
In this article, we develop a new mixed immersed finite element discretization for two-dimensional unsteady Stokes interface problems with unfitted meshes. The proposed IFE spaces use conforming linear elements for one velocity component and non-conforming linear elements for the other velocity component. The pressure is approximated by piecewise constant. Unisolvency, among other fundamental properties of the new vector-valued IFE functions, is analyzed. Based on the new IFE spaces, semi-discrete and full-discrete schemes are developed for solving the unsteady Stokes equations with a stationary or a moving interface. Re-meshing is not required in our numerical scheme for solving the moving-interface problem. Numerical experiments are carried out to demonstrate the performance of this new IFE method.
Citation: Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces[J]. Electronic Research Archive, 2021, 29(5): 3171-3191. doi: 10.3934/era.2021032
[1] | Derrick Jones, Xu Zhang . A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, 2021, 29(5): 3171-3191. doi: 10.3934/era.2021032 |
[2] | Nisachon Kumankat, Kanognudge Wuttanachamsri . Well-posedness of generalized Stokes-Brinkman equations modeling moving solid phases. Electronic Research Archive, 2023, 31(3): 1641-1661. doi: 10.3934/era.2023085 |
[3] | Kun Wang, Lin Mu . Numerical investigation of a new cut finite element method for Stokes interface equations. Electronic Research Archive, 2025, 33(4): 2503-2524. doi: 10.3934/era.2025111 |
[4] | Youngmok Jeon, Dongwook Shin . Immersed hybrid difference methods for elliptic boundary value problems by artificial interface conditions. Electronic Research Archive, 2021, 29(5): 3361-3382. doi: 10.3934/era.2021043 |
[5] | Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang . A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29(3): 2375-2389. doi: 10.3934/era.2020120 |
[6] | Bin Wang, Lin Mu . Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29(1): 1881-1895. doi: 10.3934/era.2020096 |
[7] | Hongsong Feng, Shan Zhao . A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, 2021, 29(5): 3141-3170. doi: 10.3934/era.2021031 |
[8] | Linlin Tan, Bianru Cheng . Global well-posedness of 2D incompressible Navier–Stokes–Darcy flow in a type of generalized time-dependent porosity media. Electronic Research Archive, 2024, 32(10): 5649-5681. doi: 10.3934/era.2024262 |
[9] | Yujia Chang, Yi Jiang, Rongliang Chen . A parallel domain decomposition algorithm for fluid-structure interaction simulations of the left ventricle with patient-specific shape. Electronic Research Archive, 2022, 30(9): 3377-3396. doi: 10.3934/era.2022172 |
[10] | Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao . Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29(3): 2489-2516. doi: 10.3934/era.2020126 |
In this article, we develop a new mixed immersed finite element discretization for two-dimensional unsteady Stokes interface problems with unfitted meshes. The proposed IFE spaces use conforming linear elements for one velocity component and non-conforming linear elements for the other velocity component. The pressure is approximated by piecewise constant. Unisolvency, among other fundamental properties of the new vector-valued IFE functions, is analyzed. Based on the new IFE spaces, semi-discrete and full-discrete schemes are developed for solving the unsteady Stokes equations with a stationary or a moving interface. Re-meshing is not required in our numerical scheme for solving the moving-interface problem. Numerical experiments are carried out to demonstrate the performance of this new IFE method.
Let
∂u∂t−∇⋅(μ∇u−pI)=f in Ω×[0,T], | (1) |
∇⋅u=0 in Ω×[0,T], | (2) |
u=0 on ∂Ω×[0,T], | (3) |
u(x,0)=u0,p(x,0)=p0 on Ω, | (4) |
where
dxdt=v(x,t),onΓ(t)×[0,T]. | (5) |
The viscosity function
μ(x)={μ− in Ω−(t),μ+ in Ω+(t), | (6) |
where
[[u]]Γ=0, | (7) |
[[(μ∇u−pI)n]]Γ=0, | (8) |
where the jump
Numerical approximations of the Stokes equation have been extensively studied for many years due to its wide applicability to model natural phenomena such as airflow, water flow, and ocean currents. The family of Taylor-Hood finite elements [35] uses conforming
Traditional numerical methods use interface-fitted meshes for solving interface problems. For fluid flow interface problems, the arbitrary Lagrangian-Eulerian (ALE)-based finite element is a popular numerical method [7,22,37]. Recently, there has been a growing interest in developing unfitted-mesh numerical methods for solving a variety of interface problems, see Figure 2. Comparing with conventional fitted-mesh methods, such as classical FE and DG methods, the unfitted-mesh methods do not require the alignment of the mesh with a prescribed nontrivial interface; hence it is more desirable for time-dependent problems with moving interfaces. In the past decades, several unfitted-mesh methods have been developed for solving Stokes interface problems, such as CutFEM [15], Nitsche's FEM [36], XFEM[9], fictitious domain FEM [31,34], to name only a few. The immersed finite element method (IFEM) [24,26,18,11,14,30] is a class of unfitted-mesh finite element methods for solving interface problems. The main idea of IFEM is to incorporate the interface jump conditions in the construction of IFE basis functions. Unlike other aforementioned unfitted-mesh methods, the IFE space is isomorphic to the standard FE space with no interface. Consequently, not only is the mesh independent of the interface in an IFEM, but also the number and the location of the degrees of freedom are interface-independent. For time-dependent interface problems with a moving interface, the linear system has the same size at each time level and the nonzero entries remain at the same locations [10,12,13,16,17]. Moreover, the method-of-lines technique can be utilized together with IFEM for solving moving interface problems [25].
There have been some IFE methods developed for steady-state Stokes interface problems. In [1,3] the
The goal of this paper is two-fold. First, we develop a lowest-order conforming-nonconforming mixed IFE space for the Stokes equation based on [21]. Comparing with the IDG method [1] and the Taylor-Hood IFE method [5], our new IFE method has no additional consistency and stability terms, so the numerical formulation is much simpler to implement. Comparing with the CR-
The second goal is to apply this mixed IFE method for solving unsteady Stokes equations with a moving interface. We will use the new vector-valued IFE spaces for semi-discretization, and use the prototypical backward-Euler and Crank-Nicolson scheme for full-discretization. Our method does not require re-meshing at any time level. Since the degrees of freedom are also independent of the interface, there is no need to overhaul the global matrices at each time level. Instead, only local modification is carried out on elements where the interface configuration changed during two consecutive time steps.
The rest of the paper is organized as follows. In Section 2, we construct the new mixed IFE spaces for Stokes equations. In Section 3, we report some fundamental properties of the new IFE spaces. In section 4, we present the semi-discrete and the full-discrete IFE method for solving unsteady Stokes interface problems with a moving interface. Some numerical examples are reported in Section 5. A brief conclusion is given in Section 6.
In this section, we introduce the mixed conforming-nonconforming IFE spaces for Stokes equations. Let
● (H1) The interface
● (H2) If
● (H3) The interface
Let
λj,T(Ai)=δij,i,j=1,2,3, | (9) |
where
1|ei|∫eiψj,T(x,y)ds=δij,i,j=1,2,3. | (10) |
Thus
ψj,T=(ψj,T00),j=1,2,3,ψj,T=(0λj−3,T0),j=4,5,6,ψ7,T=(001). | (11) |
Similarly, we can also form the
˜ψj,T=(λj,T00),j=1,2,3,˜ψj,T=(0ψj−3,T0),j=4,5,6,˜ψ7,T=(001). | (12) |
The
In this subsection, we extend these conforming-nonconforming finite elements to the IFE spaces on each interface triangle
ˆA1=(0,0),ˆA2=(1,0),ˆA3=(0,1). |
Note that an arbitrary triangle with vertices
(ˆxˆy)=(x2−x1x3−x1y2−y1y3−y1)−1(x−x1y−y1). | (13) |
To simplify the notation, we still use
We construct the vector-valued IFE shape functions in terms of the FE functions
ϕj,T(x,y)={7∑i=1c+ijψi,T(x,y),if(x,y)∈T+,7∑i=1c−ijψi,T(x,y),if(x,y)∈T−,j=1,2,⋯,7. | (14) |
It can be observed that each vector-valued IFE shape function
● Three edge-value conditions:
1|ek|∫ekϕj,Tds=(δjk00),k=1,2,3. | (15) |
● Three nodal-value conditions:
ϕj,T(Ak−3)=(0δjk0),k=4,5,6. | (16) |
● One mean-pressure-value condition:
1|T|∫Tϕj,Tdxdy=(00δjk),k=7. | (17) |
● Four continuity conditions of the velocity to incorporate (7):
[[ϕ1,j(D)]]=[[ϕ2,j(D)]]=[[ϕ1,j(E)]]=[[ϕ2,j(E)]]=0. | (18) |
● Two stress continuity conditions to incorporate (8):
[[μ(∂xϕ1,jn1+∂yϕ1,jn2)−ϕp,jn1]]¯DE=0, | (19) |
[[μ(∂xϕ2,jn1+∂yϕ2,jn2)−ϕp,jn2]]¯DE=0. | (20) |
● One continuity of the divergence condition to incorporate (2):
[[∂xϕ1,j+∂yϕ2,j]]¯DE=0. | (21) |
Here, in (18)-(21), the scalar function
MIcj=ej | (22) |
where the coefficient matrix
MI(:,1:7)=(dd2−dd−d200000000000e−e2e2−ee0000000100000000000000000000000de−11−2d2d−10000000d−1−d002e−11−2e−10000000e−10−e0−2d2d+4e−4e−dd0−e−2e2e0−2d−ee2d−d0−2210−10) |
and
MI(:,8:14)=(1−dd−d2d2−d00000100000e2−ee−e21−e00000000000000010000000100000001−de12d−11−2d00000001−dd001−2e2e−110000001−e0e02dρ−2(d+2e)ρ4eρdρ−dρ0e2eρ−2eρ0(2d+e)ρ−eρ−2dρd02−2−1010) |
with
cj=(c+1j,c+2j,c+3j,c+4j,c+5j,c+6j,c+7j,c−1j,c−2j,c−3j,c−4j,c−5j,c−6j,c−7j)t,ej=(δj1,δj2,δj3,δj4,δj5,δj6,δj7,0,0,0,0,0,0,0)t. |
We can obtain the vector-valued IFE shape functions
As an illustration, we plot the three components of the CR-
The local CR-
Sh(Th)={v=(v1,v2,vp)t∈[L2(Ω)]3:vsatisfies conditionsC1-C3}. | (23) |
C1:
C2:
C3:
We can construct the
˜Sh(Th)={v=[v1,v2,vp]t∈[L2(Ω)]3:satisfies conditionsC4-C6}. | (24) |
C4:
C5:
C6:
Remark 1. In many cases, the momentum equation (1) of the Stokes system is written as
∂u∂t−∇⋅(2μϵ(u)−pI)=f | (25) |
where the stress is expressed using the strain tensor
[[(2μϵ(u)−pI)n]]Γ=0. | (26) |
Since the viscosity coefficient
2μ∇⋅ϵ(u)=μΔu. |
Hence, these two equations are equivalent in this case. In construction of IFE shape functions, only (19)-(20) need to be replaced by the following two conditions
[[μ(2∂xϕ1,jn1+(∂yϕ1,j+∂xϕ2,j)n2)−ϕp,jn1]]¯DE=0, | (27) |
[[μ((∂xϕ2,j+∂yϕ1,j)n1+2∂yϕ2,jn2)−ϕp,jn2]]¯DE=0. | (28) |
The local CR-
In this section, we present some basic properties of the mixed conforming-nonconforming IFE spaces.
Theorem 3.1 (Unisolvency). The CR-
Proof. We show the unisolvency by considering the invertibility of the coefficient matrices
det(MI)=−4(d4(1−de)+d2e2(2−d−e)+e4(1−d)+ρde(d4+de2+d2e2+e3))<0. |
For the Type Ⅱ interface element, we have
det(MII)=D1+ρD2 |
where
D1=−4(1−d)e((−1+d)4+4(−1+d)3e+7(−1+d)2e2+(−5+6d)e3+2e4)=−4(1−d)e((1−d)3−4(1−d)3e+7(1−d)2e2−6(1−d)e3+e3+2e4)≤−4(1−d)e((1−d)3−4(1−d)3e+7(1−d)2e2−6(1−d)e3+3e4)=−4(1−d)e((1−d)2(1−d−2e)2+3e2(1−d−e)2)<0, |
and with
D2=−4(4e2(e−s)2+s2(2e−s)2)−4es(2e4+e3(1−6s)+7e2s2−4es3+s4)≤−4(4e2(e−s)2+s2(2e−s)2)−4es(3e4−6e3s+7e2s2−4es3+s4)=−4(4e2(e−s)2+s2(2e−s)2)−4es(3e2(e−s)2+s2(2e−s)2)<0. |
For the Type Ⅲ interface element, we have
det(MIII)=D3+ρD4 |
where
D3=−4(−1+d)2(1−2(−1+d)2d+d(−4+d(−1+2d))e−(−2+d)(1+2d)e2+(−2+d)e3)=−4s2(s(1−t)2t+s2(1−t)+t(2s3+t2−2s2t))≤−4s2(s(1−t)2t+s2(1−t)+ts3+t(s2−t)2)<0 |
and with
D4=−4(3s4−9s3t+s4t−2s5t+8s2t2+2s3t2+2s4t2−4st3−s2t3−s3t3+t4)<0. |
The determinants of coefficient matrices are uniformly nonzero for all
The following theorems provide basic properties of the new IFE functions. The proofs of these results can be verified by direct calculation, hence we omit the proof in this paper. For more details, we refer the readers to some earlier references [1,20].
Theorem 3.2 (Consistency). Let
● If
● If the interface moves out of a triangle
min{|T−|,|T+|}|T|→0, | (29) |
the IFE shape functions
Remark 2. The consistency (29) enables us to use IFE functions for solving Stokes moving interface problem efficiently. In fact, as the interface moves out of an element, the IFE functions smoothly convert to the FE functions. No extra condition is needed to enforce this transition.
Theorem 3.3 (Continuity of Velocity). Let
Theorem 3.4 (Partition of Unity). Let
3∑j=1ϕj,T(x,y)=(100),6∑j=4ϕj,T(x,y)=(010),ϕ7,T(x,y)=(001). | (30) |
In this section, we first derive the weak form of the unsteady Stokes interface problem (1)-(8), and then develop the semi-discrete and full-discrete IFE schemes. We use
Taking the inner product with
(ut,v)Ω−+(μ∇u−pI,∇v)Ω−−((μ∇u−pI)n∂Ω−,v)∂Ω−=(f,v)Ω−. |
Here the second term is the inner product of two tensors
(ut,v)Ω−+(μ∇u−pI,∇v)Ω−−((μ∇u−pI)nΓ,v)Γ=(f,v)Ω−. |
Similar argument applying to the subdomain
(ut,v)Ω++(μ∇u−pI,∇v)Ω++((μ∇u−pI)nΓ,v)Γ=(f,v)Ω+. |
Adding the above two equations together, and applying the interface jump condition (8), we have
(ut,v)+(μ∇u,∇v)−(p,∇⋅v)=(f,v). |
Multiplying
(q,∇⋅u)=0. | (31) |
Define the bilinear form and the linear form
a(w,v)=(μ∇w,∇v),∀w,v∈[H10(Ω)]2, | (32) |
b(v,q)=−(q,∇⋅v),∀v∈[H10(Ω)]2,∀q∈L20(Ω). | (33) |
Here,
Weak Form: Find
(ut,v)+a(u,v)+b(v,p)=(f,v),∀v∈[H10(Ω)]2, | (34) |
b(u,q)=0,∀q∈L20(Ω), | (35) |
and subject to the initial conditions
For semi-discretization in space, we use the CR-
Semi-discrete IFE Scheme: Find
(∂tuh,vh)+a(uh,vh)+b(vh,ph)=(fh,vh),∀vh∈U1h×U2h, | (36) |
b(uh,qh)=0,∀qh∈Wh, | (37) |
and subject to the initial conditions
uh(x,0)=u0,h(x),p(x,0)=p0,h(x), | (38) |
where
Matrix Form: Find the vector function
M(t)U′(t)+A(t)U(t)=F(t), | (39) |
U(0)=U0, | (40) |
where
Remark 3. Since the interface
Let
M(tn+θ)U′(tn+θ)+A(tn+θ)U(tn+θ)=F(tn+θ). | (41) |
Using the following finite-difference approximations in (41)
M(tn+θ)U′(tn+θ)≈M(tn+θ)U(tn+1)−U(tn)τ≈1τ(M(tn+1)U(tn+1)−M(tn)U(tn)), | (42) |
A(tn+θ)U(tn+θ)≈(1−θ)A(tn)U(tn)+θA(tn+1)U(tn+1), | (43) |
F(tn+θ)≈(1−θ)F(tn)+θF(tn+1), | (44) |
we can obtain the following full-discrete IFE scheme.
Full-discrete IFE Scheme: Given initial vector
(1τMn+1+θAn+1)Un+1=(1τMn−(1−θ)An)Un+(1−θ)Fn+θFn+1. | (45) |
Note that when
(1τMn+1+An+1)Un+1=1τMnUn+Fn+1. | (46) |
When
(1τMn+1+12An+1)Un+1=(1τMn−12An)Un+12(Fn+Fn+1). | (47) |
Remark 4. For the time-dependent Stokes interface problem with a stationary interface, i.e.
Remark 5. For the time-dependent Stokes interface problem with a moving interface, although the matrices
In this section, we report some numerical experiments for the mixed conforming-nonconforming IFE methods for the Stokes interface problems. We test both the interpolation and the IFE solution with various configurations of the interface and coefficient jumps. All of our numerical experiments are performed on a family of Cartesian triangular meshes which are obtained by first partitioning the domain into
We investigate the approximation property of IFE space by the interpolation. Define the CR-
Ih(u,p)|T=Ih,T(u,p)={∑7j=1cjϕj,T, if T∈Tih,∑7j=1cjψj,T, if T∈Tnh, | (48) |
where
cj=1|ej|∫eju1(x,y)ds,1≤j≤3,cj=u2(Aj−3),4≤j≤6, |
and
c7=1|T|∫Tp(x,y)dxdy, |
where
e0(u1,I)=‖u1−u1,I‖L2(Ω),e0(u2,I)=‖u2−u2,I‖L2(Ω),e0(pI)=‖p−pI‖L2(Ω), |
e1(u1,I)=|u1−u1,I|H1(Ω),e1(u2,I)=|u2−u2,I|H1(Ω), |
where
Example 5.1 (Interpolation Accuracy). In this example, we test the approximation capability of the new vector valued IFE space using interpolation. Since the interpolation is a time-independent procedure, we use a steady-state solution given in [1,20] for this experiment. Let the domain be
u(x,y)={u1={y(x2+y2−0.3)μ+, if (x,y)∈Ω+,y(x2+y2−0.3)μ−, if (x,y)∈Ω−,u2={−x(x2+y2−0.3)μ+, if (x,y)∈Ω+,−x(x2+y2−0.3)μ−, if (x,y)∈Ω−,andp(x,y)=110(x3−y3). | (49) |
We first test a moderate coefficient contrast with
e0(ui,I)≈O(h2),e1(ui,I)≈O(h),e0(pI)≈O(h), | (50) |
N | rate | rate | rate | rate | rate | |||||
5.36e-3 | n/a | 1.15e-2 | n/a | 7.02e-2 | n/a | 1.21e-1 | n/a | 1.54e-1 | n/a | |
1.39e-3 | 1.95 | 3.03e-3 | 1.92 | 3.14e-2 | 1.16 | 5.80e-2 | 1.06 | 7.32e-2 | 1.06 | |
3.59e-4 | 1.95 | 7.84e-4 | 1.95 | 1.46e-2 | 1.10 | 2.85e-2 | 1.02 | 3.73e-2 | 0.96 | |
9.20e-5 | 1.96 | 2.03e-4 | 1.95 | 5.28e-3 | 1.47 | 1.45e-2 | 0.98 | 1.91e-2 | 0.97 | |
2.33e-5 | 1.98 | 5.14e-5 | 1.98 | 2.10e-3 | 1.33 | 7.34e-3 | 0.98 | 9.66e-3 | 0.98 | |
5.85e-6 | 1.99 | 1.29e-5 | 1.99 | 8.47e-4 | 1.31 | 3.68e-3 | 1.00 | 4.85e-3 | 0.99 | |
rate | 1.98 | 1.96 | 1.29 | 1.00 | 0.99 |
N | rate | rate | rate | rate | rate | |||||
1.16e-2 | n/a | 5.44e-3 | n/a | 1.44e-1 | n/a | 1.49e-1 | n/a | 1.30e-1 | n/a | |
3.08e-3 | 1.92 | 1.42e-3 | 1.94 | 5.93e-2 | 1.29 | 7.47e-2 | 1.00 | 5.80e-2 | 1.16 | |
5.15e-4 | 1.95 | 2.36e-4 | 1.96 | 2.14e-2 | 1.18 | 3.08e-2 | 0.96 | 2.37e-2 | 0.98 | |
7.94e-4 | 1.96 | 3.65e-4 | 1.97 | 2.70e-2 | 1.14 | 3.76e-2 | 0.99 | 2.88e-2 | 1.00 | |
5.15e-5 | 1.99 | 2.34e-5 | 1.99 | 3.56e-3 | 1.43 | 9.69e-3 | 0.98 | 7.35e-3 | 0.99 | |
1.29e-5 | 1.99 | 5.86e-6 | 2.00 | 1.32e-3 | 1.43 | 4.86e-3 | 0.99 | 3.68e-3 | 1.00 | |
rate | 1.89 | 1.90 | 1.31 | 0.95 | 0.98 |
where
Next, we test a larger coefficient jump (
N | rate | rate | rate | rate | rate | |||||
1.01e-2 | n/a | 4.86e-2 | n/a | 2.81e-0 | n/a | 1.35e-1 | n/a | 1.26e-1 | n/a | |
2.73e-3 | 1.88 | 1.28e-3 | 1.92 | 1.21e-0 | 1.21 | 6.77e-2 | 1.00 | 5.31e-2 | 1.24 | |
7.19e-4 | 1.93 | 3.33e-4 | 1.95 | 5.75e-1 | 1.08 | 3.43e-2 | 0.98 | 2.66e-2 | 1.00 | |
1.86e-4 | 1.95 | 8.59e-5 | 1.97 | 1.98e-2 | 1.54 | 1.75e-2 | 0.97 | 1.34e-2 | 0.99 | |
4.73e-5 | 1.98 | 2.15e-5 | 1.98 | 7.26e-2 | 1.45 | 8.91e-3 | 0.98 | 6.79e-3 | 0.98 | |
1.19e-5 | 1.99 | 5.40e-6 | 1.99 | 2.59e-2 | 1.49 | 4.49e-3 | 0.99 | 3.41e-3 | 0.99 | |
rate | 1.95 | 1.90 | 1.45 | 0.98 | 1.03 |
rate | rate | rate | rate | rate | ||||||
5.11e-2 | n/a | 2.32e-2 | n/a | 3.38e-1 | n/a | 6.04e-1 | n/a | 4.61e-1 | n/a | |
1.29e-2 | 1.99 | 5.82e-3 | 1.99 | 9.59e-2 | 1.82 | 3.02e-1 | 1.00 | 2.29e-1 | 1.01 | |
3.23e-3 | 1.99 | 1.46e-3 | 2.00 | 2.36e-2 | 2.03 | 1.51e-1 | 1.00 | 1.15e-1 | 1.00 | |
8.09e-4 | 2.00 | 3.66e-4 | 2.00 | 1.07e-2 | 1.14 | 7.58e-2 | 1.00 | 5.73e-2 | 1.00 | |
2.02e-4 | 2.00 | 9.14e-5 | 2.00 | 3.41e-3 | 1.65 | 3.79e-2 | 1.00 | 2.87e-2 | 1.00 | |
5.06e-5 | 2.00 | 2.29e-5 | 2.00 | 1.37e-3 | 1.32 | 1.90e-2 | 1.00 | 1.43e-2 | 1.00 | |
rate | 2.00 | 2.00 | 1.58 | 1.00 | 1.00 |
Example 5.2 (Unsteady Stokes Equation with Fixed Interface). In this example, we consider a time-dependent Stokes equation with a fixed interface. The domain
u(x,y,t)={u1={y(x2+y2−0.3)μ+e3t, if (x,y)∈Ω+,y(x2+y2−0.3)μ−e3t, if (x,y)∈Ω−,u2={−x(x2+y2−0.3)μ+e3t, if (x,y)∈Ω+,−x(x2+y2−0.3)μ−e3t, if (x,y)∈Ω−,p(x,y)=110(x3−y3). | (51) |
Table 5 and Table 6 report the backward-Euler and the Crank-Nicolson IFE solutions at the final time
e0(uih)≈O(h2+τk),e1(uih)≈O(h+τk),e0(ph)≈O(h+τk), | (52) |
N | rate | rate | rate | rate | rate | |||||
2.49e-1 | n/a | 1.72e-1 | n/a | 9.46e-0 | n/a | 2.95e-0 | n/a | 2.83e-0 | n/a | |
6.86e-2 | 1.86 | 4.70e-2 | 1.87 | 4.70e-0 | 1.01 | 1.51e-0 | 0.97 | 1.38e-0 | 1.03 | |
1.69e-2 | 2.02 | 1.18e-2 | 1.99 | 2.44e-0 | 0.95 | 7.65e-1 | 0.98 | 7.14e-1 | 0.96 | |
3.87e-3 | 2.13 | 3.54e-3 | 1.74 | 1.15e-0 | 1.08 | 3.94e-1 | 0.96 | 3.69e-1 | 0.95 | |
1.57e-3 | 1.31 | 1.65e-3 | 1.10 | 6.23e-1 | 0.88 | 2.04e-1 | 0.95 | 1.91e-1 | 0.95 | |
8.69e-4 | 0.85 | 9.07e-4 | 0.86 | 3.35e-1 | 0.90 | 1.07e-1 | 0.93 | 1.02e-1 | 0.91 | |
rate | 1.69 | 1.54 | 0.97 | 0.96 | 0.96 |
N | rate | rate | rate | rate | rate | |||||
2.51e-1 | n/a | 1.72e-1 | n/a | 9.02e-0 | n/a | 2.94e-0 | n/a | 2.79e-0 | n/a | |
7.25e-2 | 1.79 | 5.02e-2 | 1.77 | 4.51e-0 | 1.00 | 1.50e-0 | 0.97 | 1.36e-0 | 1.04 | |
1.92e-2 | 1.92 | 1.39e-2 | 1.85 | 2.34e-0 | 0.94 | 7.62e-1 | 0.98 | 6.98e-1 | 0.96 | |
4.33e-3 | 2.15 | 3.27e-3 | 2.09 | 1.11e-0 | 1.08 | 3.92e-1 | 0.96 | 3.61e-1 | 0.95 | |
9.96e-4 | 2.12 | 7.94e-4 | 2.04 | 5.97e-1 | 0.89 | 2.03e-1 | 0.95 | 1.87e-1 | 0.95 | |
2.39e-4 | 2.06 | 2.33e-4 | 1.76 | 3.20e-1 | 0.90 | 1.06e-1 | 0.93 | 1.02e-1 | 0.91 | |
rate | 2.03 | 1.93 | 0.97 | 0.96 | 0.96 |
where
Example 5.3 (Unsteady Stokes Equation: Circular Moving Interface). In this example we test our mixed IFE method on a Stokes moving interface problem. The interface curve is a circle centered at origin with a varying radius. The function for the interface curve is given as
Γ(x,y,t)=x2+y2−0.3(12sin(2πt)+1). |
It can be seen that at time
u(x,y,t)={u1={1μ+yΓ(x,y,t), if (x,y)∈Ω+(t),1μ−yΓ(x,y,t), if (x,y)∈Ω−(t),u2={−1μ+xΓ(x,y,t), if (x,y)∈Ω+(t),−1μ−xΓ(x,y,t), if (x,y)∈Ω−(t),p(x,y)=110(x3−y3). | (53) |
In this experiment, we set the time step size
N | rate | rate | rate | rate | rate | |||||
7.85e-3 | n/a | 1.14e-2 | n/a | 4.83e-1 | n/a | 1.36e-1 | n/a | 1.51e-1 | n/a | |
2.05e-3 | 1.94 | 2.95e-3 | 1.95 | 2.41e-1 | 1.00 | 7.02e-2 | 0.95 | 7.45e-2 | 1.02 | |
5.13e-4 | 2.00 | 6.54e-4 | 2.17 | 1.24e-1 | 0.96 | 3.57e-2 | 0.98 | 3.82e-2 | 0.96 | |
1.68e-4 | 1.61 | 1.32e-4 | 2.30 | 5.78e-2 | 1.10 | 1.84e-2 | 0.96 | 1.96e-2 | 0.96 | |
8.54e-5 | 0.98 | 6.68e-5 | 0.99 | 3.12e-2 | 0.89 | 9.52e-3 | 0.95 | 1.01e-2 | 0.95 | |
rate | 1.67 | 1.93 | 1.00 | 0.96 | 0.97 |
N | rate | rate | rate | rate | rate | |||||
1.17e-2 | n/a | 1.29e-2 | n/a | 1.25e-0 | n/a | 1.44e-1 | n/a | 1.41e-1 | n/a | |
3.86e-3 | 1.60 | 4.56e-3 | 1.50 | 8.16e-1 | 0.61 | 7.99e-2 | 0.85 | 7.01e-1 | 1.01 | |
1.20e-3 | 1.69 | 1.42e-3 | 1.69 | 5.10e-1 | 0.68 | 3.80e-2 | 1.07 | 3.56e-2 | 0.98 | |
2.02e-4 | 2.57 | 2.50e-4 | 2.50 | 2.00e-1 | 1.35 | 1.74e-2 | 1.12 | 1.78e-2 | 1.00 | |
3.48e-5 | 2.54 | 4.21e-5 | 2.57 | 8.70e-2 | 1.20 | 8.43e-3 | 1.05 | 9.01e-3 | 0.98 | |
rate | 2.10 | 2.07 | 0.97 | 1.04 | 1.04 |
The condition numbers of the IFE systems are reported in Tables 9 and 10. We monitor the condition numbers at
t=0.25 | 3.03e+05 | 5.94e+04 | 2.80e+05 | 1.38e+07 | 1.31e+09 | |
1.04e+06 | 7.82e+05 | 4.36e+06 | 1.11e+08 | 1.40e+10 | ||
2.69e+08 | 6.06e+06 | 6.87e+07 | 9.06e+08 | 4.64e+11 | ||
6.51e+10 | 7.07e+07 | 1.09e+09 | 8.46e+09 | 8.48e+12 | ||
1.30e+12 | 7.27e+08 | 1.74e+10 | 8.15e+10 | 6.26e+14 | ||
t=0.75 | 2.07e+04 | 4.24e+04 | 2.80e+05 | 1.22e+07 | 1.78e+09 | |
1.04e+06 | 7.82e+05 | 4.36e+06 | 1.64e+08 | 2.22e+10 | ||
1.15e+08 | 9.36e+06 | 6.87e+07 | 1.67e+09 | 1.79e+11 | ||
2.44e+09 | 1.11e+08 | 1.09e+09 | 1.62e+10 | 7.07e+13 | ||
1.22e+10 | 9.29e+08 | 1.74e+10 | 1.16e+11 | 2.66e+15 | ||
t=1 | 2.34e+06 | 3.68e+04 | 2.80e+05 | 1.26e+07 | 1.10e+09 | |
7.76e+06 | 5.65e+05 | 4.36e+06 | 1.08e+08 | 1.94e+10 | ||
4.30e+07 | 8.53e+06 | 6.87e+07 | 1.41e+09 | 1.59e+13 | ||
2.99e+08 | 9.10e+07 | 1.09e+09 | 1.05e+10 | 3.93e+13 | ||
7.30e+11 | 8.24e+08 | 1.74e+10 | 9.94e+10 | 2.72e+15 |
t=0.25 | 4.92e+05 | 7.56e+04 | 2.88e+05 | 1.39e+07 | 1.32e+09 | |
1.43e+06 | 9.20e+05 | 4.42e+06 | 1.12e+08 | 1.40e+10 | ||
3.29e+08 | 6.58e+06 | 6.92e+07 | 9.08e+08 | 4.65e+11 | ||
7.54e+10 | 7.37e+07 | 1.10e+09 | 8.48e+09 | 8.48e+12 | ||
1.43e+12 | 7.42e+08 | 1.74e+10 | 8.16e+10 | 6.26e+14 | ||
t=0.75 | 3.52e+04 | 5.61e+04 | 2.88e+05 | 1.22e+07 | 1.78e+09 | |
7.29e+05 | 8.50e+05 | 4.42e+06 | 1.64e+08 | 2.22e+10 | ||
1.51e+08 | 1.04e+07 | 6.92e+07 | 1.67e+09 | 1.79e+11 | ||
3.00e+09 | 1.17e+08 | 1.10e+09 | 1.62e+10 | 7.08e+13 | ||
1.39e+10 | 9.50e+08 | 1.74e+10 | 1.16e+11 | 2.66e+15 | ||
t=1 | 3.29e+06 | 4.49e+04 | 2.88e+05 | 1.26e+07 | 1.10e+09 | |
1.02e+07 | 6.54e+05 | 4.42e+06 | 1.08e+08 | 1.95e+10 | ||
5.58e+07 | 9.37e+06 | 6.92e+07 | 1.41e+09 | 1.59e+13 | ||
3.71e+08 | 9.56e+07 | 1.10e+09 | 1.06e+10 | 3.93e+13 | ||
8.04e+11 | 8.42e+08 | 1.74e+10 | 9.95e+10 | 2.73e+15 |
In this paper, we developed a mixed conforming-nonconforming immersed finite element method for unsteady Stokes interface problems. The proposed vector-valued IFE spaces use conforming
[1] |
An immersed discontinuous finite element method for Stokes interface problems. Comput. Methods Appl. Mech. Engrg. (2015) 293: 170-190. ![]() |
[2] | On nonconforming linear-constant elements for some variants of the Stokes equations. Istit. Lombardo Accad. Sci. Lett. Rend. A (1993) 127: 83-93. |
[3] | N. Chaabane, Immersed and Discontinuous Finite Element Methods, Thesis (Ph.D.)-Virginia Polytechnic Institute and State University. 2015. |
[4] | Z. Chen, Finite Element Methods and their Applications, Scientific Computation. Springer-Verlag, Berlin, 2005. |
[5] | A P2-P1 partially penalized immersed finite element method for Stokes interface problems. Int. J. Numer. Anal. Model. (2021) 18: 120-141. |
[6] | Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Franç caise Automat. Informat. Recherche Opérationnelle Sér. Rouge (1973) 7: 33-75. |
[7] |
Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries. Comput. Methods Appl. Mech. Engrg. (2004) 193: 4819-4836. ![]() |
[8] |
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, volume 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986. Theory and algorithms. doi: 10.1007/978-3-642-61623-5
![]() |
[9] |
An extended pressure finite element space for two-phase incompressible flows with surface tension. J. Comput. Phys. (2007) 224: 40-58. ![]() |
[10] |
Solving parabolic moving interface problems with dynamical immersed spaces on unfitted meshes: Fully discrete analysis. SIAM J. Numer. Anal. (2021) 59: 797-828. ![]() |
[11] |
A group of immersed finite element spaces for elliptic interface problems. IMA J. Numer. Anal. (2019) 39: 482-511. ![]() |
[12] |
A fixed mesh method with immersed finite elements for solving interface inverse problems. J. Sci. Comput. (2019) 79: 148-175. ![]() |
[13] |
R. Guo, T. Lin and Y. Lin, Recovering elastic inclusions by shape optimization methods with immersed finite elements, J. Comput. Phys., 404 (2020), 109123, 24 pp. doi: 10.1016/j.jcp.2019.109123
![]() |
[14] | Improved error estimation for the partially penalized immersed finite element methods for elliptic interface problems. Int. J. Numer. Anal. Model. (2019) 16: 575-589. |
[15] |
A cut finite element method for a Stokes interface problem. Appl. Numer. Math. (2014) 85: 90-114. ![]() |
[16] | Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model. (2011) 8: 284-301. |
[17] |
Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Partial Differential Equations (2013) 29: 619-646. ![]() |
[18] |
Residual-based a posteriori error estimation for immersed finite element methods. J. Sci. Comput. (2019) 81: 2051-2079. ![]() |
[19] |
V. John, Finite Element Methods for Incompressible Flow Problems, volume 51 of Springer Series in Computational Mathematics, Springer, Cham, 2016. doi: 10.1007/978-3-319-45750-5
![]() |
[20] |
D. Jones and X. Zhang, A class of nonconforming immersed finite element methods for Stokes interface problems, J. Comput. Appl. Math., 392 (2021), 113493. doi: 10.1016/j.cam.2021.113493
![]() |
[21] |
A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Engrg. (1995) 124: 195-212. ![]() |
[22] |
R. Lan and P. Sun, A monolithic arbitrary Lagrangian-Eulerian finite element analysis for a Stokes/parabolic moving interface problem, J. Sci. Comput., 82 (2020), Paper No. 59, 36 pp. doi: 10.1007/s10915-020-01161-9
![]() |
[23] |
A new local stabilized nonconforming finite element method for the Stokes equations. Computing (2008) 82: 157-170. ![]() |
[24] |
New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. (2003) 96: 61-98. ![]() |
[25] |
A method of lines based on immersed finite elements for parabolic moving interface problems. Adv. Appl. Math. Mech. (2013) 5: 548-568. ![]() |
[26] |
Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. (2015) 53: 1121-1144. ![]() |
[27] |
A locking-free immersed finite element method for planar elasticity interface problems. J. Comput. Phys. (2013) 247: 228-247. ![]() |
[28] |
A nonconforming immersed finite element method for elliptic interface problems. J. Sci. Comput. (2019) 79: 442-463. ![]() |
[29] |
Linear and bilinear immersed finite elements for planar elasticity interface problems. J. Comput. Appl. Math. (2012) 236: 4681-4699. ![]() |
[30] |
T. Lin and Q. Zhuang, Optimal error bounds for partially penalized immersed finite element methods for parabolic interface problems, J. Comput. Appl. Math., 366 (2020), 112401, 11 pp. doi: 10.1016/j.cam.2019.112401
![]() |
[31] | Distributed Lagrange multiplier-fictitious domain finite element method for Stokes interface problems. Int. J. Numer. Anal. Model. (2019) 16: 939-963. |
[32] |
Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differential Equations (1992) 8: 97-111. ![]() |
[33] |
B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, volume 35 of Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. Theory and implementation. doi: 10.1137/1.9780898717440
![]() |
[34] |
Fictitious domain finite element method for Stokes/elliptic interface problems with jump coefficients. J. Comput. Appl. Math. (2019) 356: 81-97. ![]() |
[35] |
A numerical solution of the Navier-Stokes equations using the finite element technique. Internat. J. Comput. & Fluids (1973) 1: 73-100. ![]() |
[36] |
A nonconforming Nitsche's extended finite element method for Stokes
interface problems. J. Sci. Comput. (2019) 81: 342-374. ![]() |
[37] |
N. K. Yamaleev, D. C. Del Rey Fernández, J. Lou and M. H. Carpenter, Entropy stable spectral collocation schemes for the 3-D Navier-Stokes equations on dynamic unstructured grids, J. Comput. Phys., 399 (2019), 108897, 27 pp. doi: 10.1016/j.jcp.2019.108897
![]() |
[38] | A 3D conforming-nonconforming mixed finite element for solving symmetric stress Stokes equations. Int. J. Numer. Anal. Model. (2017) 14: 730-743. |
1. | Mehdi Jamei, Mehdi Mosharaf-Dehkordi, Hamid Reza Ghafouri, A Sequentially- Hybridized Locally Conservative Non-conforming Finite Element Scheme for Two-phase Flow Simulation through Heterogeneous Porous Media, 2022, 162, 03091708, 104155, 10.1016/j.advwatres.2022.104155 | |
2. | Yujia Chang, Yi Jiang, Rongliang Chen, A parallel domain decomposition algorithm for fluid-structure interaction simulations of the left ventricle with patient-specific shape, 2022, 30, 2688-1594, 3377, 10.3934/era.2022172 | |
3. | Yuan Chen, Xu Zhang, Solving Navier–Stokes Equations with Stationary and Moving Interfaces on Unfitted Meshes, 2024, 98, 0885-7474, 10.1007/s10915-023-02414-z | |
4. | Yuan Chen, Songming Hou, Xu Zhang, Semi and fully discrete error analysis for elastodynamic interface problems using immersed finite element methods, 2023, 147, 08981221, 92, 10.1016/j.camwa.2023.07.014 |
N | rate | rate | rate | rate | rate | |||||
5.36e-3 | n/a | 1.15e-2 | n/a | 7.02e-2 | n/a | 1.21e-1 | n/a | 1.54e-1 | n/a | |
1.39e-3 | 1.95 | 3.03e-3 | 1.92 | 3.14e-2 | 1.16 | 5.80e-2 | 1.06 | 7.32e-2 | 1.06 | |
3.59e-4 | 1.95 | 7.84e-4 | 1.95 | 1.46e-2 | 1.10 | 2.85e-2 | 1.02 | 3.73e-2 | 0.96 | |
9.20e-5 | 1.96 | 2.03e-4 | 1.95 | 5.28e-3 | 1.47 | 1.45e-2 | 0.98 | 1.91e-2 | 0.97 | |
2.33e-5 | 1.98 | 5.14e-5 | 1.98 | 2.10e-3 | 1.33 | 7.34e-3 | 0.98 | 9.66e-3 | 0.98 | |
5.85e-6 | 1.99 | 1.29e-5 | 1.99 | 8.47e-4 | 1.31 | 3.68e-3 | 1.00 | 4.85e-3 | 0.99 | |
rate | 1.98 | 1.96 | 1.29 | 1.00 | 0.99 |
N | rate | rate | rate | rate | rate | |||||
1.16e-2 | n/a | 5.44e-3 | n/a | 1.44e-1 | n/a | 1.49e-1 | n/a | 1.30e-1 | n/a | |
3.08e-3 | 1.92 | 1.42e-3 | 1.94 | 5.93e-2 | 1.29 | 7.47e-2 | 1.00 | 5.80e-2 | 1.16 | |
5.15e-4 | 1.95 | 2.36e-4 | 1.96 | 2.14e-2 | 1.18 | 3.08e-2 | 0.96 | 2.37e-2 | 0.98 | |
7.94e-4 | 1.96 | 3.65e-4 | 1.97 | 2.70e-2 | 1.14 | 3.76e-2 | 0.99 | 2.88e-2 | 1.00 | |
5.15e-5 | 1.99 | 2.34e-5 | 1.99 | 3.56e-3 | 1.43 | 9.69e-3 | 0.98 | 7.35e-3 | 0.99 | |
1.29e-5 | 1.99 | 5.86e-6 | 2.00 | 1.32e-3 | 1.43 | 4.86e-3 | 0.99 | 3.68e-3 | 1.00 | |
rate | 1.89 | 1.90 | 1.31 | 0.95 | 0.98 |
N | rate | rate | rate | rate | rate | |||||
1.01e-2 | n/a | 4.86e-2 | n/a | 2.81e-0 | n/a | 1.35e-1 | n/a | 1.26e-1 | n/a | |
2.73e-3 | 1.88 | 1.28e-3 | 1.92 | 1.21e-0 | 1.21 | 6.77e-2 | 1.00 | 5.31e-2 | 1.24 | |
7.19e-4 | 1.93 | 3.33e-4 | 1.95 | 5.75e-1 | 1.08 | 3.43e-2 | 0.98 | 2.66e-2 | 1.00 | |
1.86e-4 | 1.95 | 8.59e-5 | 1.97 | 1.98e-2 | 1.54 | 1.75e-2 | 0.97 | 1.34e-2 | 0.99 | |
4.73e-5 | 1.98 | 2.15e-5 | 1.98 | 7.26e-2 | 1.45 | 8.91e-3 | 0.98 | 6.79e-3 | 0.98 | |
1.19e-5 | 1.99 | 5.40e-6 | 1.99 | 2.59e-2 | 1.49 | 4.49e-3 | 0.99 | 3.41e-3 | 0.99 | |
rate | 1.95 | 1.90 | 1.45 | 0.98 | 1.03 |
rate | rate | rate | rate | rate | ||||||
5.11e-2 | n/a | 2.32e-2 | n/a | 3.38e-1 | n/a | 6.04e-1 | n/a | 4.61e-1 | n/a | |
1.29e-2 | 1.99 | 5.82e-3 | 1.99 | 9.59e-2 | 1.82 | 3.02e-1 | 1.00 | 2.29e-1 | 1.01 | |
3.23e-3 | 1.99 | 1.46e-3 | 2.00 | 2.36e-2 | 2.03 | 1.51e-1 | 1.00 | 1.15e-1 | 1.00 | |
8.09e-4 | 2.00 | 3.66e-4 | 2.00 | 1.07e-2 | 1.14 | 7.58e-2 | 1.00 | 5.73e-2 | 1.00 | |
2.02e-4 | 2.00 | 9.14e-5 | 2.00 | 3.41e-3 | 1.65 | 3.79e-2 | 1.00 | 2.87e-2 | 1.00 | |
5.06e-5 | 2.00 | 2.29e-5 | 2.00 | 1.37e-3 | 1.32 | 1.90e-2 | 1.00 | 1.43e-2 | 1.00 | |
rate | 2.00 | 2.00 | 1.58 | 1.00 | 1.00 |
N | rate | rate | rate | rate | rate | |||||
2.49e-1 | n/a | 1.72e-1 | n/a | 9.46e-0 | n/a | 2.95e-0 | n/a | 2.83e-0 | n/a | |
6.86e-2 | 1.86 | 4.70e-2 | 1.87 | 4.70e-0 | 1.01 | 1.51e-0 | 0.97 | 1.38e-0 | 1.03 | |
1.69e-2 | 2.02 | 1.18e-2 | 1.99 | 2.44e-0 | 0.95 | 7.65e-1 | 0.98 | 7.14e-1 | 0.96 | |
3.87e-3 | 2.13 | 3.54e-3 | 1.74 | 1.15e-0 | 1.08 | 3.94e-1 | 0.96 | 3.69e-1 | 0.95 | |
1.57e-3 | 1.31 | 1.65e-3 | 1.10 | 6.23e-1 | 0.88 | 2.04e-1 | 0.95 | 1.91e-1 | 0.95 | |
8.69e-4 | 0.85 | 9.07e-4 | 0.86 | 3.35e-1 | 0.90 | 1.07e-1 | 0.93 | 1.02e-1 | 0.91 | |
rate | 1.69 | 1.54 | 0.97 | 0.96 | 0.96 |
N | rate | rate | rate | rate | rate | |||||
2.51e-1 | n/a | 1.72e-1 | n/a | 9.02e-0 | n/a | 2.94e-0 | n/a | 2.79e-0 | n/a | |
7.25e-2 | 1.79 | 5.02e-2 | 1.77 | 4.51e-0 | 1.00 | 1.50e-0 | 0.97 | 1.36e-0 | 1.04 | |
1.92e-2 | 1.92 | 1.39e-2 | 1.85 | 2.34e-0 | 0.94 | 7.62e-1 | 0.98 | 6.98e-1 | 0.96 | |
4.33e-3 | 2.15 | 3.27e-3 | 2.09 | 1.11e-0 | 1.08 | 3.92e-1 | 0.96 | 3.61e-1 | 0.95 | |
9.96e-4 | 2.12 | 7.94e-4 | 2.04 | 5.97e-1 | 0.89 | 2.03e-1 | 0.95 | 1.87e-1 | 0.95 | |
2.39e-4 | 2.06 | 2.33e-4 | 1.76 | 3.20e-1 | 0.90 | 1.06e-1 | 0.93 | 1.02e-1 | 0.91 | |
rate | 2.03 | 1.93 | 0.97 | 0.96 | 0.96 |
N | rate | rate | rate | rate | rate | |||||
7.85e-3 | n/a | 1.14e-2 | n/a | 4.83e-1 | n/a | 1.36e-1 | n/a | 1.51e-1 | n/a | |
2.05e-3 | 1.94 | 2.95e-3 | 1.95 | 2.41e-1 | 1.00 | 7.02e-2 | 0.95 | 7.45e-2 | 1.02 | |
5.13e-4 | 2.00 | 6.54e-4 | 2.17 | 1.24e-1 | 0.96 | 3.57e-2 | 0.98 | 3.82e-2 | 0.96 | |
1.68e-4 | 1.61 | 1.32e-4 | 2.30 | 5.78e-2 | 1.10 | 1.84e-2 | 0.96 | 1.96e-2 | 0.96 | |
8.54e-5 | 0.98 | 6.68e-5 | 0.99 | 3.12e-2 | 0.89 | 9.52e-3 | 0.95 | 1.01e-2 | 0.95 | |
rate | 1.67 | 1.93 | 1.00 | 0.96 | 0.97 |
N | rate | rate | rate | rate | rate | |||||
1.17e-2 | n/a | 1.29e-2 | n/a | 1.25e-0 | n/a | 1.44e-1 | n/a | 1.41e-1 | n/a | |
3.86e-3 | 1.60 | 4.56e-3 | 1.50 | 8.16e-1 | 0.61 | 7.99e-2 | 0.85 | 7.01e-1 | 1.01 | |
1.20e-3 | 1.69 | 1.42e-3 | 1.69 | 5.10e-1 | 0.68 | 3.80e-2 | 1.07 | 3.56e-2 | 0.98 | |
2.02e-4 | 2.57 | 2.50e-4 | 2.50 | 2.00e-1 | 1.35 | 1.74e-2 | 1.12 | 1.78e-2 | 1.00 | |
3.48e-5 | 2.54 | 4.21e-5 | 2.57 | 8.70e-2 | 1.20 | 8.43e-3 | 1.05 | 9.01e-3 | 0.98 | |
rate | 2.10 | 2.07 | 0.97 | 1.04 | 1.04 |
t=0.25 | 3.03e+05 | 5.94e+04 | 2.80e+05 | 1.38e+07 | 1.31e+09 | |
1.04e+06 | 7.82e+05 | 4.36e+06 | 1.11e+08 | 1.40e+10 | ||
2.69e+08 | 6.06e+06 | 6.87e+07 | 9.06e+08 | 4.64e+11 | ||
6.51e+10 | 7.07e+07 | 1.09e+09 | 8.46e+09 | 8.48e+12 | ||
1.30e+12 | 7.27e+08 | 1.74e+10 | 8.15e+10 | 6.26e+14 | ||
t=0.75 | 2.07e+04 | 4.24e+04 | 2.80e+05 | 1.22e+07 | 1.78e+09 | |
1.04e+06 | 7.82e+05 | 4.36e+06 | 1.64e+08 | 2.22e+10 | ||
1.15e+08 | 9.36e+06 | 6.87e+07 | 1.67e+09 | 1.79e+11 | ||
2.44e+09 | 1.11e+08 | 1.09e+09 | 1.62e+10 | 7.07e+13 | ||
1.22e+10 | 9.29e+08 | 1.74e+10 | 1.16e+11 | 2.66e+15 | ||
t=1 | 2.34e+06 | 3.68e+04 | 2.80e+05 | 1.26e+07 | 1.10e+09 | |
7.76e+06 | 5.65e+05 | 4.36e+06 | 1.08e+08 | 1.94e+10 | ||
4.30e+07 | 8.53e+06 | 6.87e+07 | 1.41e+09 | 1.59e+13 | ||
2.99e+08 | 9.10e+07 | 1.09e+09 | 1.05e+10 | 3.93e+13 | ||
7.30e+11 | 8.24e+08 | 1.74e+10 | 9.94e+10 | 2.72e+15 |
t=0.25 | 4.92e+05 | 7.56e+04 | 2.88e+05 | 1.39e+07 | 1.32e+09 | |
1.43e+06 | 9.20e+05 | 4.42e+06 | 1.12e+08 | 1.40e+10 | ||
3.29e+08 | 6.58e+06 | 6.92e+07 | 9.08e+08 | 4.65e+11 | ||
7.54e+10 | 7.37e+07 | 1.10e+09 | 8.48e+09 | 8.48e+12 | ||
1.43e+12 | 7.42e+08 | 1.74e+10 | 8.16e+10 | 6.26e+14 | ||
t=0.75 | 3.52e+04 | 5.61e+04 | 2.88e+05 | 1.22e+07 | 1.78e+09 | |
7.29e+05 | 8.50e+05 | 4.42e+06 | 1.64e+08 | 2.22e+10 | ||
1.51e+08 | 1.04e+07 | 6.92e+07 | 1.67e+09 | 1.79e+11 | ||
3.00e+09 | 1.17e+08 | 1.10e+09 | 1.62e+10 | 7.08e+13 | ||
1.39e+10 | 9.50e+08 | 1.74e+10 | 1.16e+11 | 2.66e+15 | ||
t=1 | 3.29e+06 | 4.49e+04 | 2.88e+05 | 1.26e+07 | 1.10e+09 | |
1.02e+07 | 6.54e+05 | 4.42e+06 | 1.08e+08 | 1.95e+10 | ||
5.58e+07 | 9.37e+06 | 6.92e+07 | 1.41e+09 | 1.59e+13 | ||
3.71e+08 | 9.56e+07 | 1.10e+09 | 1.06e+10 | 3.93e+13 | ||
8.04e+11 | 8.42e+08 | 1.74e+10 | 9.95e+10 | 2.73e+15 |
N | rate | rate | rate | rate | rate | |||||
5.36e-3 | n/a | 1.15e-2 | n/a | 7.02e-2 | n/a | 1.21e-1 | n/a | 1.54e-1 | n/a | |
1.39e-3 | 1.95 | 3.03e-3 | 1.92 | 3.14e-2 | 1.16 | 5.80e-2 | 1.06 | 7.32e-2 | 1.06 | |
3.59e-4 | 1.95 | 7.84e-4 | 1.95 | 1.46e-2 | 1.10 | 2.85e-2 | 1.02 | 3.73e-2 | 0.96 | |
9.20e-5 | 1.96 | 2.03e-4 | 1.95 | 5.28e-3 | 1.47 | 1.45e-2 | 0.98 | 1.91e-2 | 0.97 | |
2.33e-5 | 1.98 | 5.14e-5 | 1.98 | 2.10e-3 | 1.33 | 7.34e-3 | 0.98 | 9.66e-3 | 0.98 | |
5.85e-6 | 1.99 | 1.29e-5 | 1.99 | 8.47e-4 | 1.31 | 3.68e-3 | 1.00 | 4.85e-3 | 0.99 | |
rate | 1.98 | 1.96 | 1.29 | 1.00 | 0.99 |
N | rate | rate | rate | rate | rate | |||||
1.16e-2 | n/a | 5.44e-3 | n/a | 1.44e-1 | n/a | 1.49e-1 | n/a | 1.30e-1 | n/a | |
3.08e-3 | 1.92 | 1.42e-3 | 1.94 | 5.93e-2 | 1.29 | 7.47e-2 | 1.00 | 5.80e-2 | 1.16 | |
5.15e-4 | 1.95 | 2.36e-4 | 1.96 | 2.14e-2 | 1.18 | 3.08e-2 | 0.96 | 2.37e-2 | 0.98 | |
7.94e-4 | 1.96 | 3.65e-4 | 1.97 | 2.70e-2 | 1.14 | 3.76e-2 | 0.99 | 2.88e-2 | 1.00 | |
5.15e-5 | 1.99 | 2.34e-5 | 1.99 | 3.56e-3 | 1.43 | 9.69e-3 | 0.98 | 7.35e-3 | 0.99 | |
1.29e-5 | 1.99 | 5.86e-6 | 2.00 | 1.32e-3 | 1.43 | 4.86e-3 | 0.99 | 3.68e-3 | 1.00 | |
rate | 1.89 | 1.90 | 1.31 | 0.95 | 0.98 |
N | rate | rate | rate | rate | rate | |||||
1.01e-2 | n/a | 4.86e-2 | n/a | 2.81e-0 | n/a | 1.35e-1 | n/a | 1.26e-1 | n/a | |
2.73e-3 | 1.88 | 1.28e-3 | 1.92 | 1.21e-0 | 1.21 | 6.77e-2 | 1.00 | 5.31e-2 | 1.24 | |
7.19e-4 | 1.93 | 3.33e-4 | 1.95 | 5.75e-1 | 1.08 | 3.43e-2 | 0.98 | 2.66e-2 | 1.00 | |
1.86e-4 | 1.95 | 8.59e-5 | 1.97 | 1.98e-2 | 1.54 | 1.75e-2 | 0.97 | 1.34e-2 | 0.99 | |
4.73e-5 | 1.98 | 2.15e-5 | 1.98 | 7.26e-2 | 1.45 | 8.91e-3 | 0.98 | 6.79e-3 | 0.98 | |
1.19e-5 | 1.99 | 5.40e-6 | 1.99 | 2.59e-2 | 1.49 | 4.49e-3 | 0.99 | 3.41e-3 | 0.99 | |
rate | 1.95 | 1.90 | 1.45 | 0.98 | 1.03 |
rate | rate | rate | rate | rate | ||||||
5.11e-2 | n/a | 2.32e-2 | n/a | 3.38e-1 | n/a | 6.04e-1 | n/a | 4.61e-1 | n/a | |
1.29e-2 | 1.99 | 5.82e-3 | 1.99 | 9.59e-2 | 1.82 | 3.02e-1 | 1.00 | 2.29e-1 | 1.01 | |
3.23e-3 | 1.99 | 1.46e-3 | 2.00 | 2.36e-2 | 2.03 | 1.51e-1 | 1.00 | 1.15e-1 | 1.00 | |
8.09e-4 | 2.00 | 3.66e-4 | 2.00 | 1.07e-2 | 1.14 | 7.58e-2 | 1.00 | 5.73e-2 | 1.00 | |
2.02e-4 | 2.00 | 9.14e-5 | 2.00 | 3.41e-3 | 1.65 | 3.79e-2 | 1.00 | 2.87e-2 | 1.00 | |
5.06e-5 | 2.00 | 2.29e-5 | 2.00 | 1.37e-3 | 1.32 | 1.90e-2 | 1.00 | 1.43e-2 | 1.00 | |
rate | 2.00 | 2.00 | 1.58 | 1.00 | 1.00 |
N | rate | rate | rate | rate | rate | |||||
2.49e-1 | n/a | 1.72e-1 | n/a | 9.46e-0 | n/a | 2.95e-0 | n/a | 2.83e-0 | n/a | |
6.86e-2 | 1.86 | 4.70e-2 | 1.87 | 4.70e-0 | 1.01 | 1.51e-0 | 0.97 | 1.38e-0 | 1.03 | |
1.69e-2 | 2.02 | 1.18e-2 | 1.99 | 2.44e-0 | 0.95 | 7.65e-1 | 0.98 | 7.14e-1 | 0.96 | |
3.87e-3 | 2.13 | 3.54e-3 | 1.74 | 1.15e-0 | 1.08 | 3.94e-1 | 0.96 | 3.69e-1 | 0.95 | |
1.57e-3 | 1.31 | 1.65e-3 | 1.10 | 6.23e-1 | 0.88 | 2.04e-1 | 0.95 | 1.91e-1 | 0.95 | |
8.69e-4 | 0.85 | 9.07e-4 | 0.86 | 3.35e-1 | 0.90 | 1.07e-1 | 0.93 | 1.02e-1 | 0.91 | |
rate | 1.69 | 1.54 | 0.97 | 0.96 | 0.96 |
N | rate | rate | rate | rate | rate | |||||
2.51e-1 | n/a | 1.72e-1 | n/a | 9.02e-0 | n/a | 2.94e-0 | n/a | 2.79e-0 | n/a | |
7.25e-2 | 1.79 | 5.02e-2 | 1.77 | 4.51e-0 | 1.00 | 1.50e-0 | 0.97 | 1.36e-0 | 1.04 | |
1.92e-2 | 1.92 | 1.39e-2 | 1.85 | 2.34e-0 | 0.94 | 7.62e-1 | 0.98 | 6.98e-1 | 0.96 | |
4.33e-3 | 2.15 | 3.27e-3 | 2.09 | 1.11e-0 | 1.08 | 3.92e-1 | 0.96 | 3.61e-1 | 0.95 | |
9.96e-4 | 2.12 | 7.94e-4 | 2.04 | 5.97e-1 | 0.89 | 2.03e-1 | 0.95 | 1.87e-1 | 0.95 | |
2.39e-4 | 2.06 | 2.33e-4 | 1.76 | 3.20e-1 | 0.90 | 1.06e-1 | 0.93 | 1.02e-1 | 0.91 | |
rate | 2.03 | 1.93 | 0.97 | 0.96 | 0.96 |
N | rate | rate | rate | rate | rate | |||||
7.85e-3 | n/a | 1.14e-2 | n/a | 4.83e-1 | n/a | 1.36e-1 | n/a | 1.51e-1 | n/a | |
2.05e-3 | 1.94 | 2.95e-3 | 1.95 | 2.41e-1 | 1.00 | 7.02e-2 | 0.95 | 7.45e-2 | 1.02 | |
5.13e-4 | 2.00 | 6.54e-4 | 2.17 | 1.24e-1 | 0.96 | 3.57e-2 | 0.98 | 3.82e-2 | 0.96 | |
1.68e-4 | 1.61 | 1.32e-4 | 2.30 | 5.78e-2 | 1.10 | 1.84e-2 | 0.96 | 1.96e-2 | 0.96 | |
8.54e-5 | 0.98 | 6.68e-5 | 0.99 | 3.12e-2 | 0.89 | 9.52e-3 | 0.95 | 1.01e-2 | 0.95 | |
rate | 1.67 | 1.93 | 1.00 | 0.96 | 0.97 |
N | rate | rate | rate | rate | rate | |||||
1.17e-2 | n/a | 1.29e-2 | n/a | 1.25e-0 | n/a | 1.44e-1 | n/a | 1.41e-1 | n/a | |
3.86e-3 | 1.60 | 4.56e-3 | 1.50 | 8.16e-1 | 0.61 | 7.99e-2 | 0.85 | 7.01e-1 | 1.01 | |
1.20e-3 | 1.69 | 1.42e-3 | 1.69 | 5.10e-1 | 0.68 | 3.80e-2 | 1.07 | 3.56e-2 | 0.98 | |
2.02e-4 | 2.57 | 2.50e-4 | 2.50 | 2.00e-1 | 1.35 | 1.74e-2 | 1.12 | 1.78e-2 | 1.00 | |
3.48e-5 | 2.54 | 4.21e-5 | 2.57 | 8.70e-2 | 1.20 | 8.43e-3 | 1.05 | 9.01e-3 | 0.98 | |
rate | 2.10 | 2.07 | 0.97 | 1.04 | 1.04 |
t=0.25 | 3.03e+05 | 5.94e+04 | 2.80e+05 | 1.38e+07 | 1.31e+09 | |
1.04e+06 | 7.82e+05 | 4.36e+06 | 1.11e+08 | 1.40e+10 | ||
2.69e+08 | 6.06e+06 | 6.87e+07 | 9.06e+08 | 4.64e+11 | ||
6.51e+10 | 7.07e+07 | 1.09e+09 | 8.46e+09 | 8.48e+12 | ||
1.30e+12 | 7.27e+08 | 1.74e+10 | 8.15e+10 | 6.26e+14 | ||
t=0.75 | 2.07e+04 | 4.24e+04 | 2.80e+05 | 1.22e+07 | 1.78e+09 | |
1.04e+06 | 7.82e+05 | 4.36e+06 | 1.64e+08 | 2.22e+10 | ||
1.15e+08 | 9.36e+06 | 6.87e+07 | 1.67e+09 | 1.79e+11 | ||
2.44e+09 | 1.11e+08 | 1.09e+09 | 1.62e+10 | 7.07e+13 | ||
1.22e+10 | 9.29e+08 | 1.74e+10 | 1.16e+11 | 2.66e+15 | ||
t=1 | 2.34e+06 | 3.68e+04 | 2.80e+05 | 1.26e+07 | 1.10e+09 | |
7.76e+06 | 5.65e+05 | 4.36e+06 | 1.08e+08 | 1.94e+10 | ||
4.30e+07 | 8.53e+06 | 6.87e+07 | 1.41e+09 | 1.59e+13 | ||
2.99e+08 | 9.10e+07 | 1.09e+09 | 1.05e+10 | 3.93e+13 | ||
7.30e+11 | 8.24e+08 | 1.74e+10 | 9.94e+10 | 2.72e+15 |
t=0.25 | 4.92e+05 | 7.56e+04 | 2.88e+05 | 1.39e+07 | 1.32e+09 | |
1.43e+06 | 9.20e+05 | 4.42e+06 | 1.12e+08 | 1.40e+10 | ||
3.29e+08 | 6.58e+06 | 6.92e+07 | 9.08e+08 | 4.65e+11 | ||
7.54e+10 | 7.37e+07 | 1.10e+09 | 8.48e+09 | 8.48e+12 | ||
1.43e+12 | 7.42e+08 | 1.74e+10 | 8.16e+10 | 6.26e+14 | ||
t=0.75 | 3.52e+04 | 5.61e+04 | 2.88e+05 | 1.22e+07 | 1.78e+09 | |
7.29e+05 | 8.50e+05 | 4.42e+06 | 1.64e+08 | 2.22e+10 | ||
1.51e+08 | 1.04e+07 | 6.92e+07 | 1.67e+09 | 1.79e+11 | ||
3.00e+09 | 1.17e+08 | 1.10e+09 | 1.62e+10 | 7.08e+13 | ||
1.39e+10 | 9.50e+08 | 1.74e+10 | 1.16e+11 | 2.66e+15 | ||
t=1 | 3.29e+06 | 4.49e+04 | 2.88e+05 | 1.26e+07 | 1.10e+09 | |
1.02e+07 | 6.54e+05 | 4.42e+06 | 1.08e+08 | 1.95e+10 | ||
5.58e+07 | 9.37e+06 | 6.92e+07 | 1.41e+09 | 1.59e+13 | ||
3.71e+08 | 9.56e+07 | 1.10e+09 | 1.06e+10 | 3.93e+13 | ||
8.04e+11 | 8.42e+08 | 1.74e+10 | 9.95e+10 | 2.73e+15 |