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1. Introduction

In this paper we complete the regularity theory started in [36] for local minimizers of multi-phase
functionals, i.e., variational integrals of the type

WP (Q) s w > H(w, Q) := f |Dw|P + Z a,(x)|Dw|” dx,
Q

v=1

where the modulating coefficients {a,};_, and exponents (p, p1,- -, p,) satisfy
0<a,()eC™™Q) and 1<p< min p, (1.1)
veI,

and the shorthands

I,:={l,---,«} and  H(x,2):=7" + Zav(x)lzl’” (1.2)
v=1


http://www.aimspress.com/journal/mine
http://dx.doi.org/10.3934/mine.2022043
www.aimspress.com/mine/article/5983/special-articles

will always be used. Exponents p, p,, @, are related by the constraint

Pr 14+ for all v € I,, (1.3)

p n

which is sharp in the light of the counterexamples in [5, 38, 40, 63]. Precisely, our first achievement
concerns some reverse Holder type inequalities in the spirit of those obtained in [28, 30, 31] for double
phase problems.

Theorem 1. Under assumptions (1.1)—(1.3), let v € lef (Q) be a local minimizer of functional #(-)
and By(xo) C Byy(xo) € Q be concentric balls with radius o € (0, 1] and J > 4 be a constant. Then

e in the degenerate regime degy(B,(xo)) for all d > 1 it holds that

1/d 1/p
[ f |Dv| dx) < ch{ H(x, Dv) dx] , (1.4)
By /2(x0) B, (x0)

with ¢ = c(data, [|H(:, DV)|| 1+ (g, (x> d) and I = T'(datay);
e in the nondegenerate regime ndegy(B,(xy)) or in the mixed one mix;(By(xy)), for all d > 1,
wne0,1]itis

1/d l/p
[ f |Dv| dx] < co™ ( H(x, Dv) dx] , (1.5)
BQ/Z(XO) BQ(XO)

fOl’ Cc = C(data, A, ||H(, Du)||L1+‘5g(Bzg(xo))’/J’ d)

We refer to Sections 2.1 and 4 for more details on the terminology adopted in the above statement.
A result analogous to the one described in Theorem 1 has been obtained in [4, Theorem 4.1] for
generalized [3,19] triple phase problems, which in principle include also our functional #(-). However,

in [4] to prove estimates similar to (1.4)—(1.5), extra technical assumptions on {a,};_, are required, i.e.:

max @, < 2mina,, (1.6)

vel, vel,
cf. [4, (1.17), (1.22) and (6.8)]. Condition (1.6) seems to be unavoidable according to the arguments
developed in [4], inspired by [30, 31] and essentially relying on a boost of integrability that results
from a combination of a Caccioppoli type inequality with the classical fractional Sobolev embedding
theorem. In sharp contrast with what happens in [30, 31], the rate of nonhomogeneity in multi-phase
problems is too high and causes competition among the Holder continuity exponents {a,}s_,. This
drastically affects the integrability improvement granted by Sobolev embedding theorem and possibly
leads to violations of the bounds in (1.3). Here, we rather follow the approach of [28], replace
fractional Sobolev embedding theorem with a suitable fractional Gagliardo-Nirenberg inequality [17],
which matches the controlled gradient fractional differentiability assured by Caccioppoli inequality
with the Morrey type result obtained in [36, Theorem 2]. Precisely, the idea consists in exploiting
Gagliardo-Nirenberg inequality to translate the Sy-Holder continuity of minima for arbitrary
Bo € (0,1) consequence of [36, Theorem 2], into gradient higher integrability up to any finite
exponent, thus bypassing all structural obstructions due to the coexistence of multiple phases. In the
light of [36, Theorem 1], inequalities (1.4)—(1.5) do not add any substantial information on the
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regularity of minima of functional #€(-). Anyway, they turn out to be fundamental for instance when
such minimizers play the role of comparison map in variational problems governed by the
nonhomogeneous functional

W (Q) 3 w o C(w, Q) = f [H(x, Dw) — (G(x, F), Dw)] dx (1.7)
Q

where G: Q X R" — R" is a Carathéodory vector field so that

H(x,2)

IG(x,2)| < A for all (x,z) € QxR" and some A >0 (1.8)

and F: Q — R" verifies

H(,F)eL (Q) with y > 1. (1.9)

loc
For local minima of the functional in (1.7) we have the following Calderén-Zygmund type result.

Theorem 2. Under assumptions (1.1), (1.3), (1.8), (1.9), let u € W'P(Q) be a local minimizer of
functional G(+). Then the sharp Calrderon-Zygmund implication
H(,F)e L (Q) = H(-,Du)e L’ (Q)

loc loc

holds for all y > 1. Moreover, fix open sets Qy € Qy € Q so that dist(Qq, Q) ~ dist(Qo, 0Q) ~
dist(Q, 0Q); for every y > 1 there exists a radius r. > 0 and a constant ¢ > 1, both depending on
(data,,) such that

Ly
( J[ H(x, Du)” dx] < c H(x, Du) dx
Bo/2(x0) By (x0)

1y
+c[ H(x,F) dx] , (1.10)
B, (x0)

for all balls B,(xy) € Qo with o € (0,7.).

We remark that Theorem 2 is not included in [4, Theorem 1.1] as we do not assume (1.6). Let us
put our results into the context of the available literature. Multi-phase functionals provide the natural
generalization of the double-phase energy

loc

WEP(Q) 3 w > P(w, Q) := f [IDW|? + a(x)|Dw|?] dx,
Q

0<a)ec®™@), L<1+%
P

n
first studied in [63, 64], with emphasis about homogenization and on the possible occurrence of
Lavrentiev phenomenon and later on, regularity has been obtained in [7,9,28,30], see also [18,29,31]
concerning Calder6on-Zygmund estimates, [34] on the general vectorial setting and the
manifold-constrained case, [24] about potential theoretic considerations and [33] for sharp regularity
of nonhomogenous systems with double phase structure and related obstacle problems
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and [2-4, 8,19, 20, 36, 39, 60, 61] for further extensions and more general models. The peculiarity of
the double phase energy is the subtle interaction between the p-phase and the (p, g)-phase, whose
alternance is controlled by the modulating coefficient a(-): in proximity of the zero level set
{x € Q: a(x) = 0}, the integrand in P(-) behaves as the p-Laplacian, while in correspondence of the
positivity set of a(-) it acts as a A,-Young function. This phenomenon is in some sense magnified in
the multi-phase framework: in [36] it is observed that each p,-phase interacts only with the elliptic
p-phase as quantified by (1.3); in particular no additional relation between p,,, p,, or «,,, @,, with
vy # v, € I, should be imposed. On a more formal level, according to the classification done in [33]
we see that the integrand in #(+) is pointwise uniformly elliptic, in the sense that its ellipticity ratio is
uniformly bounded:

highest eigenvalue of §*H(x, z)

mH(Z) = Sup Sc(n,p’pla"' ’pK) (111)

wep lowest eigenvalue of °H(x, 7)

for any z € R" and all balls B € ). However, the possible vanishing of the coefficients creates a deficit
in the structure that can be better measured via a nonlocal counterpart of the ellipticity ratio defined as

sup . highest eigenvalue of 8 H(x, z) <

Ru(2) =

K
. . <1+ Nl
inf . lowest eigenvalue of 9>H(x, z) - VIL=(B)

which may blow up as |z| — oco. From this analysis it is clear that nonuniform ellipticity of multi-phase
integrands is caused by the coefficients, but it is rather soft and still allows a perturbative approach to
regularity. The multi-phase energy is a particular instance of Musielak-Orlicz functional, an abstract
class of variational integrals described for instance in [45], that permits to treat in a unified fashion the
regularity of minima of several model functionals such as double phase, multi-phase, p(x)-Laplacian
or double phase with variable exponent and the functional analytic properties of related Lagrangian
spaces, see [6,12,25,26,44,46-48,50] for an (incomplete) list of references and [57,59] for reasonable
surveys. It is worth mentioning that energy #€(-) also falls into the realm of functional with (p, g)-
growth, i.e., variational integrals defined by means of a sufficiently smooth integrand F: Q X R" — R
with a rate of nonuniform ellipticity stronger than (1.11), i.e.:

lzIP < F(x,2) S 1+1z/

Re(2) < 17 with 1 < p <gq.

This class of functionals has first been introduced in the seminal papers [53-56] and intensively
investigated since then, cf. [10, 11, 14-16,21-23,27,32,33,35, 38,49, 62], see also [13,57,59] for an
overview of the state of the art. The main idea in this case consists in neglecting the precise structure
of the integrand and retaining only the extremals of the growth. In such a way it is possible to prove
regularity results for minima of a quite large family of variational integrals at the price of imposing
precise closeness conditions between exponents (p,q) and loosing some informations that are
distinctive of the specific structure, compare in this perspective [33, Theorem 1] with [33, Theorem
3].  The regularity for general functionals with (p,q)-growth is guaranteed provided that
q/p < 1 + o(n), where o(n) —,_. 0. This turns out to be a necessary and sufficient condition for
regularity, see e.g., [38,55, 58] about counterexamples/sharpness of the upper bound on the ratio g/p
and [11,49, 62] for improvements in the autonomous setting. The constraint linking exponents (p, g)
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has interpolative nature in the sense that if minimizers a priori feature a higher regularity than the one
naturally allowed by the ellipticity of the functional, then the restriction imposed on the size of g/p
can be relaxed, in particular it can be made independent on the space dimension,
cf. [1,9, 13, 21, 22, 27, 28, 32, 34, 35, 60]. The main tool exploited in most of such papers are
Gagliardo-Nirenberg type inequalities [17] that grant a trading between the extra regularity properties
of minima and the higher integrability of their gradients. This transaction weakens in some sense the
nonuniform ellipticity of the functional, thus either allowing for larger bounds on g/p or drastically
reducing the rate of fractional differentiability of the gradient needed for boost its integrability. The
latter is the cornerstone of the arguments presented here.

Organization of the paper

This paper is organized as follows. In Section 2 we describe our notation and collect some auxiliary
results, Section 3 contains an overview of the regularity theory for local minimizers of multi-phase
integrals and Sections 4 and 5 are devoted to the proofs of Theorems 1 and 2 respectively.

2. Preliminaries

In this section we shall collect some well-known results that will be useful in the proof of
Theorems 1 and 2.

2.1. Notation

We denote by Q c R” an open domain and, since our estimates will be local, we shall always
assume, without loss of generality, that Q is also bounded. We denote by ¢ a general constant larger
than one. Different occurrences from line to line will be still denoted by c. Important dependencies on
parameters will be as usual emphasized by putting them in parentheses. We shall denote N as the set
of positive integers. As usual, we denote by B,(x() := {x € R" : |x — xo| < r} the open ball with center
xo and radius r > 0; when it is clear from the context, we omit denoting the center, i.e., B, = B,(xo).
When not otherwise stated, different balls in the same context will share the same center. Finally, with
B being a given ball with radius r and ¢ being a positive number, we denote by 6B the concentric ball
with radius 67 and by B/§ = (1/6)B. In denoting several function spaces like LP(2), W!*(Q), we shall
denote the vector valued version by L”(Q, R¥), W'P(€, R¥) in the case the maps considered take values
in R¥, k € N. With B C R" being a measurable subset with bounded positive measure 0 < |B| < oo, and
with g: B — R, k > 1, being a measurable map, we shall denote the integral average of g over B by

1
(&g = Jgg(x) dx := @Lg(x) dx .

Moreover, if g: Q — R¥ is any map, U C Q is an open set and 8 € (0, 1] is a given number we shall
denote

lg(x) — gl
[glopvi= sup =r—05=,  [glos = [glogo-
sosy xsyEUBmty |x — yB 8lop 8log.o

The quantity in the previous definition is a seminorm and g is included in the Holder space C*#(U, RF)
iff [glog.y < 0. We also point out that g € C'#(U, R¥) provided that Dg € C*#(U, R®"). Furthermore,
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we shall always avail ourselves of the notation displayed in (1.2). Finally, for the sake of simplicity,
we collect the main parameters of the problem in the shorthands

A = maxyer,llay ||~
datao = (n’papla Tt ’pK9 i, 9a/K)9

data:= (data()a [al]o,al’ Y [aK]O,aK’ K)
datacz = (data’ A’ Aa ”H(’ Du)”L'(QO), ”H(’ F)”L)’(f)o)a g diSt(QO’ 6Q))7

see Sections 3—5 for more informations about the quantities mentioned in the previous display.

2.2. On fractional Sobolev spaces
Given a function w: Q — R¥, k > 1 and a vector h € R", we denote by 7,: L'(Q,RF) — LI(QW, RY)
the standard finite difference operator pointwise defined as
Taw(x) := w(x + h) —w(x) fora.e. x € Qy,
where Q1= {x € Q : dist(x, 9Q) > |h|}. Let us record the fundamentals of fractional Sobolev spaces,

see [37] for more details on this matter.

Definition 1. Let Q C R" be an open set with n > 2 (the case Q = R" is allowed as well), a € (0, 1),
p € [1,00) and k € N be numbers. The fractional Sobolev space W*P(Q,R¥) is defined by prescribing
that w: Q — R* belongs to WP (Q, R¥) iff the following Gagliardo type norm is finite:

1/p
Iw(x) —w)I”
IWllwer@) = [WllLr@) + (f T —ypar dx dy] =Wl + Wl pa-
oJa |x-

Accordingly, if a = [a] + {a} € N+ (0, 1) > 1, we say that w € W*P(Q, R¥) iff the following quantity is
finite

IWllwar) := IWllwierr@y + [DW]ia) pa-

The local variant W,"(Q, R¥) is defined by requiring that w € W*P(Q,R¥) for every open subset
Qe

A class of spaces that is strictly related to fractional Sobolev spaces is that of Nikol’skii spaces.

Definition 2. Ler Q C R” be an open set withn > 2 and a € (0, 1), p € [1, ), k € R" be numbers. The
Nikol’skii space N*P(Q,R¥) is defined by prescribing that w € N*P(Q,R¥) iff
1/p
f w(x + 1) — w(x)l”
dx
o |hl*P

[Wllner@) = [Wllr@) + (sup
|h|#0

The local variant Nl‘f) ’CP(Q, RX) is defined by requiring that w € N*?(Q, R¥) for every open subset Q € Q.

Whenever Q is a sufficiently regular domain, it is W2(Q, R¥) ¢ N®-P(Q, RF) ¢ WAP(Q, R¥) for all
B € (0, ). This chain of inclusions can be in some sense quantified, and this is the content of the next
lemma, cf. [32, Section 2.2].
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Lemma 2.1. Let B, € R" be a ball withr < 1, w € LP(B,,Rb), p > 1 and assume that, for a € (0, 1],
S > 1 and concentric balls B, € B,, there holds

IIThwlle(BQ’Rk) < S|h|® forevery h € R" with 0 < |h| < %, where K > 1.

Then w € Wh» (B,, R¥) whenever 8 € (0, @) and

n/p+p
) ”W”LP(B,,Rk) ,

c r—o\*”’
IWllws.rs,ze) < (@ — B)lIp ( K ) ot C(

holds, where ¢ = c(n, p).

We conclude this section with a fractional Gagliardo-Nirenberg type inequality, whose proof can be
found in [17, Corollary 3.2], see also [28, Lemma 2.6] for a localized version.

Lemma 2.2. Let B, € B, € R" be concentric balls withr < 1. Let0 < 51 <1 <5, <2, 1< p,q < oo,

t>1and0 € (0,1) be such that
1 6 1-6
1 =0s; +(1-0)s,, -—= -4+ —.
r q p

Then every function w € W*4(B,) N W*»(B,) belongs to W' (B,) and the inequality

c -
||DW||L'(BQ) < m [W]fl ,q;B,||DW||éVAY§71,p(Br) (2.1)

holds for constants c,«x = c,k(n, sy, $2, p, g, t).

2.3. Tools for nonlinear problems

When dealing with m-Laplacean type problems with m > 1, we shall often use the auxiliary vector
fields V,,: R* — R", defined by

Vu(2) = |2/ 72/%, m € (1, c0)

whenever z € R”. In Sections 4 and 5, we shall adopt the above definition with m € {p, p1,--- , p.}. A
useful related inequality is contained in the following

Vin(21) = Vi)l = (21 + 12272 2y = zal, 2.2)

where the equivalence holds up to constants depending only on n, m. Given the specific form of the
integrand defining #€(-), for z;,z, € R” being arbitrary vectors and B C R”" being a ball, we introduce
two quantities that will be often used throughout the paper

V(a1 22) = Vp(a) = Vp(@)P + D @IV, (1) = V@)
v=1

UO(ZbZZ; B) = |Vp(Z1) - Vp(Z2)|2 + Z (Sup av(-x)) |pr(Zl) - VpV(ZZ)Iz-

v=1 \x€B

An important property which is usually related to such field is recorded in the following lemma.
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Lemma 2.3. Lett > —1, and 71,220 € R" be so that |z;| + |zlo > 0. Then

|
f |21 + Aza — z)I" dA ~ (|z1]* + |22,
0

with constants implicit in “~” depending only on t.
Finally, the “simple, but fundamenta” iteration lemma of [41, Section 1].

Lemma 2.4. Let Z: [0,R) — [0, ) be a function which is bounded on every interval [o,R.] with
R. <R. Let e €(0,1), aj,as,y1,y2 = 0 be numbers. If

a a

L(1)) < eL(1y) +

+ orall o< 11 <1 <R,
(Ty =71 (12— T f e=nsn

then

aq + ay
R-o (R-0

Z(©) <c

holds with ¢ = c(g,y1, V).
3. Regularity theory for local minimizers of multi-phase problems

In this section we collect some well-known regularity results for minima of functional #((.), i.e.,
maps verifying the following definition.

Definition 3. With 0 < a(-) € L*(Q) and (1.1), in force, a function v € Wli)cl Q) with H(-, Dv) € Ll‘OC(Q)
is a local minimizer of functional #(-) if and only if the minimality relation #(v,B) < #(v + w, B)
holds for every ball B € Q and all w € Wé’l(B) so that H(-, Dw) € L'(B).

The details of the proof of all the results listed below can be found in [36] for the case of three
phases, i.e., H(x,z) = [|zI” + a;(x)|z]”* + a(x)|z|P?], but, as stressed in [36, Section 1], they can be
adapted in a straightforward way to an arbitrary (finite) number of phases, see also [47, Section 2 and
Theorems 7.2-7.4]. We start by discussing a peculiar feature of variational integrals with Musielak-
Orlicz structure which is the absence of Lavrentiev Phenomenon, see [31, Lemma 1] and [38, Lemma
13].

Lemma 3.1. Under assumptions (1.1)—(1.3), let w € Wllo’f (Q) be any function so that whenever B € Q
is a bounded, open set it is ||H(-, DW)|| 1+ 5y < o0 for some ¢’ > 0. Then there exists a sequence of
smooth maps {W;}jen C Cyy (L) so that it holds

W; = w in Whra+)(p)
H(, DW )l 1w = [1H(G, DW)lLis) (3.1
IH(, DW s gy = 1HC DW)|| 1o p)-

Next, a Sobolev-Poincaré inequality for multi-phase problems, [36, Lemma 2].
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Lemma 3.2. Under assumptions (1.1)—(1.3), let B, € R" be a ball with radius o € (0,1] and w €
Wl’p(BQ) be any function so that H(-, Dw) € Ll(BQ). Then there are a positive constant ¢ = c(datay, k)
and an exponent d = d(n, p, p1,- -+ , p«) € (0, 1) so that

K 1/d
w—-w
f H[x, %) dx < c[l + > 1@ 1005, 1DW] IL’;(‘gD)] ( f H(x, Dw)’ dx] . (32
BQ y=1 - BQ

Let us record a local higher integrability result of Gehring type, cf. [36, Lemma 4].

Lemma 3.3. Under assumptions (1.1)-(1.3), let B, C B, € Q be any ball with radius o € (0, 1] and
v € Wllo’cp (Q) be a local minimizer of functional #(-) so that ||H(-, Dv)llpis,,) < M for some constant
M > 0. Then there exists a positive higher integrability threshold 6, = 6,(data, M) so that

1

T+6
( J( H(x, Dv)'*? dx] <c J[ H(x, Dv) dx, (3.3)
Bg BZQ

forall 6 € (0,0,], with c = c(data, M).
The global counterpart of Lemma 3.1 is in the next lemma.

Lemma 3.4. Under assumptions (1.1)-(1.3), let B, € Q be a ball with radius o € (0,1],

Up € Wl’p(l+5°)(BQ)f0r some 6y > 0 with ||H(., DM())”LI(Bg) < My be any function and vy € ugy + Wé’p(BQ)
be the solution of Dirichlet problem

uo + Wy"(B,) 3 w > min #(w, B,).

There exists an higher integrability threshold o, = o,(data, My, 6) € (0, 6y) so that

fH(x’ DVO)H‘” dx < cf H(x, Du0)1+o'g dx,
B, 5,

for ¢ = c(data, My, 6y).
We further recall a straightforward manipulation of [36, Theorem 2].

Theorem 3. Under assumptions (1.1)—(1.3), let B C 2B € Q be a ball and v € Wlt’f(ﬂ) be a local
minimizer of functional #(-) so that |[H(:, DV)|| 1ws¢0p < M, where 6, is the higher integrability
threshold coming from Lemma 3.3. Then, whenever B,, C B,, € B are concentric balls with radii
0 <oy <0y <1, forevery 8 € (0,n) it holds that

n—
f H(x, Dv) dxﬁc(ﬂ) f H(x,Dv) dx,
By, 02 B

253

with ¢ = c(data, My, ). In particular, v € CO7(B) for all y, € (0, 1) with

1/p
[V]0y0:B2rs < col™ ( f H(x,Dv) dx) , (3.4)
B,
for c = c(data, M,,yy).
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Finally, we conclude this section with the main result of [36].

Theorem 4. Lerv € Wllo’f (Q) be a local minimizer of functional #(-), with (1.1)—(1.3) in force. Then
Ve Cl’ﬁO(Q)for some By = Bo(datay).

loc

Remark 3.1. We stress that all the constants appearing in Lemmas 3.3-3.4 and Theorem 3 are
nondecreasing in M, M, and M, respectively, cf. [36].

4. Conditional reverse Holder inequalities

In this section we prove our main result, i.e., a reverse Holder inequality for minima of #€(-) in the
spirit of those appearing in [28, 30, 31] without imposing any relation between the Holder continuity
exponents {a,}¢_,. A similar result has been obtained in [4, Theorem 4.1] for generalized multi-phase
problems with the additional technical constraint (1.6). We believe that our proof can be adapted to
more general functionals than #((-) that still preserve specific Musielak-Orlicz structure. Moreover,
since the results in [36] can be transferred essentially verbatim to the vectorial setting, our approach
can be successfully applied also to vectorial problems. Following a by now standard terminology
see [9,28-31,33,34] and in particular [36, Section 4], given any ball B,(xo) € €, we identify three
scenarios, according to the behavior of coefficients {a,(-)}|_,. Precisely, given any constant J > 4, we
shall say that #((-) is in the degenerate phase deg;(B,(xo)) on B,(xo) if

inf a,(x) < J[a,]o.w,:8,(x00"" forall v € I,,

XEBy(x0)
or #((-) is in the nondegenerate phase ndegy(B,(x)) when

inf a,(x) > Jla,lo.qe,:B,0x0)0" for all v € I,,
XEBQ(XO) h

while #€(-) is in a mixed phase mix;(B,(xy)) provided that the set of indexes I, is the union of two
nonempty subsets d,nd C I, which can be characterized as

inf ep,(xy) ay(X) < J[ay]0.a,:8,(x0)0" forall ved

inf vep, (xo) (%) > J[ayJ0.0,:8,(x0)0" for all v € nd.
The above configurations will play a key role in the next sections.

4.1. Proof of Theorem 1

For the transparency of presentation, we split the proof of Theorem 1 into nine steps. Since the
dependencies of the constants declared throughout the proof may seem quite weird, we shall provide a
detailed explanation of the behavior of such constants in Step 9.

Step 1: scaling and approximation

Letv e Wllo’cp (€2) be a local minimizer of functional #(-) and B,(x) C By,(xo) € Q be any ball with
radius o0 € (0,1]. By Lemma 3.3 we know that H(-,Dv) € L'"%(B,(xy)) for some
0, = Oy(data,||[H(, DV)llLiByxoy)» so Lemma 3.1 applies and we obtain a sequence
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Vjtjew C Cw(Bg(xo)) so that (3.1) holds with B = B,(xy). We blow up v on B,(x) by defining
B1(0) 3 x = v,(x) := (v(xp + 0x) — (V)BQ(XO))Q_l and notice that a simple scaling argument shows that
Vo € WP (B,(0)) is a local minimizer of functional

W'P(B(0) 3w Ho(w, B1(0)) := H,(x,z) dx,
B1(0)

with B(0) 3 x & a,,(x) := a,(xy + ox) for all v € I, and

K
Hy(x,2) :=||z|” + Zaw(x)le’V}.
v=1
By definition we have that
layoll=,0) = ”av”LD"(Bg(xg)) forall v € I,
[av,Q]O,ay;Bl(O) = Qav [av]O,ay;BQ(xo) forall v e IK (41)

Ho(ve, B1(0)) = 07" (v, Bo(x0)).

We stress that by construction, v, retains the same higher integrability features of v, 1.e., H,(-, Dv,) €
L'*%(B;(0)) where 0, = Oq(data,||H(-, DV)|lLi(8,,x,)) 15 the same higher integrability exponent of v.
Moreover, setting B1(0) 3 x - ¥;,(x) := (V;(xo +‘Qx) - (?,-)Bg(m)g’l, by (3.1) with B = B;(0) we have
a sequence {v;,}ar € C*(B1(0)) so that

;o — v, strongly in W'P(+%:)(B,(0))
||Hg(', D‘N"j,g)”L‘(Bl(O)) - ||Hg(', DVQ)”L'(Bl(O)) 4.2)
||Hg(" Df/j,g)”L”ﬁg(Bl(on - ||Hg(" DV@)||L1+5g(31(0))-

Forv € I, and j € N, we correct the growth of H,(-) by introducing the regularized integrands

K K
Hj(x,2) = Hy(x,2) + Y ol = 1 + ) (a0 + o) 2l
v=1 v=1

where we set 1
v . +—1 . ~ 2py ~ 2py -
0-/ «— J (1 + ] + ||DVJ’Q||LPY(BI(O)) + ||va,Q||va(1+5g)(Bl(O))) .
By very definition, it is

> fB (O)|Dv,-,£,|f’v dx + ) ()" fB DYV, |71 %9 dx — 0 4.3)
1 v=1

v=1 1(0)

Keeping in mind (1.1),, we set p := max,s, p, and define the family of auxiliary Dirichlet problems

B0+ WyP(B) 3 w > #i(w, B1(0)) := H(x,z) dx. (4.4)
B1(0)
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Direct methods assure that problem (4.4) admits a unique solution v; € ¥;,+ Wé’p (B1(0)) and, according
to the regularity theory in [51] it is

v; € Wh(B(0)), 4.5)

given that V;, € C*=(B,(0)) and 0'; > 0 for all v € I,, so Hj(-) has standard p-growth. We further
notice that functional #€;(-) is of multi-phase type. In fact (1.3) is always in force and (1.1) trivially
holds since the coefficients a,, + o, € COv(Q) verify [ave + 0plo.a,:810) = [Avlo.a,:B10) forall v € 1,
therefore Lemma 3.4 applies and there is an exponent o, = o,(data, [|[H(-, DV)I|Li(8,,(xy)) € (0,6,) s0
that

”H]("va)”L”‘Té’(Bl(O)) S CllHJ(', D\A}j’g)”Llﬂrg(Bl(O))

4.2),4.3)
< c(I1Hy G DYl + 1) (4.6)

with ¢ = C(data, ”H(, DV)HL](BQQ(X())))'

Step 2: covergence

Let us prove that the sequence {v;}en € W'2(B;(0)) N W'=(B;(0)) of solutions to problem (4.4)
converge to v,, local minimizer on B;(0) of #(,(-). By minimality it is

Hj(v;,B1(0)) < H;(V;,, Bi(0))

K

B1(0)

v=1

IA

4.3)

43 (4.2
< Ho(Ve, B) +0(j) < ’ Ho(ve, B1(0)) + o()), 4.7)
which means that (keep (4.2); in mind)

Vi — % Weakly in Wl’p(Bl(O)) and \7|aBl(O) = VlaBl(O) . (48)
The content of the previous display allows using weak lower semicontinuity and the minimality of v,
in (4.7) to get

(4.8), o
Ho(ve, B1(0)) < FH,(V, B1(0)) < liminf #,(v;, B1(0))
< limsup #,(v;, B1(0)) < limsup #;(v;, B(0))

j—ooo j—ooo

Ho(V)0, B1(0)) + Z f T DV ™ dx}
B1(0)

< limsup
j—oo =1

4.3)
< Ay (v, BI(O)).

This implies that #(,(V, B,(0)) = #,(v,, B1(0)), so using also the strict convexity of z — H,(-,z) we
obtain

7 =v, ae in Bi(0) and lim #,(v;, B,(0)) = H,(v,, B;(0)). (4.9)
Jj—
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Step 3: fractional Caccioppoli inequality

The minimality of v; in Dirichlet class ¥;, + Wé’ﬁ (B1(0)) guarantees the validity of the Euler
Lagrange equation

f (0Hj(x,Dv;),Dy¢) dx =0 (4.10)
B1(0)

for all ¢ € Wé’ﬁ(Bl(O)). We take any vector & € R" \ {0} so that |4 < 271°, a cut-off function n €
C?(B1(0)) so that
Lpy50) <1 < 1py00)s \Dnf* +|D°nl < 1

and test (4.10) with ¢ := 7_,(17°7;v,). Exploiting the integration by parts formula for finite difference
operators, we obtain

0 = f (1,0H (x, DVj),D(I]ZTth» dx
B1(0)

f n*(ty0H (x, Dv;), 7, Dv;) dx

B1(0)

+2f Nt KTh0H j(x, Dv;), Dny dx =: (I) + (1I).
B1(0)

Let us introduce quantities

1
- : . 2 2 2\ 2py—
6 T I‘}’g[n @y, Av,j T (”av,Q”Loo(Bl(())) + [av,g](),a;gl(o) + (O"]/) ) pvp

and set for m € {p, p1,--+ , p}
1
D(h) := [IDv i(x + h)* + |Dv ,~(x)|2] , G(h) := f \Dv;(x + A" >Dv;(x + Ah) dA.
0

Notice that there is no loss of generality in assuming that D (h) > 0, otherwise both terms (I)—(II)
identically vanish. Moreover, consider a nonnegative, radially symmetric mollifier ¢ € C*(B;(0)),
so that [|¢ll.10) = 1, let ¢y := |A]™"¢(x/|h]) and regularize for all v € I, coefficient a,,(-) as done
in [30, Section 5] via convolution against {¢y,}-o thus getting alvhl = Ay, * Py € C7(B73(0)). The
newly defined coefficients have the following features:

||Cl|vh|||LW(B7/8(0)) < llavollz=; o
| () = o (O] < 4ayolo.a,:z,0) 1™ forall x € By5(0), (4.11)

IDa, | < clayoloa,solhI™"

with ¢ = c(n). This will be helpful in a few lines. Finally, we record that whenever y > 1 and
G € L (B1(0),R"), F € W(;’V(Bs/ﬁ(O),R”) and |h| < 27 it is

1
(1,G, F) dx = —|h| f (G(x+ /U’l), Bh/|h|F> dA dx, 4.12)
0

B,(0) B1(0)
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see [30, (5.29)]. Now we are ready to estimate terms (I)-(I1I). Notice that
M = p f X Tu(IDv;IP2Dv)), 7,Dv;) dx
B1(0)
+ Z pvf 1 (ay (%) + O'E)(‘rh(lejl”V_zva), T, Dv;) dx
=1 B1(0)

+> f 0 (avg(x + ) = @y (0)) IDv,(x + )P Dv;(x + h), 7yDv;) dx
B1(0)

v=1

= Dy + @2+ Ds.

Via standard monotonicity properties and Lemma 2.3 we bound

22) 5 5
Mr+dy =2 ¢ 1tV (Dv))l” dx
B1(0)

+e ) f (a0 (x) + TNV, (DY) dx,
B1(0)

v=1

with ¢ = ¢(n, p, p1,- - , p«), while by Young inequality and standard properties of translation operators
we have

K
. 2 Pv—l_d
@ < e Y o [ 7D P00y dx
V=1 B1(0)
< 27 p2 2
< € n"D(h) > |t,Dv;|” dx
B1(0)
c K
2a, 2 2py—
+= me[a%g]oﬂv;&w) f \Dv,[P7 dx
v B1(0)
2.2)

clh 26 K ~
< csf I]2|Tth(va)|2 dx + i Zf APy plDlezpv_P dx,
B1(0) Bi(0)

viJ
E
v=1

for ¢ = c(n, p, p1,- -, Pe» k). Now let us expand term (II):
a = 2pf T]Tth<Th|DVj|p_2DVj, Dn) dx
B1(0)
+2 Zp‘,(r;f ) nTth<Th(|DVj|pV_2DVj),DI]) dx
v=1 Bi(

+2ZPV f Nay o ()T, {T4(IDV; P> Dv)), D) dx
- B1(0)

v

23" p, fB (@t 1) = ) (1D 7Dy, D)
y=1 1

= (D), + (D), + (I + (I1),.
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Set 1, := 1if p > 2 and 1, = 0 when p € (1,2) and estimate via Lemma 2.3, Young inequality

and Holder inequality with conjugate exponents (3 ]

3 in the superquadratic case and by (4.12),

Holder inequality with conjugate exponents ( ZL) Jensen inequality and standard properties of

translation operators in the subquadratic case:

D), < 1,/dDy|+ (A =1 H)IAD,]
2 p2 2 cl, 2 p2 2
< €1, n"D(h) 7 |t,Dvj|” dx + — |Dnl*D(h) = |tpv;l” dx
B1(0) € JBi0)
+elhl(1 - 1,) f 19,001 |(12nF + 1% v, + DDy, | dx
B1(0)
(2.2)

5 ) cl plhlz »
< ce nlthV,(Dv))l~ dx + |Dv;|” dx
B1(0) € B1(0)

p-1

» 1/p
+clhl(1 - 1,) [f Igl,,(h)lﬂ[f)l dx] [f lTv;l? dx)
35/(,(0) 35/6(0)

+clhF(1-1,) |gp(h)|2@(h)¥ dx

Bs6(0)

e
csf 7tV (va)l dx + Lf |Dv;lP dx
B1(0) € JB0)

2p-1) 2-p

+clhP(1=1,) ( f 19, ()| dx) ( f D(h)? dx]
Bs;6(0) Bs;6(0)

hP
< cef n 2\, V (va)l2 dx + Lf |Dv;lP dx,
By (0) € I

for ¢ = c¢(n, p). Now we abbreviate

IA

(D3 := ZPVU;L(O) nThvj<Th(|va|”V_2va),Dn) dx;
1

(II); = ZPvf nav,g(-x)Thvj<Th(lDlepv_ZDVj)aDn> d-x’
B1(0)

and bound by means of (2.2), Lemma 2.3, Young inequality, Holder inequality with conjugate

exponents (ZPV L 212:1;‘_’2) when p > 2 and (p, p%l), (Zp,, D, 2[27’”17 1) (22(2 p), 2§Vp )1fp € (1,2) and

Jensen inequality,

IID31 < L,IAD3] + (1 = 1,)|ADy|

v\2

2 2 C]IP(O-J‘) 2 2py—p- 2
< €1, n71taVpy(Dv))l” dx + ——— |Dnl~D(h)™ > dx
B1(0) & B1(0)

1
+clh|(1 — ]l,,)of}f f |Dv;(x + /lh)lpv_ll‘rhvjl dA dx
Bs;6(0)

+clhl(1 - ]lp)0§f nDnll9,, (W, Dv;| dx
Bi(0)
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IA

2 2 C|h|2(0-}/)2 ’
8f nlthVy(Dv))I© dx + —f \Dv; PP dx
B1(0) e B1(0)

1
+clh|(1 - ]lp)f f [(g;)2|va(x + AR)PP P71 4 Dy (x + /lh)|1>—1] Iyl dx
Bs/6(0) YO

2(py-1) 2-p

2py-p . 2py-p
+c|h|2(1—11,,)(o-;)2[ f |g,,v(h)|25£f’ dx [ D(h)" dx)
Bs;6(0)

Bs;6(0)

clhl? _
= 8f eV, (Dv)I* dx + Lf Ail;v P|Dv [P dx,
Bi(0) e Jpo

with ¢ = ¢(n, p, p,). Summing the above inequality for v € I, we can conclude with
>l
v=1
clh)?

K
Ke f Pl V(D) dx + —Z f AZP\Dy PP d,
B1(0) 2 B1(0)

v=1

|(ID), |

IA

IA

for ¢ = c(n, p, p1,- - , P> k). In a similar way, we control

D3] < L,JdD5|+ (1 = 1,)|dDy3]

@.11), ) )
< ce |t V,(Dv))~ dx
B1(0)

2
clpllayoll; <z,

f IDRPD ()" |y P dx
2 Bi(0)

2py—p

—1 p-1
el — 1)l f [[av,g]gml(o)@(h) = D) [, dx
Bs6(0)

1
+c(1 = TpMAlllaroll7e s, 0 f f |Dv(x + AR P N ryv)| dA dx
0

Bs;6(0)

1
+c(1 — ]lp)lhlf f |Dv;(x + /U’l)|p_1|Tth| dA dx
Bs6(0) VO

2(py-1)

5 5 2 2py-p
+c(1 = 1p)ln| ”aV,Q”L"O(Bl(O)) 19, (DI dx
5/6(0)
2=p
Yoyp 2py-p ,
[ D) 2 dx) + c|h| |gpy(h)||7'hvj||Da|h|| dx
Bs6(0) Bs6(0)

(4.11)5

<" o [ PO aven™ [ iy ax
B1(0) B1(0)

Coil+a, 2 2 2p—
+;|h| @ (”av,g”Lw(B](o)) + [aV’Q]O,QV;Bl(O))f |Dv|"P"P dx
B1(0)

1
v 2 2py,—1
+clh|” f f (01 45,0 DV (x + AWPP )| dA dx
Bs;6(0) VO

(4.13)
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1
+clh|®™ f f IDv;(x + ARyl dA dx
Bs/6(0) JO

< ce f IV (Dv )l dx + clh|* f |Dv | dx
B1(0) B1(0)

h l+a, B
LAl f A PDy PP dx, (4.14)
€ Bi(0)

with ¢ = ¢(n, p, p,). Summing the inequalities in the previous display we obtain

D < > Iany|
v=1

IA

ce f eV, (Dv)I* dx + clhl® f |Dv;|P dx
B1(0) B(0)

£ vJ

clh? & -
L4 > f AZP|Dy PP dx,
= JB0

for ¢ = c(n,p,p1,--- , pi- k). We stress that when dealing with terms (II))-(II); we assumed that
|Dvj(x + Ah)| > O in the sixth and in the fifth and sixth line of displays (4.13)—(4.14) respectively.
There is no loss of generality in this as otherwise the integrals in such lines would vanish identically.
Concerning term (II),, we have

K

pv—1
|(IDy| < CZ[av,g]O,av;Bl(O)|h|avf nDylltyv;|D(h) 2 dx

Bs6(0)

2py—p-1

v=1

X p-1
¢ ) I f [[av,g]é,m;&(o)n@(h) 7+ D)7 1Dl |l dx
- By (0)

IA

IA

K
clhl? f IDv,I” dx + clhf >’ f AP Dy PP dx,
B1(0) B1(0)

v,J
v=1

with ¢ = c(n, p, p1,- - , p«, k). Combining the content of all the previous displays and suitably reducing
the size of € > 0 we obtain

f Pl V,(Dv)* dx < clh® f |Dv;|? dx
B1(0)

B1(0)
+lh Y f A2 Dy PP dx, (4.15)
ey : (1)

for ¢ = c¢(n, p, p1,--- , P, k). At this stage we treat separately the superquadratic case p > 2 and the
subquadratic one p € (1,2).

Step 4: Higher integrability via interpolation - p > 2
From (2.2) and (4.15) we obtain

f lt,DvjlP dx < clhl® f
B3/4(0) B1(0)
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with ¢ = c¢(n, p, p1,-++ , p«, &), so we apply Lemma 2.1 to deduce that Dv; € Ws/p’P(Bm(O), R™) for all
s € (0,20), for simplicity choose s = 9, with

2py=p
DV llysipyaoy S € nmm%m+ZM¢mmwmm, (4.16)

v=1

with ¢ = c(datay, k). Recall that functional #(;(-) is of multi-phase type so Theorem 3 applies and
vj € C%(B,5(0)) for all y, € (0, 1) therefore for any 0 < y < yy < 1 and ¢ > 1itis

C[Vj]os)’o;Bm(O) (3.4)
(q(yo —x)'4

with ¢ = ¢(n) so we can apply Lemma 2.2 to get

o0, 4.17)

[vj])(,q;Bz/3(0) =

1-6,
||DVj||L’(Bl/z(0)) < C[VJ]Xqu/3(O)|| lelwx/p,p(Bz/;(O))

(4.16) -8 M
—U §
S C[v ]Xq 32/3(0) ||Dvl||LP(Bl(O)) + ||AV /va”Lva p(B (0)) (4'18)

v=1

where y < yo € (0, 1), g > p are arbitrary numbers, ¢ = c(datay, x, ¢, 0;,t) and it is

1 6 1-6
1=0x+(1-6)(1+s/p) and -=-2+ L (4.19)
rq p
which in turn yields that
s/p 1 —x
0,=60,(y)=—" 5 1-9=—"X
: 1) I1-x+s/p : 1-x+s/p
(4.20)
qp _q(p(l =x)+5)

R =t sta-x)

We stress that 0, = 0,(p, ay, -+ , @y, x) 1s increasing with respect to y and, keeping in mind that g > p,
exponent t = #(p,q,a, @y, - , Q. Y) 1s increasing with respect to both, y and g. Next, we fix 7,7, €
[1/2,2/3], 71 < T, and, following [28, Section 3.6] we set o := (1, — 71)/4 and, for a finite § C N,
take a covering of B (0) with a collection of balls {B,/>(y,)}.c¢ made by || = c(n)(7, — 7;)™" balls
so that y, € B (0) for all ¢ € ¢. Notice that such a covering can be chosen in such a way that the
finite intersection property is satisfied, in the sense that each doubled ball B,(y,) intersects at most
8" of other doubled balls from the same family. We further scale v; on every ball B,(y,) by defining
V(%) 1= 07 V(0 + 0X) = (V),00) @(X) 1= ay,(y, + ox) and H,(x,2) = |12 + 25, [(x)lzlpV] Since
v; 1s the solution of (4.4) and therefore it is a local minimizer of functional #(;(-) on B,(0), it is easy to
see that v, minimizes functional

W'P(B,(0)) > w — min H,(x, Dw) dx,
B1(0)

and, keeping (4.5) in mind, we see that (4.15) holds for v, as well. Recalling that
[vt] .4:B2/3(0) — =0 - n/q[vJ])(fIquB(yL)’
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we can scale back to v; for getting

0 (-0
, ;9,@—1)+n(1——1— ) 01t
. < q p .
f . |IDv, dx < co v, X-4:B201300)
a2

(1-0)r
T
: f |Dv0|p+ZA2pV Iy | dx
Bo(y)
(4‘1<9)2 C[v]])(qua/z(}’
= o101 (1=x)
(1-6))t
K P
. vo|P + " C|Dy |t X , .
Dv, |’ AP Dy | d 4.21
a'(.YL) v=1 ’

where it is ¢ = c(datay, x, ¢, 81, t) and we also used that

lla/ 12810 = llavolli=, x>
L ( l( )) v,0 ( (})) fOI‘ all v c IK,

[a/)o.0,:8:0) = T [avolo.a,:B, ()
which yields that
2p,
1613, 0 + [0 B, iy00 + (O < AL

(legal by means of

Summing (4.21) for ¢ € ¢ and using the discrete Holder inequality ( 5.7 00, ))

(4.19),), we obtain

vV X = V X
Dy;I' dx < Dy, d
BT] (0) LEg Bo‘/Z(yL)
ot
<
- 0-191(1—)() Z[ J]X 4:B2e/3(00)
eqg
(1-6p)t
P
: f |va|p = ZAZ”V P\Dv; | dx
By (y.)
o1
q
C
< - 14
- O'tgl(l_/\/) Z[vj]XﬂqQBZ(r/S(yt)
eqg
(167 )t
K P
12 [ w3 Az uer) ax
LE([ rr(}) y=1
(1-6))t
c[vj]elt —
<

,4:82/3(0
et [ o s S rowprr o
To = T1)7 B, (0)
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for ¢ = c(datay,y, q,0:,t). Here, we also used that B,(y,) € B;,(0) C B,;3(0) and that R" > w +
[vg])q(,q;w is superadditive as a set function. All in all, using also (4.17) and (3.4) we get

C[V]] Q@py=p)1-6))
Xq:B2/3(0) 1-6,
1DVl ., o) S EEE ) 1DVills, o) + Z:‘HAV DVl s, 0
L V=
C[VJ]O ,v05B2/3(0) 1-9 @py—p)(1-6})
<o o
(1, — 7)1~ ”DV]”LP(BTZ(O)) + Z lllAV-]va”szv By O)
c# (v, B1(0))/P @py-p)i-))
J\" ] 1-6,
< =y 1Pl 0 * ZIIAV,valle,,V o] 4.22)
v=1

with ¢ = c(data,||H(:, Dv)||L1+ag(Bzg(xO)), 00, Y0 X4, 01,1). Now fix any d > maX,er, 2p, — p. A
straightforward computation yields the chain of implications:
p p

s
Zd—p - 91>1_ﬁ S E—d(1—91)>0

x>1-

which in turn implies that we can choose a suitable lower bound on ¢ so that

q>2d>ﬂ = t>d.
p—dl-6)

This means that in (4.22) we can use the interpolation inequalities:

1-4,
”va”Lzl’V*I’(BTZ(O)) < ||va||L’(BT2(O))||DVJ”L”(B 0))°

where it is
o= A o Ptdp=2p) g g = 2P
2p,—p t p T Qp-pi-p) " @py-pt-p)
for all v € I,, to have
IDv;lleis, 0y < JE—— (v, Bi(0))'"
ng (V], 1(0))91 /p <2pv—pp><1—01> Yl (2pv—p)l(71—9.m
(1) — 71)0 (=0 Z:‘AV}. 1Dvill s, oplIPVill s, oy > (4:23)
where
Y, :=Q2p,—p)1 -0 - 2a,). (4.24)
At this stage, we can fix ¢ = 4d, notice that
s s(4d - p)
>y = 1 - ]l-———|} = VY, /p<1 4.25
X > X maX{ 2d_p,rgg§( 8d(p— ) /p (4.25)
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for all v € I,. Furthermore, fixing any u € (0, 1] and in accordance increasing further the value of y;, it
is

sup(4d — p) ) -
— p)2n(4d — p) + 8upd) || -
_ me(mupv—px1—eo)<

velx p(p-Y,)

X2 = max {Xl,max(l -
(py

vel,

(4.26)

From (4.25) we see that we can apply Young inequality with conjugate exponents (Yﬂ, p_LY) to get

c

1/
0~y 20 BIO)TE

1
1DVl o) < E||va||Lf(B,2(0))+

PO+ Cpy-p)i=0py 2P0

< vy Bi0) T AT

v,J
+Z 6110 ’
v=1

(to—11) 7%

for ¢ = c(data,||H(:, Dv)|| Lmsg(BzQ(xO)),p,d). Such a dependency can be justified by the fact that all
the parameters coming from Lemma 2.2 ultimately depend only on (datay, u,d). The content of the
previous display legalizes an application of Lemma 2.4, so we obtain

1DVl p0p < (v, Bi(0)'”

POy +2py—p)i-gay  EPy=P)1=01)

ve Y Hiw, BIO) T meT AT “@.27)
v=1

Wlth Cc = C(data, ||H(', Dv)||L]+6g(BZQ(XO))’ /.l, d).

Step 5: Higher integrability via interpolation - 1<p<2

We jump back to (4.15) and apply Holder and Young inequalities with conjugate exponents (% ﬁ)
to get

2-p

(2.2) p/2 -
f Dl dx < c( f T Vp(Dv ) dx] ( f 7Dy dx)
B1(0) B, B,(0)

< clh f |Dv;|” dx
Bi(0)

K p/2
+clhf?| > f AP\ Dy PP dx [ f D7 dx)
v=1 YBi10) Bi(0)

K
clh|? f D" dx + clhl™ >’ f AP\ Dy, PP dx,
B1(0) Bi(0)

v=1

2-p

2

IA

with ¢ = ¢(n, p, p1,- -+ , p«, k), which by Lemma 2.1 yields that Dv; € W*?(B,3(0), R") for all s € (0, 6).
At this stage, upon choosing s = ¢/p, the procedure remains identical to the one described for the
superquadratic case, so (4.27) holds also when p € (1, 2).
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Step 6: Conclusions

Notice that A,,; — A, as j — oo, where

1
— 2 2 2pv—p
Av = (”av,Q”Loo(Bl(O)) + [a‘CQ]O,ay;Bl(O)) P . (428)

Moreover, we can use (4.8), (4.9) and weak lower semicontinuity for passing to the limit in (4.27) and
obtain

!
IDVollis 0y < cdy(ve, B1(0)) /P

K P01 +@py—p)1-0)Ay W
+C§ %Q(Vga Bl(o)) Pp=1y) Av pv

v=1

Scaling back to v, using Holder inequality on the left-hand side to control the L?-average of v (keep in
mind that r > d) and setting

Y= p91 + (2Pv - P)(l - 91)/1\/
b P(P - Yv)
2py, = p)(1 = 6))
)= 4.2
; Y, (4.29)
_21-6)
v o p _ YV D)
we obtain
1/d 1/p
[f |Dv| dx) < C(J[ H(x, Dv) dx)
'Bo/2(x0) Bo(x0)
K lﬂl
te Z AL ( H(x, Dv) dx) , (4.30)
v=1 Bo(x0)

with ¢ = c(data, [|[H(-, Dv)|| L1 (Byy(x0))s Mo d). Now notice that the choice of parameters made in Step 4
and definitions (4.24)—(4.29) yield that
2p,—p)(1-6) 1 @2

Y= +— > 0,
: p(p-Y,) p

therefore with these expansions (4.30) becomes
2(py—p)(1-61) | 1

1/d 1/p
( J( |Dv|? dx) < c( H(x, Dv) dx)
Boy2(x0) By (x0)
p(p—Yy) P

+e Z Al ( H(x, Dv) dx) , 4.31)
v=1

'By(x0)

Wlth Cc = C(data, ||H(', DV)||L1+63(BQQ(X()))’ /.l, d).
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Step 7: Degenerate phase
If degy(B,(xp)) is in force, we first set u = 1/2 to remove it from the dependencies of the constants

as it will not have a role in this scenario. Furthermore, (1.1) and a quick computation show that

llayllz=,cx0) < 40" [av]0.0,:B,(x) + 1n(f )av(x) (4.32)
0

s0 (4.32) and the definition in (4.28) yield that

A‘Z/l’v—P < 4]292(1v[ay]%’a‘/3 (433)

5 g(x())’

which means that we can rearrange (4.31) as

1/d
[ J[ \Dv|? dx] < c( H(x, Dv) dx]
Bo/2(x0) B, (x0)

n(py—

+CZJF e

1/p

FV(I’V P)

L‘(B (x0))

1/p
. ( H(x, Dv) dx]
(x0)

1

(1.3) ; /p

< o H(x,Dv) dx ,
Q(XO)

where I' := max,er, I, and ¢ = c(data, |[H(:, Dv)||L1+5g(Bzg(xo)), d).

Step 8: Nondegenerate/mixed phase

Assume that either ndeg;(B,(xy)) or mix;(B,(x)) is in force. Keeping (4.32) in mind, this means
that either (4.33) never holds or that it is verified only for all those indices belonging to d. So it is
convenient to replace (4.33) with

2p,-p 2 2
AP <20 (||av||L°°<Bg<xo>> + [0 i,00)

so we can conclude via (4.26) that

1/d 1/p
( Jf |Dv|? dx) < c[ H(x, Dv) dx)
Boy2(x0) 'By(x0)

(pv=ply l/p
rg Y WHC DV f H(x, Dv) dx

v=1

IA

l/p
CQ_”( H(x, Dv) dx) ,
Bg(x())

with ¢ = ¢(data, ||av||L°°(32g(xo)), lH(, Dv)||L1+5g<Bzg(x0)),u, d).
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Step 9: Dependency of constants and their stability under blow up

In Step 1 we stressed that the functional #¢;(-) preserves the multi-phase structure, therefore all the
results listed in Section 3 apply. In particular, given that we are working on approximating, rescaled
problems, we are interested in studying the stability of the constants appearing in Theorem 3 when it
is applied to the sequence {v;} ;e solutions to (4.4) with respect to scaling and passage to the limit as
J — oo. As already pointed out in Step 1, we notice that by Lemma 3.3, the original local minimizer
v of functional #(-) is locally more integrable, in the sense that whenever B,(xo) C By (xo) € Q is
any ball with radius o € (0, 1], v € W'7*%)(B,(xo)) for some 6, = 6 (data, |H(-, DV)|i(y, (). Such
information is directly transferred on the blown up map v, defined at the very beginning of Step 1,
which now satisfies Hy(-, Dv,) € W"!*%(By(0)), where 6§, = §,(data, [[H(:, DV)||Lip,,(x,) is of course
the same higher integrability threshold of v. By (4.2); and (4.3) it is

IH (-, DV i)l 8, 0y) < 1Ho (s Dv)llLis 0y + 1

_ (4.34)
”Hj(', DVj,g)||L‘+5g(Bl(0)) < ”Hg(', DVQ)”LHﬁg(BI(o)) +1,

for j € N sufficiently large and, clearly, up to relabel there is no loss of generality in assuming that
(4.34) holds for all integers j > 1. Looking at v;, solution to (4.4), we see that a global higher
integrability result applies by means of Lemma 3.4 with 69 = J,, cf. (4.6) and, by Remark 3.1 the
dependency of ¢ from M, is nondecreasing and always appears in the form

pbyv=p

[a,,,g]o,(,v;gl(o)MO b for all v e I,, (4.35)

where we have also exploited that

[ave + 0 o.0y:810) = [Gr0l0.0,:8,0)- (4.36)

Precisely, by (4.34); it is My := |[Hy(-, Dvo)llri(s,0y + 1, s0 scaling (4.35) back on B,(xp), we can
conclude that

pv=p pv=p

_npy=p)
[avoloamoMy” = 0" 7 [avloaB,o0 (||H ¢, DVl B, + 1) !
(1~3) I’vp—P
< lavloa,:B,60) (||H(', D)l s,xo) + 1) . 4.37)

Recalling that ¢ is nondecreasing in M, we deduce that

(4.35),(4.37)
c(data,My) < c(data, [H(, DV)Lisy00)- (4.38)

The same procedure applies for the constant appearing in the local higher integrability result of
Lemma 3.3 with M = M, as by minimality it is

_ (4.34),
”Hj(',DVj)”Ll(BI(O)) < ”Hj('aDVj,Q)”Ll(BI(O)) < ||Hg("Dv9)”L1(B|(O)) +1,

and the dependencies of the constants from Gehring Lemmas have been fixed. We further stress that,
looking at the proof of Gehring Lemmas, [36, Lemmas 4 and 5], [43, Chapter 6] and [42, Theorem 3
and Proposition 1, Chapter 2], we can exploit (4.38) to make sure that the higher integrability thresholds
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0, and o7, depend ultimately on (data, [[H(:, DV)I|11(8,,(x))- From Remark 3.1, we see also that the all
the constants appearing in Theorem 3 are nondecreasing with respect to M,, with the (obvious) choice
M, = |Hy(-, Dvo)llp1+ss (g, 0y + 1. In fact, Lemma 3.4 renders

B (4.34),
||Hj(',DVj)”LlHTg(Bl(o)) < C||Hj(‘,DVj,g)”Ll*ﬁg(Bl(o)) < CllHQ('aDvg)||L1+‘5g(Bl(0))+C7

for ¢ = c(data, ||H(, Dv)||L1(BZH(xO))), cf. (4.38). Again, keeping (4.36) in mind, from [36] we have that

this dependency is of the form [a, ,lo,.8,0M, " forall v € I, so scaling back we get

ovzp n(py=p) byv=p
[av,g]O,av;Bl(O)Mg g = de*m [av]O,av;Bg(xo) (”H(, Dv)||L1+‘5§(BQ(x0)) + 1) !
(1.3) pop
< @ doasy0 (G DVpsoeg, o + 1) 7
so we can conclude that c(data, M,) < c(data,||H(-, Dv)|| Lnﬂsg(Bzg(xo))). Moreover, looking carefully
to the arguments developed in [36], in addition to those described above, another kind of dependency
appears that seems to be dangerous for our blow up procedure. In fact, suitably adapting [36, Corollary

3] to our framework, we have constants that are nondecreasing functions of

[avoloam@lVill, oo forall veIo if p(l+oy) <n (4.39)
[ay,g]o,av;gl(())[vj]ng;fBS/é(o) forall v € I, if p(1+0y,) > n,

where o, = o4(data, ||H(:, Dv)llLis,,x)) 1s the higher integrability threshold given by Lemma 3.4,
Ag:i=1- m is the Holder continuity exponent given by Morrey’s embedding theorem and we also

used (4.36). Nf)w, if p(1 + o) < n, we recall from the proof of [36, Lemma 6] that

c Hi(x,v;) dx

p
Vil (56000

B1(0)
< c Hix,Dv;—Dv,,) dx + CJ( Hi(x,V,) dx
B1(0) B1(0)
_ (4.3),(4.34),
< o4 HxDv) dx < c(IHyDvllisop + 1)
B1(0)

where ¢ = c(data, [|H(:, DV)||Li(8,,(x)) behaves as described in (4.35) so no issues about it arise, see
also [30, proof of Theorem 1.1]. Here, we also exploited the minimality of v;, that by construction it is
(V;0)B,(0) = 0 and Poincar€ inequality (3.2). This means that scaling back to B,(xy) in (4.39); we have

pyv=pP

[@yoloam VAT o) S Claneloaso (IHoC DVl + 1) *

_ pv=p
@ _n(py=p)

co™ 7 lay]o.a,:B,x) (”H("DV)HLI(BQ(xo)) + 1) 3

) py=p

(1.3 pv=p
< c(IHC DV lipg,n +1) 7 (4.40)

for ¢ = c(data, [|[H(:, Dv)||zi1(8,,(x)) (Which, as already mentioned, has been treated in (4.38)). On the
other hand if p(1 + o) > n, via Morrey embedding theorem, Lemma 3.4 and Poincaré inequality we
have

Viloagsse < cllvillyreoeos, o)
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S C”Dle|Lp(l+u'g)(35/6(0)) + Cl|D‘7j’g||Lp(l+o'g)(35/6(0)) + Cl|‘7‘]"Q||Lp(l+u'g)(BS/6(0))
~ 1/p
< C”Hj(a va’g)llLH‘rg(B](O))
(434),

) 1/p
S C(”HQ(', DVQ)”LH‘)&'(BI(O)) + 1)

for ¢ = c(data,||H(:, DV)”LI(BzQ(xO))) and we also used that (V;,)g,0) = 0. With this last inequality at
hand, we can jump back to (4.39), and conclude as in (4.40).

Remark 4.1. We stress that the constants appearing in (1.4)—(1.5) are nondecreasing with respect to
”H(, DV)HLH‘SS'(BQQ(XO)) and to J.

5. Applications to Calderon Zygmund estimates

In this section we provide Calder6n-Zygmund type estimates for local minimizers of the
nonhomogeneous functional G(-), according to the following definition.

Definition 4. Let H(-,F) € L' (Q), 0 < a(-) € L*(Q) and (1.1),, (1.8) be in force. A function

loc

u € Wllo’c1 (&) with H(-, Du) € Llloc(Q) is a local minimizer of G(-) if and only if the minimality relation
G(u, B) < G(u + w, B) holds for every ball B € Q and all w € WS’I(B) with H(-, Dw) € L' (B).
5.1. Proof of Theorem 2

The outline of the proof of Theorem 2 is analogous to the one of [4,29,31], therefore we shall follow
the same steps indicated there and point out only the relevant changes.

Step 1 - Existence and uniform higher integrability

Existence and uniqueness for minima of functional G(-) follows by direct methods under the
minimal assumptions 0 < a,(-) € L¥(Q) for all v € I, and H(-,F) € L'(Q), that are in any case
guaranteed by (1.1), (1.8) and (1.9), cf. [29, Remark 1.2] and Definition 4. Moreover, a
straightforward manipulation of [31, Theorem 4] assures that there is a positive higher integrability
threshold 6, = 6, (data, A, [|H(:, Du)l|.1,) <y — 1 so that

H(-, Du) € L7 (€) (5.1)

and whenever B,(x() € Q is a ball with radius o € (0, 1] itis

1

T+
( J( H(x, Du)'*? dx) < c H(x, Du) dx
Boj2(x0) B, (x0)

1

T+6
+c( H(x, F)'*° dx] (5.2)
'Bo(x0)

for all 6 € (0, 6,] with ¢ = c(data, A, [|H(-, Du)llLi(8,(x))» ¥)-
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Step 2 - Exit time and covering of level sets

Let Q, € Q, € Q be three open set as in the statement of Theorem 2 and B, € ), be a ball with
radius r < r,, a threshold that will be fixed in a few lines. We recall that (5.1)—(5.2) and a standard
covering argument render

IH (-, D)l < c(data, A, [IH(, D)l s 1HC, F)lly gy, ¥s dist(Qo, 9Q)). (5.3)

We apply the exit time and covering argument as in [29, Theorem 1.1], which in particular yields the
collection of balls {B,} = {B, (x,)} = {5B,} as denoted in [29, (4.9)—(4.11)]. All such balls are contained
in B, € Q.

Step 3 - Comparison, first time

We construct a first comparison problem. Precisely, we let v, € u + Wé’p (4B,) be the solution of
Dirichlet problem

u+ Wy (4B) 3 w > min #(w,4B,), (5.4)

whose existence and uniqueness is guaranteed by standard direct methods. By minimality, v, satisfied
the integral identity

0= J[ (0H(x, Dv,), Dy) dx, (5.5
4B,

for all ¢ € W(;’p (4B,) so that H(-, Dy) € L'(4B,). Moreover, by the minimality of v, in Dirichlet class
u+ Wé’p(4Bt), (5.3), Lemma 3.4 and Remark 3.1 we have

J[ H(x,Dv,) dx < f H(x, Du) dx
4B, 4B,

(5.6)
J[ H(x,Dv,)""¢ dx < cf H(x, Du)'*¢ dx,
4B, 4B,

for c,0, = c,0,(data,,) and o, € (0,0,). To get this dependency, motivated by (5.3) and (5.6);, we
choose in Lemma 3.4 My = ||H(-, Du)||;1(,)- Moreover, by Theorem 4 we have that v, € Cll(f °(4B,) for
some By = By(datay) and, according to Theorem 1, reverse Holder inequalities (1.4)—(1.5) hold for all
d € [1,00) and any u € (0, 1] within 4B,. Extending u — v, = 0 in Q \ 4B, and recalling the definitions
given in Section 2.3, we see that we can proceed as in [29, (4.17)] to get

f V(Du,Dv,) dx < csf H(x,Du) dx + CEJ( H(x, F) dx, 5.7
4B, 4B, 4B,
forcEc(n9A’p9pl9"'apk’K)anchC(n’A’p’pl’“.’pK’K98)'

Step 4 - Comparison, second time

We define

a’, = sup a,(x) forall veI, (5.8)

Ly oy
x€2B,
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and notice that Theorem 4 yields that v, € W (2B,), therefore setting
R'S 2> Ho(@) = [ + ) al el
v=1

it trivially holds that H,(Dv,) € L'(2B,). This means that we can consider the solution w, € v, +
W'r(2B,) of the second Dirichlet problem

v+ W,"(2B) > w > min | H,(Dw) dx. (5.9)
2B,

By minimality, w, satisfies

f (O0H,(Dw,), Dp) dx =0
8 (5.10)

J{ H . (Dw,) dx sf H,.(Dv,) dx,
B, B,

and in particular (5.10), holds for all ¢ € Wé”’ (2B,) so that H.(Dy) € L'(2B,). After extending
v, —w, = 01in Qg \ 2B,, we see that the function v, — w, is admissible in both (5.5)—(5.10); so standard

monotonicity arguments yield

f o(Dv, Dw,;2B,) dx < CJZ( (0H,(Dv,) — 0H,.(Dw,), Dv, — Dw,) dx
B, B,

G)L10n ch (0H,.(Dv,)) — 0H(x,Dv,), Dv, — Dw,) dx
B,
< CVZ:; -ﬁz la;’, — a,(x)||Dv |~ |Dv, — Dw,| dx
< CVZKI (%%c av) ‘f&leLl”V_llet — Dw,| dx
= CZK: @,, (5.11)
V=1
for ¢ = c(n, p,p1,--, ps, k). Here we employed again the definitions given in Section 2.3. In the

following we shall introduce three new positive constants, which may vary from line to line, but will
always have the same dependencies:

® Cpng = Cnd(l’l, A,papla ot ’pK,K);
® ¢y = cn(datac,);
o cq = cq(data, A, [[H(, Du)llpag,)s 1HC, F)lly@y)s Vs dist(€o, 9€2)).
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Step 5 - Estimates in the nondegenerate phase

Assume that ndeg;(2B,) is in force for some J > 4 that will eventually be fixed as a function of
(n, A\, p, p1, -, P, k). In this setting, it is

4a,
WOl veT. (5.12)

(0%
gscay < 40" [ay]o.a, 28 <

2

Notice that the very definition of H,(-) and the minimality of w, in class v, + Wé”’ (2B,) and of v, in class
u+ W, (4B,) yield that

fH(x,DWL) dx < fHJr(DwL) dx
B, B,

< J{ H,.(Dv,) dx
B,
< H(x,Dv,) dx + (osc aV)J{ |Dv, P dx
\i.BL VZ_; 2B, B,
(5.12)
< CJ{ H(x,Dv,) dx < CJ( H(x,Du) dx, (5.13)
B, 4B,

for ¢ = ¢(n, k), so we may estimate via Holder inequality with conjugate exponents (pv, [%),

(5.12)
0, < C—Jd a,(x)|Dv["~"|Dv, - Dw,[ dx
B,
c bl 1/py
< %d( Jz[ a,(x)|Dv, P dx) ( Jz[ a,(x) [IDv|” + |Dw,”*] dx)
B, B,

(G.13)  cpg

J( H(x,Du) dx,
7 Js

for ¢ = c(n, p, p,, k). Summing the content of the above display over v € I, we obtain

>, s X f H(x, Du) dx. (5.14)
v=1 '] 4B,
Step 8 - Estimates in the mixed phase

Now we assume that mix;(2B,) holds with J > 4 still to be fixed, pick any

1 n(p, — p)\| 13 53
“6(0’ %&?;(%—W—W]J # {0} = u = p(data, ||H(, Du)llie,): (5.15)

where 6, is the higher integrability exponent determined in Step I and set

u) ang
p(l +6,)

Oy :=min|a, — up, —
vel,
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Keeping in mind that

osca, < 2a,, (5.16)

L

we can proceed as in [4, Section 6] and apply (1.5) with d = p, and u as in (5.15) to control

D, < co” ‘f |Dv,|P” dx
B,

" (OSC av) |2BL|—1 f |DVL|pV_1|DWL| d.x
2B, 2B,N{|Dw,|=J|Dv,|}

+ (osc av) 2B, f |Dv,|”~ | Dw,| dx
2B,N{|Dw,|<J|Dv,|}

< c(1 + D)o f |Dv,|”» dx + —f a’lewll”V dx
< c(1 + o™ J{ |Dv,|”» dx + _J{ H,.(Dv,) dx

(5.6) Cnd
< cJo” [Dv " dx + — » o™ IDVLI”’” dx + H(x Du) dx
B, m=1

Jl”1

, i)
< cnJO P (f H(x, Dv,)!*7¢ dx) J( H(x,Du) dx

p(l-w'g)
Jp 1 ZQQW —HPm (f H(x, Dvl)l-l-a'!s’ dx) f H(x Du) dx

Cnd J[ H(x, Du) dx

JP !
(5.3),(5.6) bvop Cnd
< cndOCIlH(, Du)||L1+57(4B) H(x, Du) dx + = H(x,Du) dx
4B,
CII‘IQL Pm—p
( f H(x, Du) dx)ZnH( Dl i)
o Cnd
< (CmJQL o4 Jp—l) s H(x, Du) dx.

We stress that here we also used Remark 4.1 and (5.1)—(5.3) to determine such dependencies for the
various constants appearing above. Summing the above inequalities over v € I, we get

S, < (chg‘fo 4 Cnd ) H(x, Du) dx. (5.17)
v=1 ‘ Jp_l 4BL
Step 9 - Estimates in the degenerate phase

Finally, we look at the case deg(2B,). We set

e np,-p) a3 63
fo= o (“V "o+ 5»] >0 = 19 = 7o(data, [|H(, Du)lliq,)
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and as done in Step 8 we estimate

@O, = <o f |Dv.|” dx
B,

+c|2B,™! (oscav) f |Dv,|~ | Dw,| dx
2B, 2B,0{|Dw,[2J|Dv,}

+c|2B,|” l(oscav) f |Dv,|P~ Dw,| dx
2B 2B,0{|Dw,|<J|Dv,|}
(5.16)

< c(1 + o™ i |Dv,|P" dx + —f awllelpV dx

(510)2 @y Dv (e77) Pm c
< o levtl dx+—ZQ £|th| dx+FJZ(BH(x,DvL) dx

(1.4),(5.6) p(]+(rg)
< caJ? o™ [J( H(x, Dv,)!*7¢ dx] J( H(x,Dv,) dx

Pm—p

p(l+og)
+egJPT P Zme (J( H(x, DVL)HU[" de J( H(x,Dv,) dx

m=1

Jl”1

(5.3),(5.6) pep
< CdJZPF CNHC, D)l

Ll+()y(4B )

Jf H(x, Du) dx + Cnd J[ H(x, Du) dx
JPt i

Pm—p

e " (]( H(x, Du) deZHH( Du)llL'+57(4B)

< ( le’rgt “nd ) H(x, Du) dx.
NVNT

Summing the content of the previous display over v € I, we obtain
>, < (c P+ S J( H(x, Du) dx. (5.18)
v=1

Step 10 - Matching phases and comparison estimates

Combining (5.11), (5.14), (5.17) and (5.18) we obtain

Jz( Vp(Dv,, Dw,;2B,) dx < c(chg‘fo +cgJ? o + f H(x, Du) dx, (5.19)
B,

Jpl

with ¢ = ¢(n, A, p, p1,- -+ , Px» K), SO Via triangular inequality we get

J{ (Du, Dw,) dx < c‘f [Vo(Dv,, Dw,;2B,) + V(Du, Dv,)] dx
B, B,

(5.7).(5.19) . 201 70
< e+ cuJr? + cgJ + H(x Du) dx
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+c, J[ H(x, F) dx, (5.20)
4B,
for ¢ = c(n, A, p, p1,- - , p«, k). Here we also used that o, < r, cf. Step 2. Next, we set
. CCy Ce
S(e,r, J, M) := ce + ccyJr” + ccgJP T + Jp—_? + u
with ¢ = ¢(n, A, p, p1,- -+ , P«, k) and use the informations contained in [29, (4.14),] (which come from

a covering and exit time argument, so they do not depend on the particular form of H(-) therefore apply
in our case as well) to establish that

f V(Du, Dw,) dx < S(e,r, J, M)A, (5.21)
B,

which holds for any J > 4 and for all balls B, from the covering in Step 2. We stress that (5.21) holds
true independently from the degenerate/nondegenerate/mixed status of H(-). Next, we show that

f H,(Dw,) dx < cA4, (5.22)
B,

with ¢ = c(data.,). Assume first that ndeg;(2B,) holds with J = 10. Then we have

(5.10),
Jz( H.(Dw,) dx < :f H, (Dv,) dx
B, B,

(5.12)
< c‘f H(x,Dv,) dx < cf H(x,Du) dx < cA,
B, 4B,

with ¢ = c(data). On the other hand, if deg;(2B,) or mix;(2B,) hold again with J = 10, we have

(5.10),
f H,.(Dw,) dx < £ H,(Dv,) dx
B, B,

(5.6)1 X
< CZQE’V JE. |Dv [P dx + ¢ J[ H(x, Du) dx
y=1 B, 4BL

py—p

(1.5) g Wlrog
< c Z Qflv—l’v/l (f H(x, DVL)HO'g dXJ J[ H(x, DVL) dx
y=1 4B, 4B,

+cf H(x,Du) dx
4B,

pv=p

(5.3),(5.6) X
< co’ (J[ H(x, Du) dx) ZHH(-, DM)HLIZWB) + CJ[ H(x, Du) dx
4B, v=1 ¢ 4B,

< cJ( H(x,Du) dx < cA,
4B,

for ¢ = c(data.,) and (5.22) is completely proven.
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Step 11 - A priori estimates for Dw,

Notice that the frozen integrands H. (-) falls into the realm of those treated in [52]; in particular it is

(5.22)
sup H.(Dw,) < CJE H.(Dw) dx < cd = supH(-,Dw,) < ¢4,
B,

X€EB, X€EB,

with ¢, c. = ¢, c.(data.,), where we used the definition in (5.8). At this stage, we can proceed exactly
as in [29, Steps 10 and 11] to first determine J = J(data,) > 4, then € = g(data.,) € (0,1),
M = M(data.,) and finally the threshold radius r, = r.(data.,) € (0, 1] to obtain (1.10) and the proof
is complete.
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