to pay more for larger loss X, hence it
potentially reduces moral hazard. In addition, in a reinsurance contract, sometimes in order to better
protect the insurer, they let the loss proportion paid by the reinsurer increases in the loss (see [7]).
Mathematically, f (x)/x is assumed to be an increasing function. If we assume that f (x) is increasing
and convex, then f (x)/x is an increasing function. On the other hand, under the reinsurance policies
with no upper limit on the indemnity, the reinsurance may be under a heavy financial burden, especially
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when the insurer suffers a large unexpected loss. Therefore, reinsurance contracts sometimes involve
an upper limit on the indemnity in practice. In such a situation, ceded loss functions must not be convex
functions but concave functions sometimes. Motivated by these observations, we consider ceded loss
functions in the sets F 1 and F 3.

Note that F 1 ⊂ F 2 (see [12]) and F 3 ⊂ F 2. In addition, if f ∈ F i, i = 1, 2, 3, then I f and f are
increasing and continuous. Thus, from Proposition 2.1, we have

VaRT f
I
(α) = I f (VaRX(α)) + Π f (X), (2.8)

VaRT f
R
(α) = f (VaRX(α)). (2.9)

Based on the above analysis, we obtain the following theorem.

Theorem 2.1. For α ∈ (0, 1), the binary lower-orthant value-at-risk at confidence level α for the
distribution function G f (x, y) is

VaR f (α) = ∂
{
(x, y) ∈ R2

+ : x ≥ VaRT f
I
(α) and y ≥ VaRT f

R
(α)

}
,

and the binary upper-orthant value-at-risk at confidence level α for the tail function G
f
(x, y) is

VaR
f
(α) = ∂

{
(x, y) ∈ R2

+ : x ≥ VaRT f
I
(α) or y ≥ VaRT f

R
(α)

}
.

Proof. Let S 1 =
{
(x, y) ∈ R2

+ : G f (x, y) ≥ α
}

and S 2 =
{
(x, y) ∈ R2

+ : x ≥ VaRT f
I
(α) and y ≥ VaRT f

R
(α)

}
.

First, it is easy to see that S 1 ⊆ S 2. Second, note that

G f (VaRT f
I
(α),VaRT f

R
(α)

)
= P

{
T f

I ≤ VaRT f
I
(α), T f

R ≤ VaRT f
R
(α)

}
= P

{
I f (X) ≤ I f (VaRX(α)), f (X) ≤ f (VaRX(α)

}
≥ P {X ≤ VaRX(α)} = α,

then for any (x, y) ∈ S 2, we have G f (x, y) ≥ G f (VaRT f
I
(α),VaRT f

R
(α)) ≥ α, thus we get S 2 ⊆ S 1.

Similarly, let D1 =
{
(x, y) ∈ R2

+ : G
f
(x, y) ≤ 1 − α

}
and D2 =

{
(x, y) ∈ R2

+ : x ≥ VaRT f
I
(α) or y ≥

VaRT f
R
(α)

}
. For any (x, y) ∈ D2, if x ≥ VaRT f

I
(α), then

G
f
(x, y) = P{T f

I > x, T f
R > y} ≤ P{T f

I > x} ≤ P{T f
I > VaRT f

I
(α)} ≤ 1 − α. (2.10)

By the same arguments, we know that if y ≥ VaRT f
R
(α), then G

f
(x, y) ≤ 1 − α holds as well. Hence,

D2 ⊆ D1.
On the other hand, for any (x, y) ∈ D2, we have x < VaRT f

I
(α) and y < VaRT f

R
(α). Since T f

I and T f
R

are co-monotonic, we have

G
f
(x, y) = P{T f

I > x, T f
R > y} = min

{
P{T f

I > x},P{T f
R > y}

}
. (2.11)

Notice that for any random variable Y , if y < VaRY(α), we get P{Y ≤ y} < α. (Otherwise, suppose
P{Y ≤ y} ≥ α, then from the definition of VaR, we get y ≥ VaRY(α).) Then, we have

P{T f
I > x} > 1 − α and P{T f

R > y} > 1 − α (2.12)
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which implies G
f
(x, y) > 1 − α. Therefore, we have D2 ⊆ D1, and hence D2 = D1. 2

The binary lower-orthant value-at-risk VaR f (α) and the binary upper-orthant value-at-risk VaR
f
(α)

are illustrated in Figures 1 and 2.

-

6y

x
VaRT f

I
(α)

VaRT f
R
(α)

o

Figure 1. α-level set of G f (grid area) and VaR f
α (bold boundary).

-

6
y

x
VaRT f

I
(α)

VaRT f
R
(α)

o

Figure 2. α-level set of G
f

(grid area) and VaR
f
α (bold boundary).

Note that the joint VaR
(
VaRT f

I
(α),VaRT f

R
(α)

)
determines VaR f

α and VaR
f
α. From both the insurer and

the reinsurer’s point of view, maximum aggregate cost T f which can occur with some given probability
is the smaller the better, that is to say, VaR f

α and VaR
f
α are closer to the origin the better. This motivates

us to consider the loss function

L( f ) =
√

[VaRT f
I
(α)]2 + [VaRT f

R
(α)]2, (2.13)

and the optimization criteria for seeking the optimal reinsurance contract:

f ∗ = argmin f L( f ). (2.14)

In the rest of the paper, we will derive the optimal solutions corresponding to the reinsurance model
(2.14) under the admissible ceded loss function sets F i, i = 1, 2, 3.
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3. Optimal reinsurance under loss function

In this section, we consider the general reinsurance premium principles which satisfy the following
two properties:
1. Risk loading: Π(X) ≥ E[X];
2. Stop-loss ordering preserving: Π(Y) ≤ Π(X) if Y is smaller than X in the stop-loss order (Y ≤sl X)2†.

We emphasize that there are many premium principles which satisfy these two properties, such
as expectation principle, p−mean value principle, Dutch principle, Wang’s principle and exponential
principle.

3.1. Optimal reinsurance form with F 1 constraint

In this subsection, we derive the optimal reinsurance policies under the condition that the ceded
loss function f ∈ F 1. First, we define a ceded loss function set H1, which consists of all ceded loss
functions h(x) = b(x − d)+ with 0 ≤ b ≤ 1 and d ≥ 0. Note that H1 is a subclass of F 1. Second, we
show that the optimal ceded loss functions which minimize the loss function in the subclass H1 also
optimally minimize the loss function in F 1. We give the following proposition using the geometric
method proposed by [11].

Proposition 3.1. For any f ∈ F 1, there always exists a function h ∈ H1 such that L(h) ≤ L( f ).

Proof. If f ∈ F 1 is identically zero on [0,VaRX(α)], we consider h := 0 ∈ H1. It is easy to see that
h(X) ≤ f (X) in the usual stochastic order. It further leads to h(X) ≤sl f (X) according to the theory of
stochastic orders in [31]. Then we have Πh(X) ≤ Π f (X). Consequently, from formulas (2.8) and (2.9),
we obtain

VaRT f
I
(α) = VaRX(α) − f (VaRX(α)) + Π f (X)

≥ VaRX(α) − h(VaRX(α)) + Πh(X) = VaRT h
I
(α),

and

VaRT f
R
(α) = f (VaRX(α)) = 0 = h(VaRX(α)) = VaRT h

R
(α).

Hence we have L(h) ≤ L( f ).
If f ∈ F 1 is not identically zero on [0,VaRX(α)], let f ′−(VaRX(α)) and f ′+(VaRX(α)) be the left-hand

derivative and right-hand derivative of f at VaRX(α). Let b be an any number in[
f ′−(VaRX(α)), f ′+(VaRX(α))

]
, then we have 0 < b ≤ 1. Let d = VaRX(α) − f (VaRX(α))

b , define
h(x) = b(x − d)+, x ≥ 0. Then h ∈ H1, f (VaRX(α)) = h(VaRX(α)) and f ≥ h for any x ≥ 0 since f is
convex. Hence we have

VaRT f
I
(α) = VaRX(α) − f (VaRX(α)) + Π f (X)

≥ VaRX(α) − h(VaRX(α)) + Πh(X) = VaRT h
I
(α),

and

VaRT f
R
(α) = f (VaRX(α)) = h(VaRX(α)) = VaRT h

R
(α).

†2 A random variable Y is said to be smaller than a random variable X in the stop-loss order sense, notation Y ≤sl X , if and only if Y
has lower stop-loss premiums than X: E(Y − d)+ ≤ E(X − d)+, −∞ < d < +∞.
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Therefore, L(h) ≤ L( f ) holds. The geometric interpretation of this proof can be seen from Figure 3.
2

f (VaRα(X))

VaRα(X)

f (x)

h(x)

f (VaRα(X))

d VaRα(X)

f (x)
h(x)

Figure 3. Geometric interpretation of Proposition 3.1.

Based on the Proposition 3.1, we know that change-loss reinsurance of the form f (x) = b(x − d)+

with 0 ≤ b ≤ 1 and d ≥ 0 is optimal among F 1 in the sense that it minimizes the loss function L( f ).
The optimal parameters b∗ and d∗ will be given under some specific reinsurance premium principles in
the rest of sections.

3.2. Optimal reinsurance form with F 2 constraint

In this subsection, we focus on the loss function minimization model for any ceded loss function
f ∈ F 2. As shown in [12], the ceded loss function f ∈ F 2 is Lipschitz continuous, i.e.,

0 6 f (x2) − f (x1) 6 x2 − x1, ∀0 6 x1 6 x2.

Let H2 denote the class of ceded loss function with the following representation h(x) = (x − a)+ −

(x − VaRX(α))+, a 6 VaRα(X). It is easy to see that H2 is a subclass of F 2. Exactly, h(x) is a layer
reinsurance with deductible a and upper limit VaRX(α). We will prove that the optimal functions which
minimize the loss function in the subclassH2 also optimally minimize the loss function in F 2.

Proposition 3.2. Let f ∈ F 2 be a ceded function. There always exists a function h ∈ H2 such that
L(h) 6 L( f ).

Proof. For any f ∈ F 2, define a = VaRX(α)− f (VaRX(α)) > 0 and h(x) = (x− a)+ − (x−VaRX(α))+ =

min{(x − (VaRX(α) − f (VaRX(α))))+, f (VaRX(α)}, x > 0. Then we have h ∈ H2 and f (VaRX(α)) =

h(VaRX(α)).
Furthermore, recall that the ceded loss function f ∈ F 2 is non-negative and Lipschitz continuous,

hence inequality f (x) > (x+ f (VaRX(α))−VaRX(α))+ holds for x ∈ [0,VaRX(α)]. On the other hand, the
increasing property of f (x) leads to h(x) = f (VaRX(α)) 6 f (x) for all x > VaRX(α). Thus, inequality
h(x) 6 f (x) holds for all x > 0. Since the reinsurance premium preserves stop-loss order, we have

VaRT f
I
(α) = VaRX(α) − f (VaRX(α)) + Π f (X)

≥ VaRX(α) − h(VaRX(α)) + Πh(X) = VaRT h
I
(α),

and

VaRT f
R
(α) = f (VaRX(α)) = h(VaRX(α)) = VaRT h

R
(α).

Thus, L(h) ≤ L( f ) holds. The geometric interpretation of this proof can be seen from Figure 4. 2
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f (VaRα(X))

a VaRα(X)

x

f (x)

h(x)

Figure 4. Geometric interpretation of Proposition 3.2.

By Proposition 3.2, we know that layer reinsurance with deductible a and upper limit VaRX(α) is
optimal among F 2 in the sense that it minimizes the loss function L( f ).

3.3. Optimal reinsurance form with F 3 constraint

In this subsection, we derive the optimal solution to problem of (2.14) over F 3. LetH3 be the class
of non-negative function h(x) defined on [0,∞] with

h(x) = c(x − (x − VaRX(α))+), (3.1)

where 0 6 c 6 1. Note that H3 ⊂ F 3 and H3 contains the null function h(x) = 0. The following
result shows that the optimal ceded loss functions in F 3 which minimize the L( f ), must take the form
of (3.1).

Proposition 3.3. For any f ∈ F 3, there always exists a function h ∈ H3, such that L(h) 6 L( f ).

Proof. For any f ∈ F 3, let c =
f (VaRX(α))
VaRX(α) , then c ∈ [0, 1]. Define h(x) = c(x − (x − VaRX(α))+),

obviously h ∈ H3 and h(VaRX(α)) = f (VaRX(α)).
In addition, recall that the ceded loss function f ∈ F 3 is increasing concave, hence

f (x) > f (VaRX(α))
VaRX(α) x = h(x) for x ∈ [0,VaRX(α)]. On the other hand, the increasing property of f (x) leads

to h(x) = f (VaRX(α)) 6 f (x) for x > VaRX(α). Since the reinsurance premium preserves stop-loss
order, we have

VaRT f
I
(α) = VaRX(α) − f (VaRX(α)) + Π f (X)

≥ VaRX(α) − h(VaRX(α)) + Πh(X) = VaRT h
I
(α),

and

VaRT f
R
(α) = f (VaRX(α)) = h(VaRX(α)) = VaRT h

R
(α).

Thus, we have L(h) 6 L( f ). The geometric interpretation of this proof can be seen from Figure 5.
2
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f (VaRα(X))

VaRα(X)

x

f (x)
h(x)

Figure 5. Geometric interpretation of Proposition 3.3.

From Proposition 3.3, we know that the quota-share reinsurance with a policy limit is always
optimal among F 3 in the sense that it minimizes the loss function L( f ).

4. Optimal reinsurance policies under expectation premium principle

In this section, we consider the expectation reinsurance premium principle, i.e.,

Π f (X) = (1 + θ)E[ f (x)], (4.1)

where, θ > 0 is the safety loading.

4.1. Optimal reinsurance policies among F 1

As a result of Proposition 3.1, we can deduce optimal ceded loss functions by confining attention to
H1. For a change-loss reinsurance with b ∈ [0, 1] and d ∈ [0,∞), the total costs of the insurer and the
reinsurer are

T b,d
I = X − b(X − d)+ + ΠE(b, d),

T b,d
R = b(X − d)+,

where, ΠE(b, d) = (1 + θ)E[b(X−d)+] = (1 + θ)b
∫ ∞

d
S (x)dx is the reinsurance premium. Then the VaR

of T b,d
I and T b,d

R at confidence level α are

VaRT b,d
I

(α) = VaRX(α) − b(VaRX(α) − d)+ + ΠE(b, d), (4.2)
VaRT b,d

R
(α) = b(VaRX(α) − d)+. (4.3)

Hence, the loss function is

LE(b, d) =


√[

(1 − b)VaRX(α) + bd + ΠE(b, d)
]2

+
[
b(VaRX(α) − d)

]2
, d ≤ VaRX(α),

VaRX(α) + ΠE(b, d), d > VaRX(α).
(4.4)

Lemma 4.1. Optimal ceded functions which minimize the loss function LE(b, d) in the classH1 exist.
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Proof. Note that the function ΠE(b, d) is an increasing function with respect to b. Then the loss
function LE(b, d) attains its minimum value over [0, 1] × (VaRX(α),∞) at b = 0 (the ceded function is
h(x) ≡ 0) and the minimum value is VaRX(α). Hence, the study of optimal ceded functions which
minimize the loss function LE(b, d) in the class H1 is simplified to solving the two-parameter
minimization problem over closed subset [0, 1] × [0,VaRX(α)]. Since LE(b, d) is continuous, then the
minimum of LE(b, d) over [0, 1] × [0,VaRX(α)] must attain at some stationary point or lie on the
boundary. 2

First, we defineA , [0, 1] × [0,VaRX(α)]. In this subsection, we will identify the minimum points
of LE(b, d) overA and discuss the optimal ceded function f ∗1 (x). We splitA into five disjoint subsets,
i.e. A =

⋃5
i=1 Ai, where, A1 = {(0, d) : 0 ≤ d ≤ VaRX(α)}, A2 = {(b, d) : 0 < b < 1, 0 < d < VaRX(α)},

A3 = {(1, d) : 0 < d < VaRX(α)}, A4 = {(b, 0) : 0 < b 6 1} and A5 = {(b,VaRX(α)) : 0 < b ≤ 1}.
If (b, d) ∈ A, the loss function is

LE(b, d) =

√[
(1 − b)VaRX(α) + bd + ΠE(b, d)

]2
+

[
b(VaRX(α) − d)

]2
. (4.5)

Let HE(b, d) = L2
E(b, d) =

[
(1− b)VaRX(α) + bd + ΠE(b, d)

]2
+

[
b(VaRX(α)− d)

]2, then HE(b, d) and
LE(b, d) have the same minimum points. Thus, we will study the minimization problem of HE(b, d) on
A in the rest of this subsection. Note that HE(b, d) is differentiable with partial derivatives

∂HE(b, d)
∂b

= 2
[(

VaRX(α) − g(d)
)2

+
(
VaRX(α) − d

)2]b + 2VaRX(α)
(
g(d) − VaRX(α)

)
,

∂HE(b, d)
∂d

= 2b
[
(1 − b)VaRX(α) + bg(d)

]
g′(d) − 2b2(VaRX(α) − d),

(4.6)

where, g(d) = d + (1 + θ)
∫ ∞

d
S (x)dx.

Next, we divide the following analysis into five cases.
• First, we demonstrate that HE(b, d) has no minimum points on A5. For any (b, d) ∈ A5, HE(b, d) >
[VaRX(α)]2 = HE(0, d) = minA1 HE(b, d), then the minimum value of HE(b, d) over A is not attainable
in A5.
• The minimum points of HE(b, d) are located in A1 if and only if

min[0,VaRX(α)]g(d) ≥ VaRX(α). (4.7)

In fact, if inequality (4.7) holds, then it follows from the expression of ∂HE(b,d)
∂b in (4.6) that ∂HE(b,d)

∂b >

0. Thus, HE(b, d) is strictly increasing with respect to b. Furthermore, for any d ∈ [0,VaRX(α)],
HE(0, d) ≡ [VaRX(α)]2. As a result, the minimum value of HE(b, d) over A is attained at any point
(0, d) in A1.

Conversely, if min[0,VaRX(α)]g(d) < VaRX(α), then there exists a d̃ ∈ [0,VaRX(α)] such that
∂HE(b,d̃)

∂b < 0 holds in a right neighborhood of b = 0. That is to say, (0, d̃) is not a minimum point of
HE(b, d). Since HE(0, d) = HE(0, d̃) ≡ [VaRX(α)]2 for any (0, d) ∈ A1, then no minimum points of
HE(b, d) are located in A1.
• If (b∗, d∗) ∈ A2 is a minimum point of HE(b, d), then (b∗, d∗) is a stationary point of HE(b, d).
Therefore, we have 

∂HE(b, d)
∂b

|(b,d)=(b∗,d∗) = 0,

∂HE(b, d)
∂d

|(b,d)=(b∗,d∗) = 0.
(4.8)
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By straightforward algebra, we know that d∗ is a root of equation q(d) = 0, where

q(d) = S (d)
(
VaRX(α) − d

)
−

∫ ∞

d
S (x)dx. (4.9)

Substituting d∗ in the second equation of (4.8) yields

b∗ =
VaRX(α)g′(d∗)

VaRX(α) − d∗ + [VaRX(α) − g(d∗)]g′(d∗)
. (4.10)

Furthermore, b∗ must lie in (0, 1), which is equivalent to

p(d∗) > 0, (4.11)

where, the function p(d) is given by p(d) = VaRX(α) − d − g(d)g′(d).
• If (1, d̄) ∈ A3 is a minimum point of HE(b, d), then Fermat’s theorem implies

∂HE(1, d)
∂d

|d=d̄ = 0,

∂HE(b, d̄)
∂b

|b=1 ≤ 0,
(4.12)

which is equivalent to  p(d̄) = 0,

g(d̄)[g(d̄) − VaRX(α)] + [VaRX(α) − d̄]2 ≤ 0.
(4.13)

• If (b̄, 0) ∈ A4 is a minimum point of HE(b, d), then b̄ must satisfy the following conditions
∂HE(b, 0)

∂b
|b=b̄ = 0,

∂HE(b̄, d)
∂d

|d=0 ≥ 0.
(4.14)

From (4.14), we yield

b̄ =
VaRX(α)[VaRX(α) − g(0)]

[VaRX(α) − g(0)]2 + [VaRX(α)]2 (4.15)

and

[(1 − b̄)VaRX(α) + b̄g(0)]g′(0) − b̄VaRX(α) ≥ 0. (4.16)

Based on the above arguments, we analyze the conditions for the minimum points of HE(b, d) are
located in sets Ai, i = 1, 2, 3, 4. The results are summarized in the following theorem.

Theorem 4.1. The optimal solutions to reinsurance problem (2.14) are given as follows.
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(1) If one of the three conditions (C1)-(C3) holds, then the optimal ceded loss function is given by
f ∗1 (x) = 0, where, d0 = S −1( 1

1+θ
) and

(C1) : α ≤
θ

1 + θ
, (C2) :

 F(0) <
θ

1 + θ
< α,

g(d0) ≥ VaRX(α),
(C3) :

 S (0) ≤
1

1 + θ
,

(1 + θ)µ ≥ VaRX(α).

(2) If condition (C4) or (C5) holds, then the optimal ceded loss function is given by f ∗1 (x) = b∗(x−d∗)+,
where d∗ is the unique solution of equation q(d) = 0, b∗ is given by (4.10) and

(C4) :


F(0) <

θ

1 + θ
< α,

g(d0) < VaRX(α),
p(d∗) > 0,

(C5) :


S (0) ≤

1
1 + θ

,

µ < S (0)VaRX(α),
p(d∗) > 0.

(3) If condition (C6) or (C7) holds, then the optimal ceded loss function is given by f ∗1 (x) = (x − d̄)+,
where d̄ is the unique solution of equation p(d) = 0 and

(C6) :


F(0) <

θ

1 + θ
< α,

g(d0) < VaRX(α),
p(d∗) ≤ 0,

(C7) :


S (0) ≤

1
1 + θ

,

µ < S (0)VaRX(α),
p(d∗) ≤ 0.

(4)If condition (C8) holds, then the optimal ceded loss function is given by f ∗1 (x) = b̄x, where b̄ is given
by (4.15) and

(C8) :


S (0) ≤

1
1 + θ

,

S (0)VaRX(α) ≤ µ <
1

1 + θ
VaRX(α).

Proof. (1) If one of the three conditions (C1)–(C3) holds, it is easy to show that

min[0,VaRX(α)]g(d) ≥ VaRX(α).

Then the minimum points of HE(b, d) are located in A1. That is to say, the optimal ceded loss
function is f ∗1 (x) = 0.
(2) If condition (C4) holds, then g′(d) < 0 for any d ∈ [0, d0). From the expression of ∂HE(b,d)

∂d in (4.6),
we have ∂HE(b,d)

∂d < 0 for any (b, d) ∈ (0, 1] × [0, d0]. Thus, the minimum points are not located in
[0, 1] × [0, d0]. Furthermore, let d1 > d0 such that g(d1) = VaRX(α), from the expression of ∂HE(b,d)

∂b

in (4.6), we have ∂HE(b,d)
∂b > 0 for any (b, d) ∈ (0, 1] × [d1,VaRX(α)]. Thus, the minimum points

are also not located in [0, 1] × [d1,VaRX(α)]. As a result, the minimum points of HE(b, d) over A
are located in (0, 1] × (d0, d1) and the minimum must be attainable at some stationary point (b∗, d∗)
or must lie on the right boundary at some point (1, d̄). Note that q′(d) = S ′(d)

(
VaRX(α) − d

)
< 0,

q(d0) = S (d0)(VaRX(α) − d0) −
∫ ∞

d0
S (x)dx = 1

1+θ
(VaRX(α) − g(d0)) > 0 and q(d1) = S (d1)(VaRX(α) −

d1)−
∫ ∞

d1
S (x)dx = [(1 + θ)S (d1)−1]

∫ ∞
d1

S (x)dx < 0. Thus, the equation q(d) = 0 has a unique solution
d∗ in (d0, d1). Substituting d∗ in the second equation of (4.8) yields

b∗ =
VaRX(α)g′(d∗)

VaRX(α) − d∗ + [VaRX(α) − g(d∗)]g′(d∗)
.
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It is easy to show 0 < b∗ < 1 since p(d∗) > 0. Thus HE(b, d) has a unique stationary point (b∗, d∗).
In the following, we show that HE(b, d) attains the minimum at the stationary point (b∗, d∗).

Conversely, we suppose that the minimum of HE(b, d) is attainable at (1, d̄) if condition (C4) holds.
Then we have p(d̄) = 0 and g(d̄)[g(d̄) − VaRX(α)] + [VaRX(α) − d̄]2 ≤ 0. Since g′(d̄) > 0, we yield
[g(d̄)[g(d̄) − VaRX(α)] + [VaRX(α) − d̄]2]g′(d̄) ≤ 0. Straightforward algebra leads to q(d̄) ≥ 0. Note
that q′(d) < 0 and q(d∗) = 0, then we have d̄ ≤ d∗. However, since p′(d) < 0, p(d∗) > 0 and p(d̄) = 0,
then we have d∗ < d̄. This leads to contradictions. Thus, if condition (C4) holds, the function HE(b, d)
attains the minimum at the stationary point (b∗, d∗), that is to say, the optimal ceded loss function is
f ∗1 (x) = b∗(x − d∗)+.

If condition (C5) holds, then ∂HE(b,d)
∂b > 0 for any (b, d) ∈ (0, 1] × [d1,VaRX(α)]. Thus, the minimum

points are not located in [0, 1]× [d1,VaRX(α)]. As a result, the minimum points of HE(b, d) overA are
located in (0, 1] × [0, d1) and the minimum must be attainable at some stationary point (b∗, d∗) or must
lie on the right boundary at some point (1, d̄) or must lie on the lower boundary at some point (b̄, 0). In
the following, we consider equation q(d) = 0. Note that q′(d) < 0, q(0) = S (0)VaRX(α) − µ > 0 and

q(d1) = S (d1)(VaRX(α) − d1) −
∫ ∞

d1

S (x)dx

= S (d1)(g(d1) − d1) −
∫ ∞

d1

S (x)dx

= S (d1)(1 + θ)
∫ ∞

d1

S (x)dx −
∫ ∞

d1

S (x)dx

= [S (d1)(1 + θ) − 1]
∫ ∞

d1

S (x)dx

< 0. (4.17)

Thus, the equation q(d) = 0 has a unique solution d∗ in (0, d1). Further, we know that HE(b, d) has a
unique stationary point (b∗, d∗) if condition (C5) holds. By the same argument as above, we show that
the minimum of HE(b, d) is not attainable at (1, d̄) if p(d∗) > 0 holds. Meanwhile, we demonstrate that
the minimum of HE(b, d) is not attainable at (b̄, 0) if condition (C5) holds. Conversely, we suppose that
the minimum value of HE(b, d) is attainable at (b̄, 0) if condition (C5) holds. Then we have conditions
(4.15) and (4.16) hold. Substituting (4.15) into (4.16), we get µ−S (0)VaRX(α) ≥ 0, that is contradicted
to the second inequality of condition (C5). Thus, if condition (C5) holds, the function HE(b, d) attains
the minimum at the stationary point (b∗, d∗).

In summary, if condition (C4) or (C5) holds, the optimal ceded loss function is given by f ∗1 (x) =

b∗(x − d∗)+.
(3) If condition (C6) or (C7) holds, from the above arguments in (2), we know that HE(b, d) has no
stationary points because p(d∗) ≤ 0. Furthermore, if the second inequality of (C7) holds, the minimum
value of HE(b, d) is not attainable at (b̄, 0). Thus, the function HE(b, d) attains the minimum at the
boundary point (1, d̄) if condition (C6) or (C7) holds, that is to say, the optimal ceded loss function is
given by f ∗1 (x) = (x − d̄)+.
(4) If condition(C8) holds, then ∂HE(b,d)

∂b > 0 for any (b, d) ∈ (0, 1] × [d1,VaRX(α)]. Thus, the minimum
points are not located in [0, 1]× [d1,VaRX(α)]. As a result, the minimum points of HE(b, d) overA are
located in (0, 1]×[0, d1) and the minimum must be attainable at some stationary point (b∗, d∗) or must lie
on the right boundary at some point (1, d̄) or must lie on the lower boundary at some point (b̄, 0). In the
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following, we consider equation q(d) = 0. Note that q(0) = S (0)VaRX(α) − µ ≤ 0 and q′(d) < 0, then
the equation q(d) = 0 has no solutions in (0, d1), namely, the function HE(b, d) has no stationary points.
Thus, the minimum point of HE(b, d) overAmust lie on the right boundary at some point (1, d̄) or must
lie on the lower boundary at some point (b̄, 0). If the minimum of HE(b, d) is attainable at (1, d̄), the we
have conditions (4.13) hold. Since g′(d̄) > 0, we yield [g(d̄)[g(d̄)−VaRX(α)]+[VaRX(α)−d̄]2]g′(d̄) ≤ 0.
Straightforward algebra leads to q(d̄) ≥ 0. This is contradicted to q(0) ≤ 0 and q′(d) < 0. Thus,
minimum point of HE(b, d) overA must lie on the lower boundary at point (b̄, 0), namely, the optimal
ceded loss function is given by f ∗1 (x) = b̄x. 2

4.2. Optimal reinsurance policies among F 2

As a result of Proposition 3.2, we can deduce optimal ceded loss functions by confining attention to
H2. For a layer reinsurance policy h(x) = (x − a)+ − (x − VaRX(α))+ with a ∈ [0,VaRX(α)] , the total
costs of the insurer and the reinsurer under the VaR risk measure are

VaRT f
I
(α) = a + (1 + θ)

∫ VaRX(α)

a
S (x)dx,

VaRT f
R
(α) = VaRX(α) − a.

Hence, the loss function is

LE(a) =

√
[a + (1 + θ)

∫ VaRX(α)

a
S (x)dx]2 + [VaRX(α) − a]2.

Theorem 4.2. The optimal ceded loss function that solves (2.14) with F 2 constraint is given by

f ∗2 (x) =

(x − a∗1)+ − (x − VaRX(α))+,
θ

1 + θ
< α,

0, otherwise,
(4.18)

where a∗1 is the unique solution of equation (4.19)

[a + (1 + θ)
∫ VaRX(α)

a
S (x)dx][1 − (1 + θ)S (a)] − [VaRX(α) − a] = 0. (4.19)

Proof. Let HE(a) = [a + (1 + θ)
∫ VaRX(α)

a
S (x)dx]2 + [VaRX(α) − a]2, then

H′E(a) = 2(a + (1 + θ)
∫ VaRX(α)

a
S (x)dx)(1 − (1 + θ)S (a)) − 2(VaRX(α) − a), (4.20)

H′′E (a) = 2(1 − (1 + θ)S (a))2 − 2(a + (1 + θ)
∫ VaRX(α)

a
S (x)dx))(1 + θ)S ′(a) + 2 > 0. (4.21)

If α 6 θ
1+θ

holds, it is easy to show that H′E(VaRX(α)) 6 0. According to (4.20) and (4.21), then
HE(a) and LE(a) attain their minimum at a = VaRX(α). In this case, f ∗2 (x) ≡ 0.

If α > θ
1+θ

holds, then from (4.19) and (4.21), we have

H′E(a) T 0 f or a∗1 S a.
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Recall that 0 6 a 6 VaRX(α) and H′E(0) = 2(1 + θ)
∫ VaRX(α)

0
S (x)dx(1 − (1 + θ)S (0)) − 2VaRX(α). If

1− (1 + θ)S (0) 6 0, then H′E(0) < 0 and if 1− (1 + θ)S (0) > 0, then H′E(0) 6 2(1 + θ)
∫ VaRX(α)

0
S (0)dx−

2VaRX(α) < 0. So H′E(0) < 0 and H′E(VaRX(α)) > 0 imply that a∗1 exists and is the only minimum
point of HE(a) and LE(a). 2

4.3. Optimal reinsurance policies among F 3

As a result of Proposition 3.3, we can deduce optimal ceded loss functions by confining attention to
H3. For a quota-share reinsurance with a policy limit h(x) = c(x − (x − VaRX(α))+), the total costs of
the insurer and the reinsurer under the VaR risk measure are

VaRT f
I
(α) = (1 − c)VaRX(α) + (1 + θ)c

∫ VaRX(α)

0
S (x)dx,

VaRT f
R
(α) = cVaRX(α).

Hence, the loss function is

LE(c) =

√
[(1 − c)VaRX(α) + (1 + θ)c

∫ VaRX(α)

0
S (x)dx]2 + [cVaRX(α)]2.

Theorem 4.3. The optimal ceded loss function that solves (2.14) with F 3 constraint is given by

f ∗3 (x) =

c∗1(x − (x − VaRX(α))+), φ(VaRX(α)) < 0,
0, otherwise,

(4.22)

where φ(VaRX(α)) = (1 + θ)
∫ VaRX(α)

0
S (x)dx − VaRX(α) and c∗1 =

−φ(VaRX(α))VaRX(α)
(VaRX(α))2+(φ(VaRX(α))2 .

Proof. Let HE(c) = [(1 − c)VaRX(α) + (1 + θ)c
∫ VaRX(α)

0
S (x)dx]2 + [cVaRX(α)]2, then

H′E(c) = 2c[(VaRX(α))2 + (φ(VaRX(α))2] + 2φ(VaRX(α))VaRX(α), (4.23)

H′′E (c) = 2[(VaRX(α))2 + (φ(VaRX(α))2] > 0. (4.24)

If φ(VaRX(α)) > 0, according to (4.23), we have ∂HE(c)
∂c > 0. Thus, LE(c) attains its minimum at

c = 0. Therefore, the optimal ceded loss function is given by f ∗3 (x) = 0.
If φ(VaRX(α)) < 0, according to (4.23) and (4.24), LE(c) attains its minimum at c = c∗1. Thus, the

optimal ceded loss function is given by f ∗3 (x) = c∗1(x − (x − VaRX(α))+). 2

5. Optimal reinsurance policies under Dutch premium principle

In this section, we determine the optimal reinsurance policies among the ceded loss function sets
F i(i = 1, 2, 3) under the Dutch premium principle. The Dutch premium principle is given by

Π f (X) = E[ f (X)] + βE[ f (X) − E[ f (X)]]+, (5.1)

where, 0 < β 6 1.
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5.1. Optimal reinsurance policies among F 1

From Proposition 3.1, we know that the optimal ceded loss function in F 1 can be determined by
confining attention toH1. For a change-loss reinsurance with b ∈ [0, 1] and d ∈ [0,∞), the total costs
of the insurer and the reinsurer under the Dutch premium principle are

T b,d
I = X − b(X − d)+ + ΠD(b, d),

T b,d
R = b(X − d)+,

where ΠD(b, d) = b
∫ ∞

d
S (x) + βb

∫ ∞
d+

∫ ∞
d S (x)dx

S (x)dx is the reinsurance premium. Then the VaR of T b,d
I

and T b,d
R at confidence level α are

VaRT b,d
I

(α) = VaRX(α) − b(VaRX(α) − d)+ + ΠD(b, d), (5.2)
VaRT b,d

R
(α) = b(VaRX(α) − d)+. (5.3)

Hence, the loss function is

LD(b, d) =


√[

(1 − b)VaRX(α) + bd + ΠD(b, d)
]2

+
[
b(VaRX(α) − d)

]2
, d ≤ VaRX(α),

VaRX(α) + ΠD(b, d), d > VaRX(α).

Let HD(b, d) = [(1 − b)VaRX(α) + bd + ΠD(b, d)
]2

+
[
b(VaRX(α) − d)]2, then

∂HD(b, d)
∂b

= 2
[(

VaRX(α) − k(d)
)2

+
(
VaRX(α) − d

)2]b + 2VaRX(α)
(
k(d) − VaRX(α)

)
,

∂HD(b, d)
∂d

= 2b
[
(1 − b)VaRX(α) + bk(d)

]
k′(d) − 2b2(VaRX(α) − d),

(5.4)

where, k(d) = d +
∫ ∞

d
S (x)dx + β

∫ ∞
d+

∫ ∞
d S (x)dx

S (x)dx.

Theorem 5.1. The optimal ceded loss function to reinsurance problem (2.14) is given as follows.
(1) If condition (M1) holds, then the optimal ceded loss function is given by f ∗4 (x) = 0, where

(M1) :
VaRX(α) − µ∫ ∞
µ

S (x)dx
6 β.

(2) If condition (M2) holds, then the optimal ceded loss function is given by f ∗4 (x) = b∗(x−d∗)+, where,

(M2) :


β < VaRX(α)−µ∫ ∞

µ
S (x)dx

,

u(0) > 0,
v(d∗) > 0,

b∗ =
VaRX(α)k′(d∗)

VaRX(α)−d∗+[VaRX(α)−k(d∗)]k′(d∗) , d∗ is the unique solution of equation u(d) = 0 and u(d) = VaRX(α) −
k(d) − k′(d)(VaRX(α) − d), v(d) = VaRX(α) − d − k(d)k′(d).
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(3) If condition (M3)holds, then the optimal ceded loss function is given by f ∗4 (x) = (x − d̄)+, where d̄
is the unique solution of equation v(d) = 0 and

(M3) :


β < VaRX(α)−µ∫ ∞

µ
S (x)dx

,

u(0) > 0,
v(d∗) 6 0.

(4)If condition (M4)holds, then the optimal ceded loss function is given by f ∗4 (x) = b̄x, where b̄ =
VaRX(α)[VaRX(α)−k(0)]

[VaRX(α)−k(0)]2+[VaRX(α)]2 and

(M4) :

 β < VaRX(α)−µ∫ ∞
µ

S (x)dx
,

u(0) 6 0.

Proof. Similarly to the proof of Lemma 4.1, the function ΠD(b, d) is an increasing function with
respect to b. Then the study of optimal ceded functions which minimize the loss function LD(b, d) in the
class H1 is simplified to solving the two-parameter minimization problem over closed subset [0, 1] ×
[0,VaRX(α)]. Since LD(b, d) is continuous, then the minimum of LD(b, d) over [0, 1] × [0,VaRX(α)]
must attain at some stationary point or lie on the boundary.
(1) Note that the function k(d) is an increasing function. If condition (M1) holds, it is easy to show that

k(d) ≥ VaRX(α), for all d ∈ [0,VaRX(α)].

Then from the expression of ∂HD(b,d)
∂b in (5.4), we know that HD(b, d) is an increasing function with

respect to b. Thus the minimum points of HD(b, d) are located in A1.
Conversely, if condition (M1) does not hold, then there exists a d̃ ∈ [0,VaRX(α)] such that ∂HD(b,d̃)

∂b <

0 holds in a right neighborhood of b = 0. That is to say, (0, d̃) is not a minimum point of HD(b, d).
Since HD(0, d) = HD(0, d̃) ≡ [VaRX(α)]2 for any (0, d) ∈ A1, then no minimum points of HD(b, d) are
located in A1.

That is to say, the minimum points of HD(b, d) are located in A1 if and only if condition (M1) holds.
In this case the optimal ceded loss function is f ∗4 (x) = 0.
(2) We first consider the stationary points of HD(b, d). Let

∂HD(b, d)
∂b

= 0,

∂HD(b, d)
∂d

= 0.
(5.5)

By straightforward algebra, we obtain
u(d) = VaRX(α) − k(d) − k′(d)(VaRX(α) − d) = 0,

b =
VaRX(α)k′(d)

VaRX(α) − d + [VaRX(α) − k(d)]k′(d)
.

(5.6)

If condition (M2) holds, then u(0) > 0 and u(VaRX(α)) < 0 hold. Since u′(d) ≤ 0 for any d ∈
[0,VaRX(α)], then the equation u(d) = 0 has a unique root d∗ in (0,VaRX(α)). Substituting d∗ in the
second equation of (5.6) yields

b∗ =
VaRX(α)k′(d∗)

VaRX(α) − d∗ + [VaRX(α) − k(d∗)]k′(d∗)
.
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Since v(d∗) > 0, then we have 0 < b∗ < 1. Thus HD(b, d) has a unique stationary point (b∗, d∗). In
the following, we show that HD(b, d) attains the minimum at the stationary point (b∗, d∗).

Conversely, if the minimum value of HD(b, d) is attainable at some point (1, d̄) on the right boundary,
then Fermat’s theorem implies 

∂HD(1, d)
∂d

|d=d̄ = 0,

∂HD(b, d̄)
∂b

|b=1 ≤ 0,
(5.7)

which is equivalent to  v(d̄) = 0,

k(d̄)[k(d̄) − VaRX(α)] + [VaRX(α) − d̄]2 ≤ 0.
(5.8)

Since k′(d̄) > 0, we yield [k(d̄)[k(d̄)−VaRX(α)]+ [VaRX(α)− d̄]2]k′(d̄) ≤ 0. Straightforward algebra
leads to u(d̄) ≥ 0. Note that u′(d) < 0 and u(d∗) = 0, then we have d̄ ≤ d∗. However, since v′(d) < 0,
v(d∗) > 0 and v(d̄) = 0, then we have d∗ < d̄. This leads to contradictions. Thus, if condition (M2)
holds, the function HD(b, d) does not attain the minimum at the right boundary.

If the minimum value of HD(b, d) is attainable at some point (b̄, 0) on the lower boundary, then b̄
must satisfy the following conditions 

∂HD(b, 0)
∂b

|b=b̄ = 0,

∂HD(b̄, d)
∂d

|d=0 ≥ 0.
(5.9)

From (5.9), we yield
b̄ =

VaRX(α)[VaRX(α) − k(0)]
[VaRX(α) − k(0)]2 + [VaRX(α)]2 ,

[(1 − b̄)VaRX(α) + b̄k(0)]k′(0) − b̄VaRX(α) ≥ 0,
(5.10)

which means u(0) ≤ 0, this is contradicted to the condition (M2).
In summary, if condition (M2) holds, the minimum of the function HD(b, d) must be attained at the

unique stationary point (b∗, d∗), i.e., the optimal ceded loss function is given by f ∗4 (x) = b∗(x − d∗)+.
(3) If condition (M3) holds, from the above arguments in (2), we know that HD(b, d) has no stationary
points because v(d∗) ≤ 0 and HE(b, d) does not attain the minimum at (b̄, 0) because u(0) > 0. Thus,
the function HD(b, d) attains the minimum at the boundary point (1, d̄) if condition (M3) holds, that is
to say, the optimal ceded loss function is given by f ∗4 (x) = (x − d̄)+.
(4) If condition (M4) holds, then the equation u(d) = 0 has no solutions in (0,VaRX(α)), namely, the
function HD(b, d) has no stationary points. Thus, the minimum point of HD(b, d) over A must lie on
the right boundary at some point (1, d̄) or must lie on the lower boundary at some point (b̄, 0). If the
minimum of HD(b, d) is attainable at (1, d̄), then the conditions in (5.7) hold. Since k′(d̄) > 0, we yield
[k(d̄)[k(d̄) − VaRX(α)] + [VaRX(α) − d̄]2]k′(d̄) ≤ 0. Straightforward algebra leads to u(d̄) ≥ 0. This is
contradicted to u(0) ≤ 0 and u′(d) < 0. Thus, the minimum point of HE(b, d) over A must lie on the
lower boundary at point (b̄, 0), namely, the optimal ceded loss function is given by f ∗4 (x) = b̄x. 2
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5.2. Optimal reinsurance policies among F 2

For a layer reinsurance with a ∈ [0,VaRX(α)] , the total costs of the insurer and the reinsurer under
the VaR risk measure are

VaRT f
I
(α) = t(a) + β

∫ VaRX(α)

t(a)
S (x)dx,

VaRT f
R
(α) = VaRX(α) − a,

where, t(a) = a +
∫ VaRX(α)

a
S (x)dx. Hence, the loss function is

LD(a) =

√
[t(a) + β

∫ VaRX(α)

t(a)
S (x)dx]2 + [VaRX(α) − a]2.

Theorem 5.2. The optimal ceded loss function that solves (2.14) with F 2 constraint is given by

f ∗5 (x) = (x − a∗2)+ − (x − VaRX(α))+, (5.11)

where a∗2 is the unique solution of equation

[1 − S (a)][1 − βS (t(a))] − (VaRX(α) − a) = 0 (5.12)

Proof. Let HD(a) = L2
D(a) = [t(a) + β

∫ VaRX(α)

t(a)
S (x)dx]2 + [VaRX(α) − a]2, then

H′D(a) = 2{[t(a) + β

∫ VaRX(α)

t(a)
S (x)dx][1 − S (a)][1 − βS (t(a))] − (VaRX(α) − a)}, (5.13)

H′′D(a) > 0. (5.14)

From Eq (5.13), we know that

H′D(VaRX(α)) = (VaRX(α))(1 − S (VaRX(α))(1 − βS (VaRX(α)) > 0,

and

H′D(0) = (t(0) + β

∫ VaRX(α)

t(0)
S (x)dx)(1 − S (0))(1 − βS (t(0)))) − VaRX(α)

< t(0) + VaRX(α) − t(0) − VaRX(α)
= 0.

Hence, from (5.12) and (5.14), we have

H′D(a) T 0⇔ a∗2 S a.

Therefore, a∗ is the unique minimum point of HD(a). Since LD(a) and HD(a) have the same
minimum points, then the optimal ceded loss function that solves (2.14) with F 2 constraint is given
by (5.11) and (5.12). 2
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5.3. Optimal reinsurance policies among F 3

From Proposition 3.3, we can deduce optimal ceded loss functions by confining attention to H3.
For a quota-share reinsurance with a policy limit h(x) = c(x − (x − VaRX(α))+), the total costs of the
insurer and the reinsurer under the VaR risk measure are

VaRT f
I
(α) = (1 − c)VaRX(α) + ct(0) + βc

∫ VaRX(α)

t(0)
S (x)dx,

VaRT f
R
(α) = cVaRX(α).

(5.15)

Hence, the loss function is

LD(c) =

√
[(1 − c)VaRX(α) + ct(0) + βc

∫ VaRX(α)

t(0)
S (x)dx]2 + [cVaRX(α)]2.

Theorem 5.3. The optimal ceded loss function that solves (2.14) with F 3 constraint is given by

f ∗6 (x) = c∗2(x − (x − VaRX(α))+), (5.16)

where
c∗2 =

−ϕ(VaRX(α))VaRX(α)
(VaRX(α))2 + (ϕ(VaRX(α))2

and ϕ(VaRX(α)) =
∫ VaRX(α)

0
S (x)dx + β

∫ VaRX(α)

t(0)
S (x)dx − VaRX(α).

Proof. Let HD(c) = L2
D(c) = [(1 − c)VaRX(α) + ct(0) + βc

∫ VaRX(α)

t(0)
S (x)dx]2 + [cVaRX(α)]2, then LD(c)

and HD(c) have the same minimum points. Taking the derivative of HD(c), we obtain

H′D(c) = 2c[(VaRX(α))2 + (ϕ(VaRX(α))2] + 2ϕ(VaRX(α))VaRX(α), (5.17)

H′′D(c) = 2[(VaRX(α))2 + (ϕ(VaRX(α))2] > 0. (5.18)

Note that

ϕ(VaRX(α)) =

∫ VaRX(α)

0
S (x)dx + β

∫ VaRX(α)

t(0)
S (x)dx − VaRX(α)

<

∫ VaRX(α)

0
S (x)dx + VaRX(α) − t(0) − VaRX(α)

= 0.

(5.19)

Then, according to (5.17), (5.18) and (5.19), HD(c) and LD(c) attain there minimum at c = c∗2, where
c∗2 =

−ϕ(VaRX(α))VaRX(α)
(VaRX(α))2+(ϕ(VaRX(α))2 ≤

1
2 . 2

6. Numerical examples

In this section, we construct four numerical examples to illustrate the optimal reinsurance policies
that we derived in the previous sections. Let the confidence level α = 0.95, safety loading parameters
θ = 0.2 and β = 0.5.
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Example 6.1. Assume that the reinsurance premium is expectation premium principle and the loss
variable X has an exponential distribution with survival function S (x) = e0.001x, then F(0) = 0 < θ

1+θ
=

0.1667 < α = 0.95, VaRX(α) = 2995.73 > 1182.32 = g(d0), d∗ = 1995.73, p(d∗) = −806.73. By
Theorem (4.1), Theorem (4.2) and Theorem (4.3), we know that the optimal ceded loss function among
F 1 is f ∗1 = (x − 1599.90)+, the optimal ceded loss function among F 2 is f ∗2 = (x − 1622.55)+ − (x −
2995.73)+ and the optimal ceded loss function among F 3 is f ∗3 = 0.4477(x − (x − 2995.73)+).

Example 6.2. Assume that the reinsurance premium is expectation premium principle and the loss
variable X has a Pareto distribution with survival function S (x) = ( 2000

x+2000 )3, then F(0) = 0 < θ
1+θ

=

0.1667 < α = 0.95, VaRX(α) = 3428.84 > 1187.98 = g(d0), d∗ = 1619.22, p(d∗) = 226.05. By
Theorem (4.1), Theorem (4.2) and Theorem (4.3), we know that the optimal ceded loss function among
F 1 is f ∗1 = 0.9236(x − 1619.22)+, the optimal ceded loss function among F 2 is f ∗2 = (x − 1801.98)+ −

(x − 3428.84)+ and the optimal ceded loss function among F 3 is f ∗3 = 0.4692(x − (x − 3428.84)+).

Example 6.3. Assume that the reinsurance premium is Dutch premium principle and the loss variable
X has an exponential distribution with survival function S (x) = e0.001x, then VaRX(α) = 2995.73,
VaRX(α)−µ∫ ∞
µ

S (x)dx
= 5.4250 > 0.5 = β, u(0) = 1811.79, d∗ = 1950.79, v(d∗) = −689.40. By Theorem

(5.1), Theorem (5.2) and Theorem (5.3), we know that the optimal ceded loss function among F 1 is
f ∗4 = (x−1607.99)+, the optimal ceded loss function among F 2 is f ∗5 = (x−2994.81)+− (x−2995.73)+

and the optimal ceded loss function among F 3 is f ∗6 = 0.4500(x − (x − 2995.73)+).

Example 6.4. Assume that the reinsurance premium is Dutch premium principle and the loss variable
X as a Pareto distribution with survival function S (x) = ( 2000

x+2000 )3, then VaRX(α) = 3428.84, VaRX(α)−µ∫ ∞
µ

S (x)dx
=

5.4649 > 0.5 = β, u(0) = 2206.61, d∗ = 1525.01, v(d∗) = 397.65. By Theorem (5.1), Theorem
(5.2) and Theorem (5.3), we know that the optimal ceded loss function among F 1 is f ∗4 = 0.8676(x −
1525.01)+, the optimal ceded loss function among F 2 is f ∗5 = (x − 3427.91)+ − (x − 3428.84)+ and the
optimal ceded loss function among F 3 is f ∗6 = 0.4690(x − (x − 3428.84)+).

Remark 6.1. Note that the risks X have the same mean and the parameters are same in the above four
examples. For the exponential case, the optimal reinsurance policy is a stop-loss reinsurance when
f ∈ F 1, while for the Pareto case, the optimal reinsurance policy is a change-loss reinsurance when
f ∈ F 1. Therefore, the form of the optimal reinsurance policy depends on the distribution of loss
variable X.

7. Conclusions

The optimal reinsurance policies from the perspective of both the insurer and reinsurer have
remained a fascinating topic in actuarial science. Many interesting optimal reinsurance models have
been proposed. In contrast to the existing literatures, we provide two new findings to the optimal
reinsurance models from both the insurer and reinsurer in this paper. First, we propose an
optimization criterion to minimize their total costs under the criteria of loss function which is defined
by the joint value-at-risk. Second, we extend the premium principle to a much wide class of premium
principles satisfying two axioms: risk loading and stop-loss ordering preserving. Under these
conditions, we derive the optimal reinsurance policies over three ceded loss function sets, (i) the
change-loss reinsurance is optimal among the class of increasing convex ceded loss functions; (ii)
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when the constraints on both ceded and retained loss functions are relaxed to increasing functions, the
layer reinsurance is shown to be optimal; (iii) the quota-share reinsurance with a limit is always
optimal when the ceded loss functions are in the class of increasing concave functions. We further use
the expectation premium principle and Dutch premium principle to illustrate the application of our
results by deriving the optimal parameters.

We also wish to point out that further research on this topic is needed. First, for reinsurance, the
challenges of classical insurance are amplified, particularly when it comes to dealing with extreme
situations like large claims and rare events. We have to rethink classical models in order to cope
successfully with the respective challenges. One of the better ways is to focus on modelling and
statistics, related literature can be referred to [32, 33]. Second, in most of optimal reinsurance
problems, it is assumed that the distributions of the insurer’s risks are known. However, in practice,
only incomplete information on the distributions is available. How to obtain optimal reinsurance
contracts with incomplete information is also an interesting topic. An attempt to such a problem is to
use the statistical methods, see [34, 35]. Third, although some papers have been devoted to deriving
optimal reinsurance under model uncertainty, the optimal reinsurance with uncertainty still lacks of
available analysis tools, maybe we can draw support from sub-linear expectation, for details,
see [36, 37]. We hope that these important open problems can be addressed in future research. We
also believe that this article can and will foster further research in this direction.
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