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1. Introduction

In this paper we complete the regularity theory started in [36] for local minimizers of multi-phase
functionals, i.e., variational integrals of the type

W1,p(Ω) 3 w 7→ H(w,Ω) :=
∫

Ω

|Dw|p +

κ∑
ν=1

aν(x)|Dw|pν dx,

where the modulating coefficients {aν}κν∈1 and exponents (p, p1, · · · , pκ) satisfy

0 ≤ aν(·) ∈ C0,αν(Ω) and 1 < p < min
ν∈Iκ

pν (1.1)

and the shorthands

Iκ := {1, · · · , κ} and H(x, z) := |z|p +

κ∑
ν=1

aν(x)|z|pν (1.2)
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will always be used. Exponents p, pν, αν are related by the constraint

pν
p
≤ 1 +

αν
n

for all ν ∈ Iκ, (1.3)

which is sharp in the light of the counterexamples in [5, 38, 40, 63]. Precisely, our first achievement
concerns some reverse Hölder type inequalities in the spirit of those obtained in [28,30,31] for double
phase problems.

Theorem 1. Under assumptions (1.1)–(1.3), let v ∈ W1,p
loc (Ω) be a local minimizer of functional H(·)

and B%(x0) ⊂ B2%(x0) b Ω be concentric balls with radius % ∈ (0, 1] and J ≥ 4 be a constant. Then

• in the degenerate regime degJ(B%(x0)) for all d ≥ 1 it holds that∫−
B%/2(x0)

|Dv|d dx

1/d

≤ cJΓ

∫−
B%(x0)

H(x,Dv) dx

1/p

, (1.4)

with c ≡ c(data, ‖H(·,Dv)‖L1+δg (B2%(x0)), d) and Γ ≡ Γ(data0);
• in the nondegenerate regime ndegJ(B%(x0)) or in the mixed one mixJ(B%(x0)), for all d ≥ 1,
µ ∈ (0, 1] it is ∫−

B%/2(x0)
|Dv|d dx

1/d

≤ c%−µ
∫−

B%(x0)
H(x,Dv) dx

1/p

, (1.5)

for c ≡ c(data, A, ‖H(·,Du)‖L1+δg (B2%(x0)), µ, d).

We refer to Sections 2.1 and 4 for more details on the terminology adopted in the above statement.
A result analogous to the one described in Theorem 1 has been obtained in [4, Theorem 4.1] for
generalized [3,19] triple phase problems, which in principle include also our functional H(·). However,
in [4] to prove estimates similar to (1.4)–(1.5), extra technical assumptions on {αν}κν=1 are required, i.e.:

max
ν∈Iκ

αν ≤ 2 min
ν∈Iκ

αν, (1.6)

cf. [4, (1.17), (1.22) and (6.8)]. Condition (1.6) seems to be unavoidable according to the arguments
developed in [4], inspired by [30, 31] and essentially relying on a boost of integrability that results
from a combination of a Caccioppoli type inequality with the classical fractional Sobolev embedding
theorem. In sharp contrast with what happens in [30, 31], the rate of nonhomogeneity in multi-phase
problems is too high and causes competition among the Hölder continuity exponents {αν}κν=1. This
drastically affects the integrability improvement granted by Sobolev embedding theorem and possibly
leads to violations of the bounds in (1.3). Here, we rather follow the approach of [28], replace
fractional Sobolev embedding theorem with a suitable fractional Gagliardo-Nirenberg inequality [17],
which matches the controlled gradient fractional differentiability assured by Caccioppoli inequality
with the Morrey type result obtained in [36, Theorem 2]. Precisely, the idea consists in exploiting
Gagliardo-Nirenberg inequality to translate the β0-Hölder continuity of minima for arbitrary
β0 ∈ (0, 1) consequence of [36, Theorem 2], into gradient higher integrability up to any finite
exponent, thus bypassing all structural obstructions due to the coexistence of multiple phases. In the
light of [36, Theorem 1], inequalities (1.4)–(1.5) do not add any substantial information on the
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regularity of minima of functional H(·). Anyway, they turn out to be fundamental for instance when
such minimizers play the role of comparison map in variational problems governed by the
nonhomogeneous functional

W1,p(Ω) 3 w 7→ G(w,Ω) :=
∫

Ω

[
H(x,Dw) − 〈G(x, F),Dw〉

]
dx (1.7)

where G : Ω × Rn → Rn is a Carathéodory vector field so that

|G(x, z)| ≤ Λ
H(x, z)
|z|

for all (x, z) ∈ Ω × Rn and some Λ > 0 (1.8)

and F : Ω→ Rn verifies

H(·, F) ∈ Lγloc(Ω) with γ > 1. (1.9)

For local minima of the functional in (1.7) we have the following Calderón-Zygmund type result.

Theorem 2. Under assumptions (1.1), (1.3), (1.8), (1.9), let u ∈ W1,p(Ω) be a local minimizer of
functional G(·). Then the sharp Calrderón-Zygmund implication

H(·, F) ∈ Lγloc(Ω) =⇒ H(·,Du) ∈ Lγloc(Ω)

holds for all γ > 1. Moreover, fix open sets Ω0 b Ω̃0 b Ω so that dist(Ω0, ∂Ω̃0) ≈ dist(Ω̃0, ∂Ω) ≈
dist(Ω0, ∂Ω); for every γ > 1 there exists a radius r∗ > 0 and a constant c ≥ 1, both depending on
(datacz) such that ∫−

B%/2(x0)
H(x,Du)γ dx

1/γ

≤ c
∫
−
B%(x0)

H(x,Du) dx

+c

∫−
B%(x0)

H(x, F)γ dx

1/γ

, (1.10)

for all balls B%(x0) b Ω0 with % ∈ (0, r∗).

We remark that Theorem 2 is not included in [4, Theorem 1.1] as we do not assume (1.6). Let us
put our results into the context of the available literature. Multi-phase functionals provide the natural
generalization of the double-phase energy

W1,p
loc (Ω) 3 w 7→ P(w,Ω) :=

∫
Ω

[
|Dw|p + a(x)|Dw|q

]
dx,

0 ≤ a(·) ∈ C0,α(Ω),
q
p
≤ 1 +

α

n
,

first studied in [63, 64], with emphasis about homogenization and on the possible occurrence of
Lavrentiev phenomenon and later on, regularity has been obtained in [7,9,28,30], see also [18,29,31]
concerning Calderón-Zygmund estimates, [34] on the general vectorial setting and the
manifold-constrained case, [24] about potential theoretic considerations and [33] for sharp regularity
of nonhomogenous systems with double phase structure and related obstacle problems
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and [2–4, 8, 19, 20, 36, 39, 60, 61] for further extensions and more general models. The peculiarity of
the double phase energy is the subtle interaction between the p-phase and the (p, q)-phase, whose
alternance is controlled by the modulating coefficient a(·): in proximity of the zero level set{
x ∈ Ω : a(x) = 0

}
, the integrand in P(·) behaves as the p-Laplacian, while in correspondence of the

positivity set of a(·) it acts as a ∆2-Young function. This phenomenon is in some sense magnified in
the multi-phase framework: in [36] it is observed that each pν-phase interacts only with the elliptic
p-phase as quantified by (1.3); in particular no additional relation between pν1 , pν2 or αν1 , αν2 with
ν1 , ν2 ∈ Iκ should be imposed. On a more formal level, according to the classification done in [33]
we see that the integrand in H(·) is pointwise uniformly elliptic, in the sense that its ellipticity ratio is
uniformly bounded:

RH(z) := sup
x∈B

highest eigenvalue of ∂2H(x, z)
lowest eigenvalue of ∂2H(x, z)

≤ c(n, p, p1, · · · , pκ) (1.11)

for any z ∈ Rn and all balls B b Ω. However, the possible vanishing of the coefficients creates a deficit
in the structure that can be better measured via a nonlocal counterpart of the ellipticity ratio defined as

RH(z) :=
supx∈B highest eigenvalue of ∂2H(x, z)
infx∈B lowest eigenvalue of ∂2H(x, z)

. 1 +

κ∑
ν=1

‖aν‖L∞(B)|z|pν−p,

which may blow up as |z| → ∞. From this analysis it is clear that nonuniform ellipticity of multi-phase
integrands is caused by the coefficients, but it is rather soft and still allows a perturbative approach to
regularity. The multi-phase energy is a particular instance of Musielak-Orlicz functional, an abstract
class of variational integrals described for instance in [45], that permits to treat in a unified fashion the
regularity of minima of several model functionals such as double phase, multi-phase, p(x)-Laplacian
or double phase with variable exponent and the functional analytic properties of related Lagrangian
spaces, see [6,12,25,26,44,46–48,50] for an (incomplete) list of references and [57,59] for reasonable
surveys. It is worth mentioning that energy H(·) also falls into the realm of functional with (p, q)-
growth, i.e., variational integrals defined by means of a sufficiently smooth integrand F : Ω × Rn → R

with a rate of nonuniform ellipticity stronger than (1.11), i.e.: |z|
p . F(x, z) . 1 + |z|q

RF(z) . |z|q−p
with 1 < p ≤ q.

This class of functionals has first been introduced in the seminal papers [53–56] and intensively
investigated since then, cf. [10, 11, 14–16, 21–23, 27, 32, 33, 35, 38, 49, 62], see also [13, 57, 59] for an
overview of the state of the art. The main idea in this case consists in neglecting the precise structure
of the integrand and retaining only the extremals of the growth. In such a way it is possible to prove
regularity results for minima of a quite large family of variational integrals at the price of imposing
precise closeness conditions between exponents (p, q) and loosing some informations that are
distinctive of the specific structure, compare in this perspective [33, Theorem 1] with [33, Theorem
3]. The regularity for general functionals with (p, q)-growth is guaranteed provided that
q/p ≤ 1 + o(n), where o(n) →n→∞ 0. This turns out to be a necessary and sufficient condition for
regularity, see e.g., [38, 55, 58] about counterexamples/sharpness of the upper bound on the ratio q/p
and [11, 49, 62] for improvements in the autonomous setting. The constraint linking exponents (p, q)
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has interpolative nature in the sense that if minimizers a priori feature a higher regularity than the one
naturally allowed by the ellipticity of the functional, then the restriction imposed on the size of q/p
can be relaxed, in particular it can be made independent on the space dimension,
cf. [1, 9, 13, 21, 22, 27, 28, 32, 34, 35, 60]. The main tool exploited in most of such papers are
Gagliardo-Nirenberg type inequalities [17] that grant a trading between the extra regularity properties
of minima and the higher integrability of their gradients. This transaction weakens in some sense the
nonuniform ellipticity of the functional, thus either allowing for larger bounds on q/p or drastically
reducing the rate of fractional differentiability of the gradient needed for boost its integrability. The
latter is the cornerstone of the arguments presented here.

Organization of the paper

This paper is organized as follows. In Section 2 we describe our notation and collect some auxiliary
results, Section 3 contains an overview of the regularity theory for local minimizers of multi-phase
integrals and Sections 4 and 5 are devoted to the proofs of Theorems 1 and 2 respectively.

2. Preliminaries

In this section we shall collect some well-known results that will be useful in the proof of
Theorems 1 and 2.

2.1. Notation

We denote by Ω ⊂ Rn an open domain and, since our estimates will be local, we shall always
assume, without loss of generality, that Ω is also bounded. We denote by c a general constant larger
than one. Different occurrences from line to line will be still denoted by c. Important dependencies on
parameters will be as usual emphasized by putting them in parentheses. We shall denote N as the set
of positive integers. As usual, we denote by Br(x0) := {x ∈ Rn : |x − x0| < r} the open ball with center
x0 and radius r > 0; when it is clear from the context, we omit denoting the center, i.e., Br ≡ Br(x0).
When not otherwise stated, different balls in the same context will share the same center. Finally, with
B being a given ball with radius r and δ being a positive number, we denote by δB the concentric ball
with radius δr and by B/δ ≡ (1/δ)B. In denoting several function spaces like Lp(Ω), W1,p(Ω), we shall
denote the vector valued version by Lp(Ω,Rk),W1,p(Ω,Rk) in the case the maps considered take values
in Rk, k ∈ N. With B ⊂ Rn being a measurable subset with bounded positive measure 0 < |B| < ∞, and
with g : B → Rk, k ≥ 1, being a measurable map, we shall denote the integral average of g over B by

(g)B ≡
∫
−
B

g(x) dx :=
1
|B|

∫
B

g(x) dx .

Moreover, if g : Ω → Rk is any map, U ⊂ Ω is an open set and β ∈ (0, 1] is a given number we shall
denote

[g]0,β;U := sup
x,y∈U;x,y

|g(x) − g(y)|
|x − y|β

, [g]0,β := [g]0,β;Ω.

The quantity in the previous definition is a seminorm and g is included in the Hölder space C0,β(U,Rk)
iff [g]0,β;U < ∞. We also point out that g ∈ C1,β(U,Rk) provided that Dg ∈ C0,β(U,Rk×n). Furthermore,
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we shall always avail ourselves of the notation displayed in (1.2). Finally, for the sake of simplicity,
we collect the main parameters of the problem in the shorthands

A := maxν∈Iκ‖aν‖L∞(Ω)

data0 := (n, p, p1, · · · , pκ, α1, · · · , ακ),
data := (data0, [a1]0,α1 , · · · , [aκ]0,ακ , κ)
datacz := (data, A,Λ, ‖H(·,Du)‖L1(Ω̃0), ‖H(·, F)‖Lγ(Ω̃0), γ, dist(Ω̃0, ∂Ω)),

see Sections 3–5 for more informations about the quantities mentioned in the previous display.

2.2. On fractional Sobolev spaces

Given a function w : Ω→ Rk, k ≥ 1 and a vector h ∈ Rn, we denote by τh : L1(Ω,Rk)→ L1(Ω|h|,Rk)
the standard finite difference operator pointwise defined as

τhw(x) := w(x + h) − w(x) for a.e. x ∈ Ω|h|,

where Ω|h| := {x ∈ Ω : dist(x, ∂Ω) > |h|}. Let us record the fundamentals of fractional Sobolev spaces,
see [37] for more details on this matter.

Definition 1. Let Ω ⊂ Rn be an open set with n ≥ 2 (the case Ω ≡ Rn is allowed as well), α ∈ (0, 1),
p ∈ [1,∞) and k ∈ N be numbers. The fractional Sobolev space Wα,p(Ω,Rk) is defined by prescribing
that w : Ω→ Rk belongs to Wα,p(Ω,Rk) iff the following Gagliardo type norm is finite:

‖w‖Wα,p(Ω) := ‖w‖Lp(Ω) +

(∫
Ω

∫
Ω

|w(x) − w(y)|p

|x − y|n+αp dx dy
)1/p

=: ‖w‖Lp(Ω) + [w]α,p;Ω.

Accordingly, if α = [α] + {α} ∈ N + (0, 1) > 1, we say that w ∈ Wα,p(Ω,Rk) iff the following quantity is
finite

‖w‖Wα,p(Ω) := ‖w‖W[α],p(Ω) + [D[α]w]{α},p;Ω.

The local variant Wα,p
loc (Ω,Rk) is defined by requiring that w ∈ Wα,p(Ω̃,Rk) for every open subset

Ω̃ b Ω.

A class of spaces that is strictly related to fractional Sobolev spaces is that of Nikol’skii spaces.

Definition 2. Let Ω ⊂ Rn be an open set with n ≥ 2 and α ∈ (0, 1), p ∈ [1,∞), k ∈ Rn be numbers. The
Nikol’skii space Nα,p(Ω,Rk) is defined by prescribing that w ∈ Nα,p(Ω,Rk) iff

‖w‖Nα,p(Ω) := ‖w‖Lp(Ω) +

sup
|h|,0

∫
Ω|h|

|w(x + h) − w(x)|p

|h|αp dx

1/p

.

The local variant Nα,p
loc (Ω,Rk) is defined by requiring that w ∈ Nα,p(Ω̃,Rk) for every open subset Ω̃ b Ω.

Whenever Ω is a sufficiently regular domain, it is Wα0,p(Ω,Rk) * Nα0,p(Ω,Rk) * Wβ,p(Ω,Rk) for all
β ∈ (0, α0). This chain of inclusions can be in some sense quantified, and this is the content of the next
lemma, cf. [32, Section 2.2].
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Lemma 2.1. Let Br b R
n be a ball with r ≤ 1, w ∈ Lp(Br,R

k), p > 1 and assume that, for α ∈ (0, 1],
S ≥ 1 and concentric balls B% b Br, there holds

‖τhw‖Lp(B%,Rk) ≤ S |h|α for every h ∈ Rn with 0 < |h| ≤ r−%
K , where K ≥ 1 .

Then w ∈ Wβ,p(B%,R
k) whenever β ∈ (0, α) and

‖w‖Wβ,p(B%,Rk) ≤
c

(α − β)1/p

(r − %
K

)α−β
S + c

(
K

r − %

)n/p+β

‖w‖Lp(Br ,Rk) ,

holds, where c ≡ c(n, p).

We conclude this section with a fractional Gagliardo-Nirenberg type inequality, whose proof can be
found in [17, Corollary 3.2], see also [28, Lemma 2.6] for a localized version.

Lemma 2.2. Let B% b Br b R
n be concentric balls with r ≤ 1. Let 0 < s1 < 1 < s2 < 2, 1 < p, q < ∞,

t > 1 and θ ∈ (0, 1) be such that

1 = θs1 + (1 − θ)s2,
1
t

=
θ

q
+

1 − θ
p

.

Then every function w ∈ W s1,q(Br) ∩W s2,p(Br) belongs to W1,t(B%) and the inequality

‖Dw‖Lt(B%) ≤
c

(r − %)κ
[w]θs1,q;Br

‖Dw‖1−θW s2−1,p(Br) (2.1)

holds for constants c, κ ≡ c, κ(n, s1, s2, p, q, t).

2.3. Tools for nonlinear problems

When dealing with m-Laplacean type problems with m > 1, we shall often use the auxiliary vector
fields Vm : Rn → Rn, defined by

Vm(z) := |z|(p−2)/2z, m ∈ (1,∞)

whenever z ∈ Rn. In Sections 4 and 5, we shall adopt the above definition with m ∈ {p, p1, · · · , pκ}. A
useful related inequality is contained in the following

|Vm(z1) − Vm(z2)| ≈ (|z1|
2 + |z2|

2)(p−2)/4|z1 − z2|, (2.2)

where the equivalence holds up to constants depending only on n,m. Given the specific form of the
integrand defining H(·), for z1, z2 ∈ R

n being arbitrary vectors and B ⊂ Rn being a ball, we introduce
two quantities that will be often used throughout the paper

V(z1, z2) := |Vp(z1) − Vp(z2)|2 +

κ∑
ν=1

aν(x)|Vpν(z1) − Vpν(z2)|2;

V0(z1, z2; B) := |Vp(z1) − Vp(z2)|2 +

κ∑
ν=1

sup
x∈B̄

aν(x)

 |Vpν(z1) − Vpν(z2)|2.

An important property which is usually related to such field is recorded in the following lemma.
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Lemma 2.3. Let t > −1, and z1, z2 ∈ R
n be so that |z1| + |z|2 > 0. Then∫ 1

0
|z1 + λ(z2 − z1)|t dλ ∼ (|z1|

2 + |z2|
2)

t
2 ,

with constants implicit in “∼” depending only on t.

Finally, the “simple, but fundamenta” iteration lemma of [41, Section 1].

Lemma 2.4. Let Z : [%,R) → [0,∞) be a function which is bounded on every interval [%,R∗] with
R∗ < R. Let ε ∈ (0, 1), a1, a2, γ1, γ2 ≥ 0 be numbers. If

Z(τ1) ≤ εZ(τ2) +
a1

(τ2 − τ1)γ1
+

a2

(τ2 − τ1)γ2
for all % ≤ τ1 < τ2 < R ,

then

Z(%) ≤ c
[

a1

(R − %)γ1
+

a2

(R − %)γ2

]
,

holds with c ≡ c(ε, γ1, γ2).

3. Regularity theory for local minimizers of multi-phase problems

In this section we collect some well-known regularity results for minima of functional H(·), i.e.,
maps verifying the following definition.

Definition 3. With 0 ≤ a(·) ∈ L∞(Ω) and (1.1)2 in force, a function v ∈ W1,1
loc (Ω) with H(·,Dv) ∈ L1

loc(Ω)
is a local minimizer of functional H(·) if and only if the minimality relation H(v, B) ≤ H(v + w, B)
holds for every ball B b Ω and all w ∈ W1,1

0 (B) so that H(·,Dw) ∈ L1(B).

The details of the proof of all the results listed below can be found in [36] for the case of three
phases, i.e., H(x, z) ≡

[
|z|p + a1(x)|z|p1 + a2(x)|z|p2

]
, but, as stressed in [36, Section 1], they can be

adapted in a straightforward way to an arbitrary (finite) number of phases, see also [47, Section 2 and
Theorems 7.2–7.4]. We start by discussing a peculiar feature of variational integrals with Musielak-
Orlicz structure which is the absence of Lavrentiev Phenomenon, see [31, Lemma 1] and [38, Lemma
13].

Lemma 3.1. Under assumptions (1.1)–(1.3), let w ∈ W1,p
loc (Ω) be any function so that whenever B b Ω

is a bounded, open set it is ‖H(·,Dw)‖L1+δ′ (B) < ∞ for some δ′ > 0. Then there exists a sequence of
smooth maps {w̃ j} j∈N ⊂ C∞loc(Ω) so that it holds

w̃ j → w in W1,p(1+δ′)(B)
‖H(·,Dw̃ j)‖L1(B) → ‖H(·,Dw)‖L1(B)

‖H(·,Dw̃ j)‖L1+δ′ (B) → ‖H(·,Dw)‖L1+δ′ (B).

(3.1)

Next, a Sobolev-Poincaré inequality for multi-phase problems, [36, Lemma 2].
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Lemma 3.2. Under assumptions (1.1)–(1.3), let B% b R
n be a ball with radius % ∈ (0, 1] and w ∈

W1,p(B%) be any function so that H(·,Dw) ∈ L1(B%). Then there are a positive constant c ≡ c(data0, κ)
and an exponent d ≡ d(n, p, p1, · · · , pκ) ∈ (0, 1) so that∫

−
B%

H
x,

w − (w)B%

%

 dx ≤ c

1 +

κ∑
ν=1

[aν]0,αν;B%‖Dw‖pν−p
Lp(B%)


∫−

B%
H(x,Dw)d dx

1/d

. (3.2)

Let us record a local higher integrability result of Gehring type, cf. [36, Lemma 4].

Lemma 3.3. Under assumptions (1.1)–(1.3), let B% ⊂ B2% b Ω be any ball with radius % ∈ (0, 1] and
v ∈ W1,p

loc (Ω) be a local minimizer of functional H(·) so that ‖H(·,Dv)‖L1(B2%) ≤ M for some constant
M > 0. Then there exists a positive higher integrability threshold δg ≡ δg(data,M) so that∫−

B%
H(x,Dv)1+δ dx


1

1+δ

≤ c
∫
−
B2%

H(x,Dv) dx, (3.3)

for all δ ∈ (0, δg], with c ≡ c(data,M).

The global counterpart of Lemma 3.1 is in the next lemma.

Lemma 3.4. Under assumptions (1.1)–(1.3), let B% b Ω be a ball with radius % ∈ (0, 1],
u0 ∈ W1,p(1+δ0)(B%) for some δ0 > 0 with ‖H(·,Du0)‖L1(B%) ≤ M0 be any function and v0 ∈ u0 + W1,p

0 (B%)
be the solution of Dirichlet problem

u0 + W1,p
0 (B%) 3 w 7→ minH(w, B%).

There exists an higher integrability threshold σg ≡ σg(data,M0, δ0) ∈ (0, δ0) so that∫
−
B%

H(x,Dv0)1+σg dx ≤ c
∫
−
B%

H(x,Du0)1+σg dx,

for c ≡ c(data,M0, δ0).

We further recall a straightforward manipulation of [36, Theorem 2].

Theorem 3. Under assumptions (1.1)–(1.3), let B ⊂ 2B b Ω be a ball and v ∈ W1,p
loc (Ω) be a local

minimizer of functional H(·) so that ‖H(·,Dv)‖L1+δg (2B) ≤ Mg, where δg is the higher integrability
threshold coming from Lemma 3.3. Then, whenever Bσ1 ⊂ Bσ2 b B are concentric balls with radii
0 < σ1 ≤ σ2 ≤ 1, for every β ∈ (0, n) it holds that∫

Bσ1

H(x,Dv) dx ≤ c
(
σ1

σ2

)n−β ∫
Bσ2

H(x,Dv) dx,

with c ≡ c(data,Mg, β). In particular, v ∈ C0,γ0(B) for all γ0 ∈ (0, 1) with

[v]0,γ0;B2σ/3 ≤ cσ1−γ0

∫−
Bσ

H(x,Dv) dx
1/p

, (3.4)

for c ≡ c(data,Mg, γ0).
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Finally, we conclude this section with the main result of [36].

Theorem 4. Let v ∈ W1,p
loc (Ω) be a local minimizer of functional H(·), with (1.1)–(1.3) in force. Then

v ∈ C1,β0
loc (Ω) for some β0 ≡ β0(data0).

Remark 3.1. We stress that all the constants appearing in Lemmas 3.3–3.4 and Theorem 3 are
nondecreasing in M, M0 and Mg respectively, cf. [36].

4. Conditional reverse Hölder inequalities

In this section we prove our main result, i.e., a reverse Hölder inequality for minima of H(·) in the
spirit of those appearing in [28, 30, 31] without imposing any relation between the Hölder continuity
exponents {αν}κν=1. A similar result has been obtained in [4, Theorem 4.1] for generalized multi-phase
problems with the additional technical constraint (1.6). We believe that our proof can be adapted to
more general functionals than H(·) that still preserve specific Musielak-Orlicz structure. Moreover,
since the results in [36] can be transferred essentially verbatim to the vectorial setting, our approach
can be successfully applied also to vectorial problems. Following a by now standard terminology
see [9, 28–31, 33, 34] and in particular [36, Section 4], given any ball B%(x0) b Ω, we identify three
scenarios, according to the behavior of coefficients {aν(·)}κν=1. Precisely, given any constant J ≥ 4, we
shall say that H(·) is in the degenerate phase degJ(B%(x0)) on B%(x0) if

inf
x∈B%(x0)

aν(x) ≤ J[aν]0,αν;B%(x0)%
αν for all ν ∈ Iκ,

or H(·) is in the nondegenerate phase ndegJ(B%(x0)) when

inf
x∈B%(x0)

aν(x) > J[aν]0,αν;B%(x0)%
αν for all ν ∈ Iκ,

while H(·) is in a mixed phase mixJ(B%(x0)) provided that the set of indexes Iκ is the union of two
nonempty subsets d, nd ⊂ Iκ which can be characterized as infx∈B%(x0) aν(x) ≤ J[aν]0,αν;B%(x0)%

αν for all ν ∈ d
infx∈B%(x0) aν(x) > J[aν]0,αν;B%(x0)%

αν for all ν ∈ nd.

The above configurations will play a key role in the next sections.

4.1. Proof of Theorem 1

For the transparency of presentation, we split the proof of Theorem 1 into nine steps. Since the
dependencies of the constants declared throughout the proof may seem quite weird, we shall provide a
detailed explanation of the behavior of such constants in Step 9.

Step 1: scaling and approximation

Let v ∈ W1,p
loc (Ω) be a local minimizer of functional H(·) and B%(x0) ⊂ B2%(x0) b Ω be any ball with

radius % ∈ (0, 1]. By Lemma 3.3 we know that H(·,Dv) ∈ L1+δg(B%(x0)) for some
δg ≡ δg(data, ‖H(·,Dv)‖L1(B2%(x0))), so Lemma 3.1 applies and we obtain a sequence
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{ṽ j} j∈N ⊂ C∞(B̄%(x0)) so that (3.1) holds with B ≡ B%(x0). We blow up v on B%(x0) by defining
B1(0) 3 x 7→ v%(x) := (v(x0 + %x) − (v)B%(x0))%−1 and notice that a simple scaling argument shows that
v% ∈ W1,p(B1(0)) is a local minimizer of functional

W1,p(B1(0)) 3 w 7→ H%(w, B1(0)) :=
∫

B1(0)
H%(x, z) dx,

with B1(0) 3 x 7→ aν,%(x) := aν(x0 + %x) for all ν ∈ Iκ and

H%(x, z) :=

|z|p +

κ∑
ν=1

aν,%(x)|z|pν
 .

By definition we have that
‖aν,%‖L∞(B1(0)) = ‖aν‖L∞(B%(x0)) for all ν ∈ Iκ
[aν,%]0,αν;B1(0) = %αν[aν]0,αν;B%(x0) for all ν ∈ Iκ
H%(v%, B1(0)) = %−nH(v, B%(x0)).

(4.1)

We stress that by construction, v% retains the same higher integrability features of v, i.e., H%(·,Dv%) ∈
L1+δg(B1(0)) where δg ≡ δg(data, ‖H(·,Dv)‖L1(B2%(x0))) is the same higher integrability exponent of v.
Moreover, setting B1(0) 3 x 7→ ṽ j,%(x) := (ṽ j(x0 + %x) − (ṽ j)B%(x0))%−1, by (3.1) with B ≡ B1(0) we have
a sequence {v j,%} j∈N ⊂ C∞(B̄1(0)) so that

ṽ j,% → v% strongly in W1,p(1+δg)(B1(0))
‖H%(·,Dṽ j,%)‖L1(B1(0)) → ‖H%(·,Dv%)‖L1(B1(0))

‖H%(·,Dṽ j,%)‖L1+δg (B1(0)) → ‖H%(·,Dv%)‖L1+δg (B1(0)).

(4.2)

For ν ∈ Iκ and j ∈ N, we correct the growth of H%(·) by introducing the regularized integrands

H j(x, z) := H%(x, z) +

κ∑
ν=1

σν
j |z|

pν ≡ |z|p +

κ∑
ν=1

(
aν,%(x) + σν

j

)
|z|pν ,

where we set

σν
j := j−1

(
1 + j + ‖Dṽ j,%‖

2pν
Lpν (B1(0)) + ‖Dṽ j,%‖

2pν
Lpν(1+δg)(B1(0))

)−1
.

By very definition, it is

κ∑
ν=1

σν
j

∫
B1(0)
|Dṽ j,%|

pν dx +

κ∑
ν=1

(σν
j)

1+δg

∫
B1(0)
|Dṽ j,%|

pν(1+δg) dx→ 0 (4.3)

Keeping in mind (1.1)2, we set p̄ := maxν∈Iκ pν and define the family of auxiliary Dirichlet problems

ṽ j,% + W1,p̄
0 (B) 3 w 7→ Hj(w, B1(0)) :=

∫
B1(0)

H j(x, z) dx. (4.4)
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Direct methods assure that problem (4.4) admits a unique solution v j ∈ ṽ j,%+W1,p
0 (B1(0)) and, according

to the regularity theory in [51] it is

v j ∈ W1,∞(B1(0)), (4.5)

given that ṽ j,% ∈ C∞(B̄1(0)) and σν
j > 0 for all ν ∈ Iκ, so H j(·) has standard p̄-growth. We further

notice that functional Hj(·) is of multi-phase type. In fact (1.3) is always in force and (1.1) trivially
holds since the coefficients aν,% + σν

% ∈ C0,αν(Ω) verify [aν,% + σν
%]0,αν;B1(0) = [aν,%]0,αν;B1(0) for all ν ∈ Iκ,

therefore Lemma 3.4 applies and there is an exponent σg ≡ σg(data, ‖H(·,Dv)‖L1(B2%(x0))) ∈ (0, δg) so
that

‖H j(·,Dv j)‖L1+σg (B1(0)) ≤ c‖H j(·,Dṽ j,%)‖L1+σg (B1(0))
(4.2),(4.3)
≤ c

(
‖H%(·,Dv%)‖L1+δg (B1(0)) + 1

)
, (4.6)

with c ≡ c(data, ‖H(·,Dv)‖L1(B2%(x0))).

Step 2: covergence

Let us prove that the sequence {v j} j∈N ⊂ W1,p̄(B1(0)) ∩ W1,∞(B1(0)) of solutions to problem (4.4)
converge to v%, local minimizer on B1(0) of H%(·). By minimality it is

Hj(v j, B1(0)) ≤ Hj(ṽ j,%, B1(0))

≤ H%(ṽ j,%, B1(0)) +

κ∑
ν=1

∫
B1(0)

σν
j |Dṽ j,%|

pν dx

(4.3)
≤ H%(ṽ j,%, B1) + o( j)

(4.2)2
≤ H%(v%, B1(0)) + o( j), (4.7)

which means that (keep (4.2)1 in mind)

v j ⇀ ṽ weakly in W1,p(B1(0)) and ṽ|∂B1(0) = v|∂B1(0) . (4.8)

The content of the previous display allows using weak lower semicontinuity and the minimality of v%
in (4.7) to get

H%(v%, B1(0))
(4.8)2
≤ H%(ṽ, B1(0)) ≤ lim inf

j→∞
H%(v j, B1(0))

≤ lim sup
j→∞

H%(v j, B1(0)) ≤ lim sup
j→∞

Hj(v j, B1(0))

≤ lim sup
j→∞

H%(ṽ j,%, B1(0)) +

κ∑
ν=1

∫
B1(0)

σν
j |Dṽ j,%|

pν dx


(4.3)
≤ H%(v%, B1(0)).

This implies that H%(ṽ, B1(0)) = H%(v%, B1(0)), so using also the strict convexity of z 7→ H%(·, z) we
obtain

ṽ = v% a.e. in B1(0) and lim
j→∞

H%(v j, B1(0)) = H%(v%, B1(0)). (4.9)
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Step 3: fractional Caccioppoli inequality

The minimality of v j in Dirichlet class ṽ j,% + W1,p̄
0 (B1(0)) guarantees the validity of the Euler

Lagrange equation ∫
B1(0)
〈∂H j(x,Dv j),Dϕ〉 dx = 0 (4.10)

for all ϕ ∈ W1, p̄
0 (B1(0)). We take any vector h ∈ Rn \ {0} so that |h| ≤ 2−10, a cut-off function η ∈

C2
c (B1(0)) so that

1B3/4(0) ≤ η ≤ 1B5/6(0), |Dη|2 + |D2η| . 1

and test (4.10) with ϕ := τ−h(η2τhv j). Exploiting the integration by parts formula for finite difference
operators, we obtain

0 =

∫
B1(0)
〈τh∂H j(x,Dv j),D(η2τhv j)〉 dx

=

∫
B1(0)

η2〈τh∂H j(x,Dv j), τhDv j〉 dx

+2
∫

B1(0)
ητhv j〈τh∂H j(x,Dv j),Dη〉 dx =: (I) + (II).

Let us introduce quantities

δ := min
ν∈Iκ

αν, Aν, j :=
(
‖aν,%‖2L∞(B1(0)) + [aν,%]2

0,α;B1(0) + (σν
j)

2
) 1

2pν−p

and set for m ∈
{
p, p1, · · · , pκ

}
D(h) :=

[
|Dv j(x + h)|2 + |Dv j(x)|2

]
, Im(h) :=

∫ 1

0
|Dv j(x + λh)|m−2Dv j(x + λh) dλ.

Notice that there is no loss of generality in assuming that D(h) > 0, otherwise both terms (I)–(II)
identically vanish. Moreover, consider a nonnegative, radially symmetric mollifier φ ∈ C∞(B1(0)),
so that ‖φ‖L1(0) = 1, let φ|h| := |h|−nφ(x/|h|) and regularize for all ν ∈ Iκ coefficient aν,%(·) as done
in [30, Section 5] via convolution against {φ|h|}|h|>0 thus getting aν

|h| := aν,% ∗ φ|h| ∈ C∞(B7/8(0)). The
newly defined coefficients have the following features:

‖aν
|h|‖L∞(B7/8(0)) ≤ ‖aν,%‖L∞(B1(0))

|aν
|h|(x) − aν,%(x)| ≤ 4[aν,%]0,αν;B1(0)|h|αν

|Daν
|h|| ≤ c[aν,%]0,αν;B1(0)|h|αν−1

for all x ∈ B7/8(0), (4.11)

with c ≡ c(n). This will be helpful in a few lines. Finally, we record that whenever γ > 1 and
G ∈ L

γ
γ−1 (B1(0),Rn), F ∈ W1,γ

0 (B5/6(0),Rn) and |h| ≤ 2−10 it is∫
B1(0)
〈τhG, F〉 dx = −|h|

∫
B1(0)

∫ 1

0
〈G(x + λh), ∂h/|h|F〉 dλ dx, (4.12)

Mathematics in Engineering Volume 4, Issue 5, 1–36.



14

see [30, (5.29)]. Now we are ready to estimate terms (I)-(II). Notice that

(I) = p
∫

B1(0)
η2〈τh(|Dv j|

p−2Dv j), τhDv j〉 dx

+

κ∑
ν=1

pν

∫
B1(0)

η2(aν,%(x) + σν
j)〈τh(|Dv j|

pν−2Dv j), τhDv j〉 dx

+

κ∑
ν=1

pν

∫
B1(0)

η2
(
aν,%(x + h) − aν,%(x)

)
〈|Dv j(x + h)|pν−2Dv j(x + h), τhDv j〉 dx

= (I)1 + (I)2 + (I)3.

Via standard monotonicity properties and Lemma 2.3 we bound

(I)1 + (I)2

(2.2)
≥ c

∫
B1(0)

η2|τhVp(Dv j)|2 dx

+c
κ∑
ν=1

∫
B1(0)

η2(aν,%(x) + σν
j)|τhVpν(Dv j)|2 dx,

with c ≡ c(n, p, p1, · · · , pκ), while by Young inequality and standard properties of translation operators
we have

|(I)3| ≤ c
κ∑
ν=1

|h|αν[aν,%]0,αν;B1(0)

∫
B1(0)

η2D(h)
pν−1

2 ±
p−2

4 |τhDv j| dx

≤ ε

∫
B1(0)

η2D(h)
p−2

2 |τhDv j|
2 dx

+
c
ε

κ∑
ν=1

|h|2αν[aν,%]2
0,αν;B1(0)

∫
B1(0)
|Dv j|

2pν−p dx

(2.2)
≤ cε

∫
B1(0)

η2|τhVp(Dv j)|2 dx +
c|h|2δ

ε

κ∑
ν=1

∫
B1(0)

A2pν−p
ν, j |Dv j|

2pν−p dx,

for c ≡ c(n, p, p1, · · · , pκ, κ). Now let us expand term (II):

(II) = 2p
∫

B1(0)
ητhv j〈τh|Dv j|

p−2Dv j,Dη〉 dx

+2
κ∑
ν=1

pνσν
j

∫
B1(0)

ητhv j〈τh(|Dv j|
pν−2Dv j),Dη〉 dx

+2
κ∑
ν=1

pν

∫
B1(0)

ηaν,%(x)τhv j〈τh(|Dv j|
pν−2Dv j),Dη〉 dx

+2
κ∑
ν=1

pν

∫
B1(0)

η
(
aν,%(x + h) − aν,%(x)

)
τhv j〈τh(|Dv j|

pν−2Dv j),Dη〉 dx

=: (II)1 + (II)2 + (II)3 + (II)4.
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Set 1p := 1 if p ≥ 2 and 1p = 0 when p ∈ (1, 2) and estimate via Lemma 2.3, Young inequality

and Hölder inequality with conjugate exponents
(

p
2 ,

p
p−2

)
in the superquadratic case and by (4.12),

Hölder inequality with conjugate exponents
(

p
2(p−1) ,

p
2−p

)
, Jensen inequality and standard properties of

translation operators in the subquadratic case:

|(II)1| ≤ 1p|(II)1| + (1 − 1p)|(II)1|

≤ ε1p

∫
B1(0)

η2D(h)
p−2

2 |τhDv j|
2 dx +

c1p

ε

∫
B1(0)
|Dη|2D(h)

p−2
2 |τhv j|

2 dx

+c|h|(1 − 1p)
∫

B1(0)
|Ip(h)|

[(
|Dη|2 + |D2η|

)
|τhv j| + η|Dη||τhDv j|

]
dx

(2.2)
≤ cε

∫
B1(0)

η2|τhVp(Dv j)|2 dx +
c1p|h|2

ε

∫
B1(0)
|Dv j|

p dx

+c|h|(1 − 1p)

∫
B5/6(0)

|Ip(h)|
p

p−1 dx


p−1

p
∫

B5/6(0)
|τhv j|

p dx

1/p

+c|h|2(1 − 1p)
∫

B5/6(0)
|Ip(h)|2D(h)

2−p
2 dx

≤ cε
∫

B1(0)
η2|τhVp(Dv j)|2 dx +

c|h|2

ε

∫
B1(0)
|Dv j|

p dx

+c|h|2(1 − 1p)

∫
B5/6(0)

|Ip(h)|
p

p−1 dx


2(p−1)

p
∫

B5/6(0)
D(h)p/2 dx


2−p

p

≤ cε
∫

B1(0)
η2|τhVp(Dv j)|2 dx +

c|h|2

ε

∫
B1(0)
|Dv j|

p dx,

for c ≡ c(n, p). Now we abbreviate

(II)ν2 := 2pνσν
j

∫
B1(0)

ητhv j〈τh(|Dv j|
pν−2Dv j),Dη〉 dx;

(II)ν3 := 2pν

∫
B1(0)

ηaν,%(x)τhv j〈τh(|Dv j|
pν−2Dv j),Dη〉 dx,

and bound by means of (2.2), Lemma 2.3, Young inequality, Hölder inequality with conjugate

exponents
(

2pν−p
2 , 2pν−p

2pν−p−2

)
when p ≥ 2 and

(
p, p

p−1

)
,
(
2pν − p, 2pν−p

2pν−p−1

)
,
(

2pν−p
2(pν−1) ,

2pν−p
2−p

)
if p ∈ (1, 2) and

Jensen inequality,

|(II)ν2| ≤ 1p|(II)ν2| + (1 − 1p)|(II)ν2|

≤ ε1p

∫
B1(0)

η2|τhVp(Dv j)|2 dx +
c1p(σν

j)
2

ε

∫
B1(0)
|Dη|2D(h)

2pν−p−2
2 |τhv j|

2 dx

+c|h|(1 − 1p)σν
j

∫
B5/6(0)

∫ 1

0
|Dv j(x + λh)|pν−1|τhv j| dλ dx

+c|h|(1 − 1p)σν
j

∫
B1(0)

η|Dη||Ipν(h)||τhDv j| dx
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≤ ε

∫
B1(0)

η2|τhVp(Dv j)|2 dx +
c|h|2(σν

j)
2

ε

∫
B1(0)
|Dv j|

2pν−p dx

+c|h|(1 − 1p)
∫

B5/6(0)

∫ 1

0

[
(σν

j)
2|Dv j(x + λh)|2pν−p−1 + |Dv j(x + λh)|p−1

]
|τhv j| dx

+c|h|2(1 − 1p)(σν
j)

2

∫
B5/6(0)

|Ipν(h)|
2pν−p
pν−1 dx


2(pν−1)
2pν−p

∫
B5/6(0)

D(h)
2pν−p

2 dx


2−p

2pν−p

≤ ε

∫
B1(0)

η2|τhVp(Dv j)|2 dx +
c|h|2

ε

∫
B1(0)

A2pν−p
ν, j |Dv j|

2pν−p dx, (4.13)

with c ≡ c(n, p, pν). Summing the above inequality for ν ∈ Iκ we can conclude with

|(II)2| ≤

κ∑
ν=1

|(II)ν2|

≤ κε

∫
B1(0)

η2|τhVp(Dv j)|2 dx +
c|h|2

ε

κ∑
ν=1

∫
B1(0)

A2pν−p
ν, j |Dv j|

2pν−p dx,

for c ≡ c(n, p, p1, · · · , pκ, κ). In a similar way, we control

|(II)ν3| ≤ 1p|(II)ν3| + (1 − 1p)|(II)ν3|
(4.11)1,2

≤ cε
∫

B1(0)
η2|τhVp(Dv j)|2 dx

+
c1p‖aν,%‖2L∞(B1(0))

ε

∫
B1(0)
|Dη|2D(h)pν−2− p−2

2 |τhv j|
2 dx

+c(1 − 1p)|h|αν
∫

B5/6(0)

[
[aν,%]2

0,αν;B1(0)D(h)
2pν−p−1

2 + D(h)
p−1

2

]
|τhv j| dx

+c(1 − 1p)|h|‖aν,%‖2L∞(B1(0))

∫
B5/6(0)

∫ 1

0
|Dv j(x + λh)|2pν−p−1|τhv j| dλ dx

+c(1 − 1p)|h|
∫

B5/6(0)

∫ 1

0
|Dv j(x + λh)|p−1|τhv j| dλ dx

+c(1 − 1p)|h|2‖aν,%‖2L∞(B1(0))

∫
B5/6(0)

|Ipν( j)|
2pν−p
pν−1 dx


2(pν−1)
2pν−p

·

∫
B5/6(0)

D(h)
2pν−p

2 dx


2−p

2pν−p

+ c|h|
∫

B5/6(0)
|Ipν(h)||τhv j||Daν|h|| dx

(4.11)3
≤ cε

∫
B1(0)

η2|τhVp(Dv j)|2 dx + c|h|1+αν

∫
B1(0)
|Dv j|

p dx

+
c
ε
|h|1+αν

(
‖aν,%‖2L∞(B1(0)) + [aν,%]2

0,αν;B1(0)

) ∫
B1(0)
|Dv j|

2pν−p dx

+c|h|αν
∫

B5/6(0)

∫ 1

0
[aν,%]2

0,αν;B1(0)|Dv j(x + λh)|2pν−1|τhv j| dλ dx
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+c|h|αν
∫

B5/6(0)

∫ 1

0
|Dv j(x + λh)|p−1|τhv j| dλ dx

≤ cε
∫

B1(0)
η2|τhVp(Dv j)|2 dx + c|h|1+αν

∫
B1(0)
|Dv j|

p dx

+
c|h|1+αν

ε

∫
B1(0)

A2pν−p
ν, j |Dv j|

2pν−p dx, (4.14)

with c ≡ c(n, p, pν). Summing the inequalities in the previous display we obtain

|(II)3| ≤

κ∑
ν=1

|(II)ν3|

≤ cε
∫

B1(0)
η2|τhVp(Dv j)|2 dx + c|h|2δ

∫
B1(0)
|Dv j|

p dx

+
c|h|2δ

ε

κ∑
ν=1

∫
B1(0)

A2pν−p
ν, j |Dv j|

2pν−p dx,

for c ≡ c(n, p, p1, · · · , pκ, κ). We stress that when dealing with terms (II)ν2-(II)ν3 we assumed that
|Dv j(x + λh)| > 0 in the sixth and in the fifth and sixth line of displays (4.13)–(4.14) respectively.
There is no loss of generality in this as otherwise the integrals in such lines would vanish identically.
Concerning term (II)4, we have

|(II)4| ≤ c
κ∑
ν=1

[aν,%]0,αν;B1(0)|h|αν
∫

B5/6(0)
η|Dη||τhv j|D(h)

pν−1
2 dx

≤ c
κ∑
ν=1

|h|αν
∫

B1(0)

[
[aν,%]2

0,αν;B1(0)η
2D(h)

2pν−p−1
2 + D(h)

p−1
2 |Dη|2

]
|τhv j| dx

≤ c|h|2δ
∫

B1(0)
|Dv j|

p dx + c|h|2δ
κ∑
ν=1

∫
B1(0)

A2pν−p
ν, j |Dv j|

2pν−p dx,

with c ≡ c(n, p, p1, · · · , pκ, κ). Combining the content of all the previous displays and suitably reducing
the size of ε > 0 we obtain∫

B1(0)
η2|τhVp(Dv j)|2 dx ≤ c|h|2δ

∫
B1(0)
|Dv j|

p dx

+c|h|2δ
κ∑
ν=1

∫
B1(0)

A2pν−p
ν, j |Dv j|

2pν−p dx, (4.15)

for c ≡ c(n, p, p1, · · · , pκ, κ). At this stage we treat separately the superquadratic case p ≥ 2 and the
subquadratic one p ∈ (1, 2).

Step 4: Higher integrability via interpolation - p ≥ 2

From (2.2) and (4.15) we obtain∫
B3/4(0)

|τhDv j|
p dx ≤ c|h|2δ

∫
B1(0)

|Dv j|
p +

κ∑
ν=1

A2pν−p
ν, j |Dv j|

2pν−p

 dx,
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with c ≡ c(n, p, p1, · · · , pκ, κ), so we apply Lemma 2.1 to deduce that Dv j ∈ W s/p,p(B2/3(0),Rn) for all
s ∈ (0, 2δ), for simplicity choose s = δ, with

‖Dv j‖W s/p,p(B2/3(0)) ≤ c

‖Dv j‖Lp(B1(0)) +

κ∑
ν=1

‖Aν, jDv j‖
2pν−p

p

L2pν−p(B1(0))

 , (4.16)

with c ≡ c(data0, κ). Recall that functional Hj(·) is of multi-phase type so Theorem 3 applies and
v j ∈ C0,γ0(B2/3(0)) for all γ0 ∈ (0, 1) therefore for any 0 < χ < γ0 < 1 and q ≥ 1 it is

[v j]χ,q;B2/3(0) ≤
c[v j]0,γ0;B2/3(0)

(q(γ0 − χ))1/q

(3.4)
< ∞, (4.17)

with c ≡ c(n) so we can apply Lemma 2.2 to get

‖Dv j‖Lt(B1/2(0)) ≤ c[v j]
θ1
χ,q;B2/3(0)‖Dv j‖

1−θ1

W s/p,p(B2/3(0))

(4.16)
≤ c[v j]

θ1
χ,q;B2/3(0)

‖Dv j‖
1−θ1
Lp(B1(0)) +

κ∑
ν=1

‖Aν, jDv j‖

(2pν−p)(1−θ1)
p

L2pν−p(B1(0))

 (4.18)

where χ < γ0 ∈ (0, 1), q > p are arbitrary numbers, c ≡ c(data0, χ, q, θ1, t) and it is

1 = θ1χ + (1 − θ1)
(
1 + s/p

)
and

1
t

=
θ1

q
+

1 − θ1

p
, (4.19)

which in turn yields that
θ1 ≡ θ1(χ) =

s/p
1 − χ + s/p

=⇒ 1 − θ1 =
1 − χ

1 − χ + s/p

t ≡ t(q, χ) :=
qp

pθ1 + q(1 − θ1)
=

q(p(1 − χ) + s)
s + q(1 − χ)

,

(4.20)

We stress that θ1 ≡ θ1(p, α1, · · · , ακ, χ) is increasing with respect to χ and, keeping in mind that q > p,
exponent t ≡ t(p, q, α, α1, · · · , ακ, χ) is increasing with respect to both, χ and q. Next, we fix τ1, τ2 ∈

[1/2, 2/3], τ1 < τ2 and, following [28, Section 3.6] we set σ := (τ2 − τ1)/4 and, for a finite J ⊂ N,
take a covering of Bτ1(0) with a collection of balls {Bσ/2(yι)}ι∈J made by |J| = c(n)(τ2 − τ1)−n balls
so that yι ∈ Bτ1(0) for all ι ∈ J. Notice that such a covering can be chosen in such a way that the
finite intersection property is satisfied, in the sense that each doubled ball Bσ(yι) intersects at most
8n of other doubled balls from the same family. We further scale v j on every ball Bσ(yι) by defining
vι(x) := σ−1(v j(yι + σx) − (v j)Bσ(yι)), aνι (x) := aν,%(yι + σx) and Hι(x, z) :=

[
|z|p +

∑κ
ν=1 aνι (x)|z|pν

]
. Since

v j is the solution of (4.4) and therefore it is a local minimizer of functional Hj(·) on B1(0), it is easy to
see that vι minimizes functional

W1,p̄(B1(0)) 3 w 7→ min
∫

B1(0)
Hι(x,Dw) dx,

and, keeping (4.5) in mind, we see that (4.15) holds for vι as well. Recalling that

[vι]χ,q;B2/3(0) = σχ−1−n/q[v j]χ,q;B2σ/3(yι),
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we can scale back to v j for getting∫
Bσ/2(yι)

|Dv j|
t dx ≤ cσtθ1(χ−1)+n

(
1− tθ1

q −
(1−θ1)t

p

)
[v j]

θ1t
χ,q;B2σ/3(yι)

·

∫Bσ(yι)

|Dv%|p +

κ∑
ν=1

A2pν−p
ν, j |Dv j|

2pν−p

 dx


(1−θ1)t

p

(4.19)2
≤

c[v j]
θ1t
χ,q;B2σ/3(yι)

σtθ1(1−χ)

·

∫Bσ(yι)

|Dv%|p +

κ∑
ν=1

A2pν−p
ν, j |Dv j|

2pν−p

 dx


(1−θ1)t

p

, (4.21)

where it is c ≡ c(data0, χ, q, θ1, t) and we also used that ‖a
ν
ι ‖L∞(B1(0)) = ‖aν,%‖L∞(Bσ(yι)),

[aνι ]0,αν;B1(0) = σαν[aν,%]0,αν;Bσ(yι)
for all ν ∈ Iκ,

which yields that

‖aνι ‖
2
L∞(B1(0)) + [aνι ]

2
0,αν;B1(0) + (σν

j)
2 ≤ A2pν−p

ν, j .

Summing (4.21) for ι ∈ J and using the discrete Hölder inequality
(

q
θ1t ,

p
t(1−θ1)

)
(legal by means of

(4.19)2), we obtain∫
Bτ1 (0)
|Dv j|

t dx ≤
∑
ι∈J

∫
Bσ/2(yι)

|Dv j|
t dx

≤
c

σtθ1(1−χ)

∑
ι∈J

[v j]
θ1t
χ,q;B2σ/3(yι)

·

∫Bσ(yι)

|Dv j|
p +

κ∑
ν=1

A2pν−p
ν, j |Dv j|

2pν−p

 dx


(1−θ1)t

p

≤
c

σtθ1(1−χ)

∑
ι∈J

[v j]
q
χ,q;B2σ/3(yι)


θ1t
q

·

∑
ι∈J

∫
Bσ(yι)

|Dv j|
p +

κ∑
ν=1

A2pν−p
ν, j |Dv j|

2pν−p

 dx


(1−θ1)t

p

≤
c[v j]

θ1t
χ,q;B2/3(0)

(τ2 − τ1)tθ1(1−χ)

∫Bτ2 (0)

|Dv j|
p +

κ∑
ν=1

A2pν−p
ν, j |Dv j|

2pν−p

 dx


(1−θ1)t

p

,
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for c ≡ c(data0, χ, q, θ1, t). Here, we also used that Bσ(yι) ⊂ Bτ2(0) ⊂ B2/3(0) and that Rn 3 ω 7→

[v%]
q
χ,q;ω is superadditive as a set function. All in all, using also (4.17) and (3.4) we get

‖Dv j‖Lt(Bτ1 (0)) ≤
c[v j]

θ1
χ,q;B2/3(0)

(τ2 − τ1)θ1(1−χ)

‖Dv j‖
1−θ1
Lp(Bτ2 (0)) +

κ∑
ν=1

‖Aν, jDv j‖

(2pν−p)(1−θ1)
p

L2pν−p(Bτ2 (0))


≤

c[v j]
θ1
0,γ0;B2/3(0)

(τ2 − τ1)θ1(1−χ)

‖Dv j‖
1−θ1
Lp(Bτ2 (0)) +

κ∑
ν=1

‖Aν, jDv j‖

(2pν−p)(1−θ1)
p

L2pν−p(Bτ2 (0))


≤

cHj(v j, B1(0))θ1/p

(τ2 − τ1)θ1(1−χ)

‖Dv j‖
1−θ1
Lp(Bτ2 (0)) +

κ∑
ν=1

‖Aν, jDv j‖

(2pν−p)(1−θ1)
p

L2pν−p(Bτ2 (0))

 , (4.22)

with c ≡ c(data, ‖H(·,Dv)‖L1+δg (B2%(x0)), δ0, γ0, χ, q, θ1, t). Now fix any d > maxν∈Iκ 2pν − p. A
straightforward computation yields the chain of implications:

χ > 1 −
s

2d − p
=⇒ θ1 > 1 −

p
2d

=⇒
p
2
− d(1 − θ1) > 0,

which in turn implies that we can choose a suitable lower bound on q so that

q > 2d >
dpθ1

p − d(1 − θ1)
=⇒ t > d.

This means that in (4.22) we can use the interpolation inequalities:

‖Dv j‖L2pν−p(Bτ2 (0)) ≤ ‖Dv j‖
1−λν
Lt(Bτ2 (0))‖Dv j‖

λν
Lp(Bτ2 (0)),

where it is

1
2pν − p

=
1 − λν

t
+
λν
p

=⇒ λν =
p(t + p − 2pν)

(2pν − p)(t − p)
and 1 − λν =

2t(pν − p)
(2pν − p)(t − p)

,

for all ν ∈ Iκ, to have

‖Dv j‖Lt(Bτ1 (0)) ≤
c

(τ2 − τ1)θ1(1−χ)Hj(v j, B1(0))1/p

+
cHj(v j, B1(0))θ1/p

(τ2 − τ1)θ1(1−χ)

κ∑
ν=1

A
(2pν−p)(1−θ1)

p

ν, j ‖Dv j‖
Yν/p
Lt(Bτ2 (0))‖Dv j‖

(2pν−p)(1−θ1)λν
p

Lp(Bτ2 (0)) , (4.23)

where

Yν := (2pν − p)(1 − θ1)(1 − λν). (4.24)

At this stage, we can fix q = 4d, notice that

χ > χ1 := max
1 −

s
2d − p

,max
ν∈Iκ

(
1 −

s(4d − p)
8d(pν − p)

) =⇒ Yν/p < 1 (4.25)
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for all ν ∈ Iκ. Furthermore, fixing any µ ∈ (0, 1] and in accordance increasing further the value of χ, it
is

χ2 := max
χ1,max

ν∈Iκ

(
1 −

sµp(4d − p)
(pν − p)(2n(4d − p) + 8µpd)

) < χ
=⇒ max

ν∈Iκ

(
2n(pν − p)(1 − θ1)

p(p − Yν)

)
< µ. (4.26)

From (4.25) we see that we can apply Young inequality with conjugate exponents
(

p
Yν
, p

p−Yν

)
to get

‖Dv j‖Lt(Bτ1 (0)) ≤
1

16
‖Dv j‖Lt(Bτ2 (0)) +

c
(τ2 − τ1)θ1(1−χ)Hj(v j, B1(0))1/p

+

κ∑
ν=1

cHj(v j, B1(0))
pθ1+(2pν−p)(1−θ1)λν

p(p−Yν) A
(2pν−p)(1−θ1)

p−Yν
ν, j

(τ2 − τ1)
pθ1(1−χ)

p−Yν

,

for c ≡ c(data, ‖H(·,Dv)‖L1+δg (B2%(x0)), µ, d). Such a dependency can be justified by the fact that all
the parameters coming from Lemma 2.2 ultimately depend only on (data0, µ, d). The content of the
previous display legalizes an application of Lemma 2.4, so we obtain

‖Dv j‖Lt(B1/2(0)) ≤ cHj(v j, B1(0))1/p

+c
κ∑
ν=1

Hj(v j, B1(0))
pθ1+(2pν−p)(1−θ1)λν

p(p−Yν) A
(2pν−p)(1−θ1)

p−Yν
ν, j , (4.27)

with c ≡ c(data, ‖H(·,Dv)‖L1+δg (B2%(x0)), µ, d).

Step 5: Higher integrability via interpolation - 1<p<2

We jump back to (4.15) and apply Hölder and Young inequalities with conjugate exponents
(

2
p ,

2
2−p

)
to get ∫

B1(0)
η2|τhDv j|

p dx
(2.2)
≤ c

∫
B1

η2|τhVp(Dv j)|2 dx
p/2 ∫

B1(0)
η2D(h)p/2 dx

 2−p
2

(4.15)
≤ c|h|δp

∫
B1(0)
|Dv j|

p dx

+c|h|δp

 κ∑
ν=1

∫
B1(0)

A2pν−p
ν, j |Dv j|

2pν−p dx


p/2 ∫

B1(0)
|Dv j|

p dx
 2−p

2

≤ c|h|δp
∫

B1(0)
|Dv j|

p dx + c|h|δp
κ∑
ν=1

∫
B1(0)

A2pν−p
ν, j |Dv j|

2pν−p dx,

with c ≡ c(n, p, p1, · · · , pκ, κ), which by Lemma 2.1 yields that Dv j ∈ W s,p(B2/3(0),Rn) for all s ∈ (0, δ).
At this stage, upon choosing s = δ/p, the procedure remains identical to the one described for the
superquadratic case, so (4.27) holds also when p ∈ (1, 2).
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Step 6: Conclusions

Notice that Aν, j → Aν as j→ ∞, where

Aν :=
(
‖aν,%‖2L∞(B1(0)) + [aν,%]2

0,αν;B1(0)

) 1
2pν−p

. (4.28)

Moreover, we can use (4.8), (4.9) and weak lower semicontinuity for passing to the limit in (4.27) and
obtain

‖Dv%‖Lt(B1/2(0)) ≤ cH%(v%, B1(0))1/p

+c
κ∑
ν=1

H%(v%, B1(0))
pθ1+(2pν−p)(1−θ1)λν

p(p−Yν) A
(2pν−p)(1−θ1)

p−Yν
ν .

Scaling back to v, using Hölder inequality on the left-hand side to control the Ld-average of v (keep in
mind that t > d) and setting 

Γν1 :=
pθ1 + (2pν − p)(1 − θ1)λν

p(p − Yν)

Γν2 :=
(2pν − p)(1 − θ1)

p − Yν

Γν :=
2(1 − θ1)

p − Yν
,

(4.29)

we obtain ∫−
B%/2(x0)

|Dv|d dx

1/d

≤ c

∫−
B%(x0)

H(x,Dv) dx

1/p

+c
κ∑
ν=1

A
Γν2
ν

∫−
B%(x0)

H(x,Dv) dx

Γν1

, (4.30)

with c ≡ c(data, ‖H(·,Dv)‖L1+δg (B2%(x0)), µ, d). Now notice that the choice of parameters made in Step 4
and definitions (4.24)–(4.29) yield that

Γν1 =
2(pν − p)(1 − θ1)

p(p − Yν)
+

1
p

(4.25)
> 0,

therefore with these expansions (4.30) becomes∫−
B%/2(x0)

|Dv|d dx

1/d

≤ c

∫−
B%(x0)

H(x,Dv) dx

1/p

+c
κ∑
ν=1

A
Γν2
ν

∫−
B%(x0)

H(x,Dv) dx


2(pν−p)(1−θ1)

p(p−Yν) + 1
p

, (4.31)

with c ≡ c(data, ‖H(·,Dv)‖L1+δg (B2%(x0)), µ, d).
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Step 7: Degenerate phase

If degJ(B%(x0)) is in force, we first set µ = 1/2 to remove it from the dependencies of the constants
as it will not have a role in this scenario. Furthermore, (1.1) and a quick computation show that

‖aν‖L∞(B%(x0)) ≤ 4%αν[aν]0,αν;B%(x0) + inf
x∈B%(x0)

aν(x), (4.32)

so (4.32) and the definition in (4.28) yield that

A2pν−p
ν ≤ 4J2%2αν[aν]2

0,αν;B%(x0), (4.33)

which means that we can rearrange (4.31) as∫−
B%/2(x0)

|Dv|d dx

1/d

≤ c

∫−
B%(x0)

H(x,Dv) dx

1/p

+c
κ∑
ν=1

JΓν%
Γν

(
αν−

n(pν−p)
p

)
‖H(·,Dv)‖

Γν(pν−p)
p

L1(B%(x0))

·

∫−
B%(x0)

H(x,Dv) dx

1/p

(1.3)
≤ cJΓ

∫−
B%(x0)

H(x,Dv) dx

1/p

,

where Γ := maxν∈Iκ Γν and c ≡ c(data, ‖H(·,Dv)‖L1+δg (B2%(x0)), d).

Step 8: Nondegenerate/mixed phase

Assume that either ndegJ(B%(x0)) or mixJ(B%(x0)) is in force. Keeping (4.32) in mind, this means
that either (4.33) never holds or that it is verified only for all those indices belonging to d. So it is
convenient to replace (4.33) with

A2pν−p
ν ≤ 20

(
‖aν‖2L∞(B%(x0)) + [aν]2

0,αν;B%(x0)

)
,

so we can conclude via (4.26) that∫−
B%/2(x0)

|Dv|d dx

1/d

≤ c

∫−
B%(x0)

H(x,Dv) dx

1/p

+c%−µ
κ∑
ν=1

‖H(·,Dv)‖
(pν−p)Γν

p

L1(B%(x0))

∫−
B%(x0)

H(x,Dv) dx

1/p

≤ c%−µ
∫−

B%(x0)
H(x,Dv) dx

1/p

,

with c ≡ c(data, ‖aν‖L∞(B2%(x0)), ‖H(·,Dv)‖L1+δg (B2%(x0)), µ, d).
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Step 9: Dependency of constants and their stability under blow up

In Step 1 we stressed that the functional Hj(·) preserves the multi-phase structure, therefore all the
results listed in Section 3 apply. In particular, given that we are working on approximating, rescaled
problems, we are interested in studying the stability of the constants appearing in Theorem 3 when it
is applied to the sequence {v j} j∈N solutions to (4.4) with respect to scaling and passage to the limit as
j → ∞. As already pointed out in Step 1, we notice that by Lemma 3.3, the original local minimizer
v of functional H(·) is locally more integrable, in the sense that whenever B%(x0) ⊂ B2%(x0) b Ω is
any ball with radius % ∈ (0, 1], v ∈ W1,p(1+δg)(B%(x0)) for some δg ≡ δg(data, ‖H(·,Dv)‖L1(B2%(x0))). Such
information is directly transferred on the blown up map v% defined at the very beginning of Step 1,
which now satisfies H%(·,Dv%) ∈ W1,1+δg(B1(0)), where δg ≡ δg(data, ‖H(·,Dv)‖L1(B2%(x0))) is of course
the same higher integrability threshold of v. By (4.2)3 and (4.3) it is ‖H j(·,Dṽ j,%)‖L1(B1(0)) ≤ ‖H%(·,Dv%)‖L1(B1(0)) + 1

‖H j(·,Dṽ j,%)‖L1+δg (B1(0)) ≤ ‖H%(·,Dv%)‖L1+δg (B1(0)) + 1,
(4.34)

for j ∈ N sufficiently large and, clearly, up to relabel there is no loss of generality in assuming that
(4.34) holds for all integers j ≥ 1. Looking at v j, solution to (4.4), we see that a global higher
integrability result applies by means of Lemma 3.4 with δ0 ≡ δg, cf. (4.6) and, by Remark 3.1 the
dependency of c from M0 is nondecreasing and always appears in the form

[aν,%]0,αν;B1(0)M
pν−p

p

0 for all ν ∈ Iκ, (4.35)

where we have also exploited that

[aν,% + σν
j]0,αν;B1(0) ≡ [aν,%]0,αν;B1(0). (4.36)

Precisely, by (4.34)1 it is M0 := ‖H%(·,Dv%)‖L1(B1(0)) + 1, so scaling (4.35) back on B%(x0), we can
conclude that

[aν,%]0,αν;B1(0)M
pν−p

p

0 = %αν−
n(pν−p)

p [aν]0,αν;B%(x0)

(
‖H(·,Dv)‖L1(B%(x0)) + 1

) pν−p
p

(1.3)
≤ [aν]0,αν;B%(x0)

(
‖H(·,Dv)‖L1(B%(x0)) + 1

) pν−p
p
. (4.37)

Recalling that c is nondecreasing in M0, we deduce that

c(data,M0)
(4.35),(4.37)
≤ c(data, ‖H(·,Dv)‖L1(B2%(x0))). (4.38)

The same procedure applies for the constant appearing in the local higher integrability result of
Lemma 3.3 with M = M0 as by minimality it is

‖H j(·,Dv j)‖L1(B1(0)) ≤ ‖H j(·,Dṽ j,%)‖L1(B1(0))

(4.34)1
≤ ‖H%(·,Dv%)‖L1(B1(0)) + 1,

and the dependencies of the constants from Gehring Lemmas have been fixed. We further stress that,
looking at the proof of Gehring Lemmas, [36, Lemmas 4 and 5], [43, Chapter 6] and [42, Theorem 3
and Proposition 1, Chapter 2], we can exploit (4.38) to make sure that the higher integrability thresholds
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δg and σg depend ultimately on (data, ‖H(·,Dv)‖L1(B2%(x0))). From Remark 3.1, we see also that the all
the constants appearing in Theorem 3 are nondecreasing with respect to Mg, with the (obvious) choice
Mg = ‖H%(·,Dv%)‖L1+δg (B1(0)) + 1. In fact, Lemma 3.4 renders

‖H j(·,Dv j)‖L1+σg (B1(0)) ≤ c‖H j(·,Dṽ j,%)‖L1+δg (B1(0))

(4.34)2
≤ c‖H%(·,Dv%)‖L1+δg (B1(0)) + c,

for c ≡ c(data, ‖H(·,Dv)‖L1(B2%(x0))), cf. (4.38). Again, keeping (4.36) in mind, from [36] we have that

this dependency is of the form [aν,%]0,αν;B1(0)M
pν−p

p
g for all ν ∈ Iκ, so scaling back we get

[aν,%]0,αν;B1(0)M
pν−p

p
g = %

αν−
n(pν−p)
p(1+δg) [aν]0,αν;B%(x0)

(
‖H(·,Dv)‖L1+δg (B%(x0)) + 1

) pν−p
p

(1.3)
≤ [aν]0,αν;B%(x0)

(
‖H(·,Dv)‖L1+δg (B%(x0)) + 1

) pν−p
p
,

so we can conclude that c(data,Mg) ≤ c(data, ‖H(·,Dv)‖L1+δg (B2%(x0))). Moreover, looking carefully
to the arguments developed in [36], in addition to those described above, another kind of dependency
appears that seems to be dangerous for our blow up procedure. In fact, suitably adapting [36, Corollary
3] to our framework, we have constants that are nondecreasing functions of [aν,%]0,αν;B1(0)‖v j‖

pν−p
L∞(B5/6(0)) for all ν ∈ Iκ if p(1 + σg) ≤ n

[aν,%]0,αν;B1(0)[v j]
pν−p
0,λg;B5/6(0) for all ν ∈ Iκ if p(1 + σg) > n,

(4.39)

where σg ≡ σg(data, ‖H(·,Dv)‖L1(B2%(x0))) is the higher integrability threshold given by Lemma 3.4,
λg := 1 − n

p(1+σg) is the Hölder continuity exponent given by Morrey’s embedding theorem and we also
used (4.36). Now, if p(1 + σg) ≤ n, we recall from the proof of [36, Lemma 6] that

‖v j‖
p
L∞(B5/6(0)) ≤ c

∫
−
B1(0)

H j(x, v j) dx

≤ c
∫
−
B1(0)

H j(x,Dv j − Dṽ j,%) dx + c
∫
−
B1(0)

H j(x, ṽ j,%) dx

≤ c
∫
−
B1(0)

H j(x,Dṽ j,%) dx
(4.3),(4.34)1
≤ c

(
‖H%(·,Dv%)‖L1(B1(0)) + 1

)
where c ≡ c(data, ‖H(·,Dv)‖L1(B2%(x0))) behaves as described in (4.35) so no issues about it arise, see
also [30, proof of Theorem 1.1]. Here, we also exploited the minimality of v j, that by construction it is
(ṽ j,%)B1(0) = 0 and Poincaré inequality (3.2). This means that scaling back to B%(x0) in (4.39)1 we have

[aν,%]0,αν;B1(0)‖v j‖
pν−p
L∞(B5/6(0)) ≤ c[aν,%]0,αν;B1(0)

(
‖H%(·,Dv%)‖L1(B1(0)) + 1

) pν−p
p

= c%αν−
n(pν−p)

p [aν]0,αν;B%(x0)

(
‖H(·,Dv)‖L1(B%(x0)) + 1

) pν−p
p

(1.3)
≤ c

(
‖H(·,Dv)‖L1(B%(x0)) + 1

) pν−p
p
, (4.40)

for c ≡ c(data, ‖H(·,Dv)‖L1(B2%(x0))) (which, as already mentioned, has been treated in (4.38)). On the
other hand if p(1 + σg) > n, via Morrey embedding theorem, Lemma 3.4 and Poincaré inequality we
have

[v j]0,λg;B5/6(0) ≤ c‖v j‖W1,p(1+σg)(B5/6(0))
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≤ c‖Dv j‖Lp(1+σg)(B5/6(0)) + c‖Dṽ j,%‖Lp(1+σg)(B5/6(0)) + c‖ṽ j,%‖Lp(1+σg)(B5/6(0))

≤ c‖H j(·,Dṽ j,%)‖
1/p
L1+σg (B1(0))

(4.34)2
≤ c

(
‖H%(·,Dv%)‖L1+δg (B1(0)) + 1

)1/p

for c ≡ c(data, ‖H(·,Dv)‖L1(B2%(x0))) and we also used that (ṽ j,%)B1(0) = 0. With this last inequality at
hand, we can jump back to (4.39)2 and conclude as in (4.40).

Remark 4.1. We stress that the constants appearing in (1.4)–(1.5) are nondecreasing with respect to
‖H(·,Dv)‖L1+δg (B2%(x0)) and to J.

5. Applications to Calderón Zygmund estimates

In this section we provide Calderón-Zygmund type estimates for local minimizers of the
nonhomogeneous functional G(·), according to the following definition.

Definition 4. Let H(·, F) ∈ L1
loc(Ω), 0 ≤ a(·) ∈ L∞(Ω) and (1.1)2, (1.8) be in force. A function

u ∈ W1,1
loc (Ω) with H(·,Du) ∈ L1

loc(Ω) is a local minimizer of G(·) if and only if the minimality relation
G(u, B) ≤ G(u + w, B) holds for every ball B b Ω and all w ∈ W1,1

0 (B) with H(·,Dw) ∈ L1(B).

5.1. Proof of Theorem 2

The outline of the proof of Theorem 2 is analogous to the one of [4,29,31], therefore we shall follow
the same steps indicated there and point out only the relevant changes.

Step 1 - Existence and uniform higher integrability

Existence and uniqueness for minima of functional G(·) follows by direct methods under the
minimal assumptions 0 ≤ aν(·) ∈ L∞(Ω) for all ν ∈ Iκ and H(·, F) ∈ L1(Ω), that are in any case
guaranteed by (1.1), (1.8) and (1.9), cf. [29, Remark 1.2] and Definition 4. Moreover, a
straightforward manipulation of [31, Theorem 4] assures that there is a positive higher integrability
threshold δγ ≡ δγ(data,Λ, ‖H(·,Du)‖L1(Ω̃0)) < γ − 1 so that

H(·,Du) ∈ L1+δγ
loc (Ω̃0) (5.1)

and whenever B%(x0) b Ω is a ball with radius % ∈ (0, 1] it is

∫−
B%/2(x0)

H(x,Du)1+δ dx


1

1+δ

≤ c
∫
−
B%(x0)

H(x,Du) dx

+c

∫−
B%(x0)

H(x, F)1+δ dx


1

1+δ

(5.2)

for all δ ∈ (0, δγ] with c ≡ c(data,Λ, ‖H(·,Du)‖L1(B%(x0)), γ).
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Step 2 - Exit time and covering of level sets

Let Ω0 b Ω̃0 b Ω be three open set as in the statement of Theorem 2 and Br b Ω0 be a ball with
radius r ≤ r∗, a threshold that will be fixed in a few lines. We recall that (5.1)–(5.2) and a standard
covering argument render

‖H(·,Du)‖L1+δγ (Ω0) ≤ c(data,Λ, ‖H(·,Du)‖L1(Ω̃0), ‖H(·, F)‖Lγ(Ω̃0), γ, dist(Ω̃0, ∂Ω)). (5.3)

We apply the exit time and covering argument as in [29, Theorem 1.1], which in particular yields the
collection of balls {Bι} ≡ {B%ι(xι)} ≡ {5B̃ι} as denoted in [29, (4.9)–(4.11)]. All such balls are contained
in Br b Ω0.

Step 3 - Comparison, first time

We construct a first comparison problem. Precisely, we let vι ∈ u + W1,p
0 (4Bι) be the solution of

Dirichlet problem

u + W1,p
0 (4Bι) 3 w 7→ minH(w, 4Bι), (5.4)

whose existence and uniqueness is guaranteed by standard direct methods. By minimality, vι satisfied
the integral identity

0 =

∫
−
4Bι
〈∂H(x,Dvι),Dϕ〉 dx, (5.5)

for all ϕ ∈ W1,p
0 (4Bι) so that H(·,Dϕ) ∈ L1(4Bι). Moreover, by the minimality of vι in Dirichlet class

u + W1,p
0 (4Bι), (5.3), Lemma 3.4 and Remark 3.1 we have

∫
−
4Bι

H(x,Dvι) dx ≤
∫
−
4Bι

H(x,Du) dx∫
−
4Bι

H(x,Dvι)1+σg dx ≤ c
∫
−
4Bι

H(x,Du)1+σg dx,

(5.6)

for c, σg ≡ c, σg(datacz) and σg ∈ (0, δγ). To get this dependency, motivated by (5.3) and (5.6)1, we
choose in Lemma 3.4 M0 = ‖H(·,Du)‖L1(Ω̃0). Moreover, by Theorem 4 we have that vι ∈ C1,β0

loc (4Bι) for
some β0 ≡ β0(data0) and, according to Theorem 1, reverse Hölder inequalities (1.4)–(1.5) hold for all
d ∈ [1,∞) and any µ ∈ (0, 1] within 4Bι. Extending u − vι ≡ 0 in Ω \ 4Bι and recalling the definitions
given in Section 2.3, we see that we can proceed as in [29, (4.17)] to get∫

−
4Bι

V(Du,Dvι) dx ≤ cε
∫
−
4Bι

H(x,Du) dx + cε

∫
−
4Bι

H(x, F) dx, (5.7)

for c ≡ c(n,Λ, p, p1, · · · , pκ, κ) and c ≡ c(n,Λ, p, p1, · · · , pκ, κ, ε).

Step 4 - Comparison, second time

We define

a+
ι,ν := sup

x∈2Bι

aν(x) for all ν ∈ Iκ (5.8)
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and notice that Theorem 4 yields that vι ∈ W1,∞(2Bι), therefore setting

Rn 3 z 7→ H+(z) := |z|p +

κ∑
ν=1

a+
ι,ν|z|

pν ,

it trivially holds that H+(Dvι) ∈ L1(2Bι). This means that we can consider the solution wι ∈ vι +

W1,p(2Bι) of the second Dirichlet problem

vι + W1,p
0 (2Bι) 3 w 7→ min

∫
2Bι

H+(Dw) dx. (5.9)

By minimality, wι satisfies 

∫
−
2Bι
〈∂H+(Dwι),Dϕ〉 dx = 0∫

−
2Bι

H+(Dwι) dx ≤
∫
−
2Bι

H+(Dvι) dx,

(5.10)

and in particular (5.10)1 holds for all ϕ ∈ W1,p
0 (2Bι) so that H+(Dϕ) ∈ L1(2Bι). After extending

vι − wι ≡ 0 in Ω0 \ 2Bι, we see that the function vι − wι is admissible in both (5.5)–(5.10)1 so standard
monotonicity arguments yield

∫
−
2Bι

V0(Dvι,Dwι; 2Bι) dx ≤ c
∫
−
2Bι
〈∂H+(Dvι) − ∂H+(Dwι),Dvι − Dwι〉 dx

(5.5),(5.10)1
= c

∫
−
2Bι
〈∂H+(Dvι) − ∂H(x,Dvι),Dvι − Dwι〉 dx

≤ c
κ∑
ν=1

∫
−
2Bι
|a+
ι,ν − aν(x)||Dvι|pν−1|Dvι − Dwι| dx

≤ c
κ∑
ν=1

(
osc
2Bι

aν

) ∫
−
2Bι
|Dvι|pν−1|Dvι − Dwι| dx

=: c
κ∑
ν=1

(I)ν, (5.11)

for c ≡ c(n, p, p1, · · · , pκ, κ). Here we employed again the definitions given in Section 2.3. In the
following we shall introduce three new positive constants, which may vary from line to line, but will
always have the same dependencies:

• cnd ≡ cnd(n,Λ, p, p1, · · · , pκ, κ);
• cm ≡ cm(datacz);
• cd ≡ cd(data,Λ, ‖H(·,Du)‖L1(Ω̃0), ‖H(·, F)‖Lγ(Ω̃0), γ, dist(Ω̃0, ∂Ω)).
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Step 5 - Estimates in the nondegenerate phase

Assume that ndegJ(2Bι) is in force for some J ≥ 4 that will eventually be fixed as a function of
(n,Λ, p, p1, · · · , pκ, κ). In this setting, it is

osc
2Bι

aν ≤ 4%ανι [aν]0,αν;2Bι ≤
4aν(x)

J
for all ν ∈ Iκ. (5.12)

Notice that the very definition of H+(·) and the minimality of wι in class vι+W1,p
0 (2Bι) and of vι in class

u + W1,p
0 (4Bι) yield that∫

−
2Bι

H(x,Dwι) dx ≤

∫
−
2Bι

H+(Dwι) dx

≤

∫
−
2Bι

H+(Dvι) dx

≤

∫
−
2Bι

H(x,Dvι) dx +

κ∑
ν=1

(
osc
2Bι

aν

) ∫
−
2Bι
|Dvι|pν dx

(5.12)
≤ c

∫
−
2Bι

H(x,Dvι) dx ≤ c
∫
−
4Bι

H(x,Du) dx, (5.13)

for c ≡ c(n, κ), so we may estimate via Hölder inequality with conjugate exponents
(
pν,

pν
pν−1

)
,

(I)ν
(5.12)
≤

cnd
J

∫
−
2Bι

aν(x)|Dvι|pν−1|Dvι − Dwι| dx

≤
cnd
J

∫−
2Bι

aν(x)|Dvι|pν dx
 pν−1

pν
∫−

2Bι
aν(x)

[
|Dvι|pν + |Dwι|

pν] dx
1/pν

(5.13)
≤

cnd
J

∫
−
4Bι

H(x,Du) dx,

for c ≡ c(n, p, pν, κ). Summing the content of the above display over ν ∈ Iκ we obtain

κ∑
ν=1

(I)ν ≤
cnd
J

∫
−
4Bι

H(x,Du) dx. (5.14)

Step 8 - Estimates in the mixed phase

Now we assume that mixJ(2Bι) holds with J ≥ 4 still to be fixed, pick any

µ ∈

0,min
ν∈Iκ

1
pν

αν − n(pν − p)
p(1 + δγ)

 (1.3)
, {∅}

(5.3)
=⇒ µ ≡ µ(data, ‖H(·,Du)‖L1(Ω̃0)), (5.15)

where δγ is the higher integrability exponent determined in Step 1 and set

σ0 := min
ν∈Iκ

αν − µpν −
n(pν − p)
p(1 + δγ)

 (1.3),(5.15)
> 0.
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Keeping in mind that

osc
2Bι

aν ≤ 2a+
ι,ν, (5.16)

we can proceed as in [4, Section 6] and apply (1.5) with d = pν and µ as in (5.15) to control

(I)ν ≤ c%ανι

∫
−
2Bι
|Dvι|pν dx

+

(
osc
2Bι

aν

)
|2Bι|

−1
∫

2Bι∩{|Dwι |≥J|Dvι |}
|Dvι|pν−1|Dwι| dx

+

(
osc
2Bι

aν

)
|2Bι|

−1
∫

2Bι∩{|Dwι |<J|Dvι |}
|Dvι|pν−1|Dwι| dx

(5.16)
≤ c(1 + J)%ανι

∫
−
2Bι
|Dvι|pν dx +

c
Jp−1

∫
−
2Bι

a+
ι,ν|Dwι|

pν dx

(5.10)2
≤ c(1 + J)%ανι

∫
−
2Bι
|Dvι|pν dx +

c
Jp−1

∫
−
2Bι

H+(Dvι) dx

(5.6)1
≤ cJ%ανι

∫
−
2Bι
|Dvι|pν dx +

c
Jp−1

κ∑
m=1

%αm
ι

∫
−
2Bι
|Dvι|pm dx +

cnd
Jp−1

∫
−
4Bι

H(x,Du) dx

(1.5)
≤ cmJ%αν−pνµ

ι

∫−
4Bι

H(x,Dvι)1+σg dx
 pν−p

p(1+σg)
∫
−
4Bι

H(x,Du) dx

+
c

Jp−1

κ∑
m=1

%αm−µpm
ι

∫−
4Bι

H(x,Dvι)1+σg dx
 pm−p

p(1+σg)
∫
−
4Bι

H(x,Du) dx

+
cnd
Jp−1

∫
−
4Bι

H(x,Du) dx

(5.3),(5.6)
≤ cmJ%σ0

ι ‖H(·,Du)‖
pν−p

p

L1+δγ (4Bι)

∫
−
4Bι

H(x,Du) dx +
cnd
Jp−1

∫
−
4Bι

H(x,Du) dx

+
cm%

σ0
ι

Jp−1

∫−
4Bι

H(x,Du) dx
 κ∑

m=1

‖H(·,Du)‖
pm−p

p

L1+δγ (4Bι)

≤

(
cmJ%σ0

ι +
cnd
Jp−1

) ∫
−
4Bι

H(x,Du) dx.

We stress that here we also used Remark 4.1 and (5.1)–(5.3) to determine such dependencies for the
various constants appearing above. Summing the above inequalities over ν ∈ Iκ we get

κ∑
ν=1

(I)ν ≤
(
cmJ%σ0

ι +
cnd
Jp−1

) ∫
−
4Bι

H(x,Du) dx. (5.17)

Step 9 - Estimates in the degenerate phase

Finally, we look at the case deg(2Bι). We set

τ0 := min
ν∈Iκ

αν − n(pν − p)
p(1 + δγ)

 (1.3)
> 0

(5.3)
=⇒ τ0 ≡ τ0(data, ‖H(·,Du)‖L1(Ω̃0))
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and as done in Step 8 we estimate

(I)ν ≤ c%ανι

∫
−
2Bι
|Dvι|pν dx

+c|2Bι|
−1

(
osc
2Bι

aν

) ∫
2Bι∩{|Dwι |≥J|Dvι |}

|Dvι|pν−1|Dwι| dx

+c|2Bι|
−1

(
osc
2Bι

aν

) ∫
2Bι∩{|Dwι |<J|Dvι |}

|Dvι|pν−1|Dwι| dx

(5.16)
≤ c(1 + J)%ανι

∫
−
2Bι
|Dvι|pν dx +

c
Jp−1

∫
−
2Bι

a+
ι,ν|Dwι|

pν dx

(5.10)2
≤ cJ%ανι

∫
−
2Bι
|Dvι|pν dx +

c
Jp−1

κ∑
m=1

%αm
ι

∫
−
2Bι
|Dvι|pm dx +

c
Jp−1

∫
−
2Bι

H(x,Dvι) dx

(1.4),(5.6)1
≤ cdJ p̄Γ+1%ανι

∫−
4Bι

H(x,Dvι)1+σg dx
 pν−p

p(1+σg)
∫
−
4Bι

H(x,Dvι) dx

+cdJ p̄Γ−p+1
κ∑

m=1

%αm
ι

∫−
4Bι

H(x,Dvι)1+σg dx
 pm−p

p(1+σg)
∫
−
4Bι

H(x,Dvι) dx

+
cnd
Jp−1

∫
−
4Bι

H(x,Du) dx

(5.3),(5.6)
≤ cdJ2 p̄Γ%τ0

ι ‖H(·,Du)‖
pν−p

p

L1+δγ (4Bι)

∫
−
4Bι

H(x,Du) dx +
cnd
Jp−1

∫
−
4Bι

H(x,Du) dx

+cdJ2p̄Γ%τ0
ι

∫−
4Bι

H(x,Du) dx
 κ∑

m=1

‖H(·,Du)‖
pm−p

p

L1+δγ (4Bι)

≤

(
cdJ2 p̄Γ%τ0

ι +
cnd
Jp−1

) ∫
−
4Bι

H(x,Du) dx.

Summing the content of the previous display over ν ∈ Iκ we obtain
κ∑
ν=1

(I)ν ≤
(
cdJ2 p̄Γ%τ0

ι +
cnd
Jp−1

) ∫
−
4Bι

H(x,Du) dx. (5.18)

Step 10 - Matching phases and comparison estimates

Combining (5.11), (5.14), (5.17) and (5.18) we obtain∫
−
2Bι

V0(Dvι,Dwι; 2Bι) dx ≤ c
(
cmJ%σ0

ι + cdJ2 p̄Γ%τ0
ι +

cnd
Jp−1

) ∫
−
4Bι

H(x,Du) dx, (5.19)

with c ≡ c(n,Λ, p, p1, · · · , pκ, κ), so via triangular inequality we get∫
−
2Bι

V(Du,Dwι) dx ≤ c
∫
−
2Bι

[
V0(Dvι,Dwι; 2Bι) + V(Du,Dvι)

]
dx

(5.7),(5.19)
≤ c

(
ε + cmJrσ0 + cdJ2p̄Γrτ0 +

cnd
Jp−1

) ∫
−
4Bι

H(x,Du) dx
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+cε

∫
−
4Bι

H(x, F) dx, (5.20)

for c ≡ c(n,Λ, p, p1, · · · , pκ, κ). Here we also used that %ι ≤ r, cf. Step 2. Next, we set

S(ε, r, J,M) := cε + ccmJrσ0 + ccdJ2 p̄Γrτ0 +
ccnd
Jp−1 +

cε
M
,

with c ≡ c(n,Λ, p, p1, · · · , pκ, κ) and use the informations contained in [29, (4.14)2] (which come from
a covering and exit time argument, so they do not depend on the particular form of H(·) therefore apply
in our case as well) to establish that∫

−
2Bι

V(Du,Dwι) dx ≤ S(ε, r, J,M)λ, (5.21)

which holds for any J ≥ 4 and for all balls Bι from the covering in Step 2. We stress that (5.21) holds
true independently from the degenerate/nondegenerate/mixed status of H(·). Next, we show that∫

−
2Bι

H+(Dwι) dx ≤ cλ, (5.22)

with c ≡ c(datacz). Assume first that ndegJ(2Bι) holds with J = 10. Then we have∫
−
2Bι

H+(Dwι) dx
(5.10)2
≤

∫
−
2Bι

H+(Dvι) dx

(5.12)
≤ c

∫
−
2Bι

H(x,Dvι) dx ≤ c
∫
−
4Bι

H(x,Du) dx ≤ cλ,

with c ≡ c(data). On the other hand, if degJ(2Bι) or mixJ(2Bι) hold again with J = 10, we have∫
−
2Bι

H+(Dwι) dx
(5.10)2
≤

∫
−
2Bι

H+(Dvι) dx

(5.6)1
≤ c

κ∑
ν=1

%ανι

∫
−
2Bι
|Dvι|pν dx + c

∫
−
4Bι

H(x,Du) dx

(1.5)
≤ c

κ∑
ν=1

%αν−pνµ
ι

∫−
4Bι

H(x,Dvι)1+σg dx
 pν−p

p(1+σg)
∫
−
4Bι

H(x,Dvι) dx

+c
∫
−
4Bι

H(x,Du) dx

(5.3),(5.6)
≤ c%σ0

ι

∫−
4Bι

H(x,Du) dx
 κ∑
ν=1

‖H(·,Du)‖
pν−p

p

L1+δγ (4Bι)
+ c

∫
−
4Bι

H(x,Du) dx

≤ c
∫
−
4Bι

H(x,Du) dx ≤ cλ,

for c ≡ c(datacz) and (5.22) is completely proven.
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Step 11 - A priori estimates for Dwι

Notice that the frozen integrands H+(·) falls into the realm of those treated in [52]; in particular it is

sup
x∈Bι

H+(Dwι) ≤ c
∫
−
2Bι

H+(Dwι) dx
(5.22)
≤ cλ =⇒ sup

x∈Bι
H(·,Dwι) ≤ c∗λ,

with c, c∗ ≡ c, c∗(datacz), where we used the definition in (5.8). At this stage, we can proceed exactly
as in [29, Steps 10 and 11] to first determine J ≡ J(datacz) ≥ 4, then ε ≡ ε(datacz) ∈ (0, 1),
M ≡ M(datacz) and finally the threshold radius r∗ ≡ r∗(datacz) ∈ (0, 1] to obtain (1.10) and the proof
is complete.
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