Research article Special Issues

Optimal gradient estimates for multi-phase integrals

  • Received: 01 July 2021 Accepted: 04 October 2021 Published: 25 October 2021
  • We prove sharp reverse Hölder inequalities for minima of multi-phase variational integrals and apply them to Calderón-Zygmund estimates for nonhomogeneous problems.

    Citation: Cristiana De Filippis. Optimal gradient estimates for multi-phase integrals[J]. Mathematics in Engineering, 2022, 4(5): 1-36. doi: 10.3934/mine.2022043

    Related Papers:

  • We prove sharp reverse Hölder inequalities for minima of multi-phase variational integrals and apply them to Calderón-Zygmund estimates for nonhomogeneous problems.



    加载中


    [1] D. Apushkinskaya, M. Bildhauer, M. Fuchs, Interior gradient bounds for local minimizers of variational integrals under nonstandard growth conditions. J. Math. Sci., 164 (2010), 345–363. doi: 10.1007/s10958-009-9751-1
    [2] S. Baasandorj, S.-S. Byun, Regularity for Orlicz phase problems, 2021, arXiv: 2106.15131.
    [3] S. Baasandorj, S.-S. Byun, J. Oh, Calderón-Zygmund estimates for generalized double phase problems, J. Funct. Anal., 279 (2020), 108670. doi: 10.1016/j.jfa.2020.108670
    [4] S. Baasandorj, S.-S. Byun, J. Oh, Gradient estimates for multi-phase problems, Calc. Var., 60 (2021), 104. doi: 10.1007/s00526-021-01940-8
    [5] A. Kh. Balci, L. Diening, M. Surnachev, New examples on Lavrentiev gap using fractals, Calc. Var., 59 (2020), 180. doi: 10.1007/s00526-020-01818-1
    [6] P. Baroni, Riesz potential estimates for a general class of quasilinear equations, Calc. Var., 53 (2015), 803–846. doi: 10.1007/s00526-014-0768-z
    [7] P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., 121 (2015), 206–222. doi: 10.1016/j.na.2014.11.001
    [8] P. Baroni, M. Colombo, G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347–379. doi: 10.1090/spmj/1392
    [9] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. doi: 10.1007/s00526-018-1332-z
    [10] L. Beck, G. Mingione, Lipschitz bounds and nonuniform ellipticity, Commun. Pure Appl. Math., 73 (2020), 944–1034. doi: 10.1002/cpa.21880
    [11] P. Bella, M. Schäffner, On the regularity of minimizers for scalar integral functionals with $(p, q)$-growth, Anal. PDE, 13 (2020), 2241–2257. doi: 10.2140/apde.2020.13.2241
    [12] A. Benyaiche, P. Harjulehto, P. Hästö, A. Karppinen, The weak Harnack inequality for unbounded supersolutions of equations with generalized Orlicz growth, J. Differ. Equations, 275 (2021), 790–814. doi: 10.1016/j.jde.2020.11.007
    [13] M. Bildhauer, Convex variational problems: linear, nearly linear and anisotropic growth conditions, Berlin: Springer, 2003.
    [14] G. Bonfanti, A. Cellina, On the non-occurrence of the Lavrentiev phenomenon, Adv. Calc. Var., 6 (2013), 93–121.
    [15] P. Bousquet, L. Brasco, $C^{1}$-regularity of orthotropic $p$-harmonic functions in the plane, Anal. PDE, 11 (2018), 813–854. doi: 10.2140/apde.2018.11.813
    [16] P. Bousquet, L. Brasco, Lipschitz regularity for orthotropic functionals with nonstandard growth conditions, Rev. Mat. Iberoam., 36 (2020), 1989–2032. doi: 10.4171/rmi/1189
    [17] H. Brezis, P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., 1 (2001), 387–404. doi: 10.1007/PL00001378
    [18] S.-S. Byun, J. Oh, Global gradient estimates for non-uniformly elliptic equations, Calc. Var., 56 (2017), 46. doi: 10.1007/s00526-017-1148-2
    [19] S.-S. Byun, J. Oh, Regularity results for generalized double phase functionals, Anal. PDE, 13 (2020), 1269–1300. doi: 10.2140/apde.2020.13.1269
    [20] S.-S. Byun, Y. Youn, Riesz potential estimates for a class of double phase problems, J. Differ. Equations, 264 (2018), 1263–1316. doi: 10.1016/j.jde.2017.09.038
    [21] A. Canale, A. D'Ottavio, F. Leonetti, M. Longobardi, Differentiability of bounded minimizers of some anisotropic integrals, J. Math. Anal. Appl., 253 (2001), 640–650. doi: 10.1006/jmaa.2000.7186
    [22] M. Carozza, J. Kristensen, A. Passarelli Di Napoli, Higher differentiability of minimizers of convex variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 395–411. doi: 10.1016/j.anihpc.2011.02.005
    [23] M. Carozza, J. Kristensen, A. Passarelli Di Napoli, Regularity of minimizers of autonomous convex variational integrals, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XIII (2014), 1065–1089.
    [24] I. Chlebicka, C. De Filippis, Removable sets in non-uniformly elliptic problems, Ann. Mat. Pura Appl., 199 (2020), 619–649. doi: 10.1007/s10231-019-00894-1
    [25] I. Chlebicka, A. Karppinen, Removable sets in elliptic equations with Musielak–Orlicz growth, J. Math. Anal. Appl., 501 (2021), 124073. doi: 10.1016/j.jmaa.2020.124073
    [26] I. Chlebicka, Y. Youn, A. Zatorska-Goldstein, Wolff potentials and measure data vectorial problems with Orlicz growth, 2021, arXiv: 2102.09313.
    [27] H. J. Choe, Interior behaviour of minimizers for certain functionals with nonstandard growth, Nonlinear Anal., 19 (1992), 933–945. doi: 10.1016/0362-546X(92)90105-N
    [28] M. Colombo, G. Mingione, Bounded minimisers of double phase variationals integrals, Arch. Rational Mech. Anal., 218 (2015), 219–273. doi: 10.1007/s00205-015-0859-9
    [29] M. Colombo, G. Mingione, Calderón-Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416–1478. doi: 10.1016/j.jfa.2015.06.022
    [30] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Rational Mech. Anal., 215 (2015), 443–496. doi: 10.1007/s00205-014-0785-2
    [31] C. De Filippis, G. Mingione, A borderline case of Calderón-Zygmund estimates for non-uniformly elliptic problems, St. Petersburg Math. J., 31 (2020), 455–477. doi: 10.1090/spmj/1608
    [32] C. De Filippis, G. Mingione, Interpolative gap bounds for nonautonomous integrals, Anal. Math. Phys., 11 (2021), 117. doi: 10.1007/s13324-021-00534-z
    [33] C. De Filippis, G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Rational Mech. Anal., 2021, in press.
    [34] C. De Filippis, G. Mingione, Manifold constrained non-uniformly elliptic problems, J. Geom. Anal., 30 (2020), 1661–1723. doi: 10.1007/s12220-019-00275-3
    [35] C. De Filippis, G. Mingione, On the regularity of minima of non-autonomous functionals, J. Geom. Anal., 30 (2020), 1584–1626. doi: 10.1007/s12220-019-00225-z
    [36] C. De Filippis, J. Oh, Regularity for multi-phase variational problems, J. Differ. Equations, 267 (2019), 1631–1670. doi: 10.1016/j.jde.2019.02.015
    [37] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004
    [38] L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with $(p, q)$ growth, J. Differ. Equations, 204 (2004), 5–55. doi: 10.1016/j.jde.2003.11.007
    [39] Y. Fang, V. Radulescu, C. Zhang, X. Zhang, Gradient estimates for multi-phase problems in Campanato spaces, Indiana U. Math. J., in press.
    [40] I. Fonseca, J. Malý, G. Mingione, Scalar minimizers with fractal singular sets, Arch. Rational Mech. Anal., 172 (2004), 295–307. doi: 10.1007/s00205-003-0301-6
    [41] M. Giaquinta, E. Giusti, On the regularity of the minima of variational integrals, Acta Math., 148 (1982), 31–46. doi: 10.1007/BF02392725
    [42] M. Giaquinta, G. Modica, J. Souček, Cartesian currents in the calculus of variations II, Berlin: Springer-Verlag, 1998.
    [43] E. Giusti, Direct methods in the calculus of variations, River Edge: World Scientific Publishing Co., 2003.
    [44] P. Harjulehto, P. Hästö, Double phase image restoration. J. Math. Anal. Appl., 501 (2021), 123832. doi: 10.1016/j.jmaa.2019.123832
    [45] P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, Springer, 2019.
    [46] P. Harjulehto, P. Hästö, M. Lee, Hölder continuity of $\omega$-minimizers of functionals with generalized Orlicz growth, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5), XXII (2021), 549–582.
    [47] P. Hästö, J. Ok, Maximal regularity for local minimizers of nonautonomous functionals, J. Eur. Math. Soc., in press.
    [48] P. Harjulehto, P. Hästö, O. Toivanen, Hölder regularity of quasiminimizers under generalized growth conditions, Calc. Var., 56 (2017), 22. doi: 10.1007/s00526-017-1114-z
    [49] J. Hirsch, M. Schäffner, Growth conditions and regularity, an optimal local boundedness result, Commun. Contemp. Math., 23 (2021), 2050029. doi: 10.1142/S0219199720500297
    [50] A. Karppinen, M. Lee, Hölder continuity of the minimizer of an obstacle problem with generalized Orlicz growth, International Mathematics Research Notices, 2021, rnab150.
    [51] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203–1219. doi: 10.1016/0362-546X(88)90053-3
    [52] G. M. Lieberman, The natural generalization of the natural condition of Ladyzhenskaya and Ural'tseva for elliptic equations, Commun. Part. Diff. Eq., 16 (1991), 311–361. doi: 10.1080/03605309108820761
    [53] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 391–409. doi: 10.1016/S0294-1449(16)30379-1
    [54] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267–284. doi: 10.1007/BF00251503
    [55] P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differ. Equations, 90 (1991), 1–30. doi: 10.1016/0022-0396(91)90158-6
    [56] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 1–25.
    [57] P. Marcellini, Growth conditions and regularity for weak solutions to nonlinear elliptic pdes, J. Math. Anal. Appl., 501 (2021), 124408. doi: 10.1016/j.jmaa.2020.124408
    [58] P. Marcellini, Un example de solution discontinue d'un probléme variationel dans le cas scalaire, Ist. U. Dini, Firenze, 1987–88, preprint.
    [59] G. Mingione, V. Radulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), 125197. doi: 10.1016/j.jmaa.2021.125197
    [60] J. Ok, Regularity for double phase problems under additional integrability assumptions, Nonlinear Anal., 194 (2020), 111408. doi: 10.1016/j.na.2018.12.019
    [61] M. A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal., 9 (2020), 710–728.
    [62] M. Schäffner, Higher integrability for variational integrals with non-standard growth, Calc. Var., 60 (2021), 77. doi: 10.1007/s00526-020-01907-1
    [63] V. V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Phys., 3 (1995), 249–269.
    [64] V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105–116.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1308) PDF downloads(135) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog