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Abstract: In the current article, we analyzed the unsteady natural convection with the help of 

fractional approach. Firstly, the unsteady natural convection radiating flow in an open ended 

vertical channel beside the magnetic effects. We assumed the channel is stationary with 

non-uniform temperature. Secondly, we utilized a fractional calculus approach for the constitutive 

relationship of a fluid model. The modeled problem is transformed into nondimensional form via 

viable non-dimensional variables. In order to investigate the numerical solutions of 

non-dimensional system of partial differential equations finite difference approach coupled with 

Crank Nicolson method is developed and successfully applied. The beauty of Crank Nicolson finite 

difference scheme is, this scheme is unconditionally stable. A very careful survey of literate 

witnesses that this scheme has never been reported in the literary for fluid problems. The physical 

changes are discussed with the help of graphics. The expression for both velocity field and 

temperature distribution has been made via said scheme. A comprehensive discussion about the 

influence of various related dimensionless parameters upon the flow properties disclosed our work. 

It is observed that velocity field decreases as enhancing the magnetic field effects. Heat transfer 

enhanced as enhancing the nanoparticle volume fraction parameter. Velocity field and heat transfer 

shows the dominant behavior for the case of Cu-based nanofluid as compare to Al2O3 based 

nanofluid. Comparative study also included to show the accuracy of the proposed finite difference 

scheme. It is to be highlighted that the proposed scheme is very efficient and well-matched to 
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investigate the solutions of modeled problem and can be extended to diversify problems of 

physical nature. 

Keywords: finite difference method; fractional calculus; nanofluid; magnetic effects; thermal 

radiation 

Mathematics Subject Classification: 34A08 

 

1. Introduction 

The exponential growth of natural convection radiating flow has gained a considerable attention 

in the developing research area. Many numerical, theoretical and experimental investigation has been 

made for natural convection radiating flow of viscous fluids in vertical cylinders, in a channel and 

over an infinite plate. Fujii et al. [1] experimentally analyzed the natural-convection transfer of heat 

from the external surface of a vertical cylinder to liquids. Fujii and Imura [2] provided an 

experimental investigation about concerning natural-convection heat transfer from a plate with 

arbitrary inclination. In their study they restricted the boundary layer flow to 2D (two-dimensional). 

Ezzat, [3] examined the heat transport and MHD thermoelectric flow of non-Newtonian fluid with 

fractional derivative. Arshad et al. [4] studied the natural convection heat transfer from a bounded 

assembly of thin non-horizontal cylinders. Their work was purely reported an experimental study of 

natural convection. Eldabe et al. [5] numerically examines the influence of viscous dissipation on 

free convection heat and mass transfer of MHD non-Newtonian fluid flow through a porous medium. 

Rubbab et al. [6] analyzed the natural convection flow near a vertical plate. Ellahi [7] analytically 

examined the impacts of temperature dependent viscosity and MHD flow of nanofluid in a pipe. 

Natural convection flow along an isothermal vertical flat plate with temperature dependent viscosity 

and heat generation examined by Molla et al. [8]. Ezzat et al. [9] described the heat and mass transfer 

through a MHD time-depended viscoelastic fluid enclosed by infinite vertical plates. The simulations 

are performed via Laplace-transform method (LTM) and behavior of concentration, temperature, 

velocity, electric and induced magnetic field distributions have been analyzed via set of graphs. Sheri 

and Thumma [10] studied the heat transfer enhancement in MHD free convection flow over vertical 

plate utilizing nanofluids. The readers are referred to see [11–15] for some recent literature related to 

combined analysis of MHD natural convection in different fluid problems. 

The field of fluid mechanics gained a worthy consecration after the Choi contribution [16–17]. 

He was the pioneer who worked on improvement of the thermal conductivity of the fluids. According 

to his idea there is an appropriate quantity of nanoparticles inside the traditional fluids. He named the 

term as nanofluids. The experimental outcomes reconfirm that thermal properties of traditional fluids 

can be enhanced by using Choi idea. After this ground breaking innovation this domain gained a 

significant importance and a lot of work reported in the literature. Dinarvand et al. [18] studied the 

Buongiorno’s model for double-diffusive mixed convective stagnation-point flow of a nanofluid 

considering diffusiophoresis effect of binary base fluid. Three dimensional mesoscopic simulation of 

magnetic field effect on natural convection of nanofluid studied by Sheikholeslami and Ellahi [19]. 

Sheikholeslami and Ganji [20] analyzed the nanofluid convective heat transfer. They used both 

numerical and analytical approaches to investigate the said nanofluid model. Usman et al. [21] used 

an analytical technique (DTM) to investigate the unsteady nanofluid flow and heat transfer. Hassan 
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et al. [22] conducted a model study for both magnetic and non-magnetic particles in nanofluid over a 

wedge and presented a comparative analysis. Mohyud-Din [23] reported the influence of Marangoni 

convection and thermal radiation effects on CNT-Water flow of nanofluid. A least squares technique 

is adopted to present the analysis for said flow model while findings are asserted with the help of 

graphical sets. The thermal boundary thickness and temperature both enhanced while increase the 

nanoparticle friction. It is reported that the velocity of the fluid is decreased for both kinds of CNTs. 

Hamid et al. [24] examined the heat and mass transport for MHD time-dependent flow of nanofluid 

in the presence of natural convection, thermal radiation and heat sink/source. The solution of reduced 

nonlinear PDEs is obtained via Crank-Nicolson finite difference scheme. The small values of time 

with increasing Reynolds number an enhanced velocity distribution is perceived. The temperature 

profile is dropped for Biot numbers while enhanced for higher values of Reynolds, Brownian motion, 

thermophoresis, and heat source numbers. An inclusive study associated to nanofluids via various 

aspects can be find in [25–29]. 

Previously, the fractional calculus theory has gained extensive concern because of its large 

range of applications in various areas of engineering and physics [30]. The fractional calculus has 

been exploited with ample success in the description of complex dynamics such as wave, viscoelastic 

and relaxation behaviors. In fractional calculus due to development of operator a straightforward 

technique for presenting fractional derivatives into models of linear viscous is to change the first 

derivative in the constitutive equation of the natural convection model with an 𝛼 ∈  0,1  order 

fractional derivative. The fractional calculus provides some noticeable contributions in relating 

frequent technological and scientific situations such as capacitor theory, viscoelasticity, electrical 

circuits, electro-analytical chemistry, diffusion and neurology [31–32]. Different methods have been 

proposed by various authors to tackle non-linearity of fractional differential equations [33–36]. 

Although there is a comprehensive research literature available on the fluid flows, many 

mathematical models employed the fractional calculus to solve a variety of applied fluid flow 

problems. We are citing some recent literate related to said domain [37–40]. 

The present work is an extension of [40] in which we analyzed the unsteady natural convection 

radiating flow in an open ended vertical channel beside the magnetic effects. The channel is 

stationary with non-uniform temperature. We utilized a fractional calculus approach for the 

constitutive relationship of a fluid model. The finite difference approach [41] along with Crank 

Nicolson method [42] has been successfully applied [13,28]. The careful literature survey witnesses 

that this scheme has never been reported in the literary. The physical changes are discussed with the 

help of graphical plots. The expression for both velocity field and temperature distribution has been 

made via said scheme. Finally, a detailed discussion about the influence of various related 

dimensionless parameters upon the flow properties disclosed our work. 

2. Mathematical and geometrical analysis 

Let us examine the effects of heat transfer of unsteady, one dimensional, naturally convected, 

and viscous flow. It is also consider that the fluid is enclosed between two non-uniform, stagnant and 

parallel walls separated by distance 𝑑, 𝑥 and 𝑦 − axis are considered along flow direction and 

normal to flow direction respectively. Assume that the temperature of wall and fluid has constant 

value 𝑇∞ . Furthermore, temperature of plate reserved at 𝑦 = 0 and 𝑡 > 0  is preserved as initial 

temperature 𝑇∞  and natural convection current is produced because the temperature of wall kept at 
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𝑦 = 𝑑 is raised up and is considered  𝑇𝑤 . Applied Magnetic field is considered constant and electric 

field is pondered as zero. The induced magnetic field is neglected due to small Reynolds number. In 

view of Boussinesq approximation, flow can be explained with the help of following partial 

differential equations [40] 

𝜕𝑢

𝜕𝑡
= 𝜈𝑛𝑓

𝜕2𝑢

𝜕𝑦2 +
𝑔

𝜌𝑛𝑓
𝛽𝑛𝑓  𝑇 − 𝑇∞ +

1

𝜌𝑛𝑓
 𝐉 × 𝐁 𝑥 ,     (1) 

  𝜌𝐶𝑃 𝑛𝑓
𝜕𝑇

𝜕𝑡
= 𝑘𝑛𝑓

𝜕2𝑇

𝜕𝑦2 −
𝜕𝑞𝑟

𝜕𝑦
,        (2) 

where 𝑢 𝑦, 𝑡 , 𝑇 𝑦, 𝑡 , 𝑔, 𝜈𝑛𝑓 , 𝜌𝑛𝑓 , 𝛽𝑛𝑓 , 𝜎𝑛𝑓 ,  𝐶𝑃 𝑛𝑓 , 𝑘𝑛𝑓 , 𝐉  are the velocity along x-axis, temperature 

along x-axis, gravitational acceleration, kinematics viscosity for nano-fluid, density of nano-fluid, 

heat transfer constant for nano-fluid, electrical conductivity for nano-fluid, heat capacity of for 

nano-fluid, thermal conductivity for nano-fluid, current density respectively and also defined as [12]. 

𝜈𝑛𝑓 =
𝜇𝑛𝑓

𝜌𝑛𝑓
, 𝜇𝑛𝑓 =

𝜇𝑓

 1−𝜙 2.5 , 𝜌𝑛𝑓 = 𝜌𝑓   1 − 𝜙 + 𝜙
𝜌𝑠

𝜌𝑓
 ,     (3a) 

 𝜌𝑐𝑝 𝑛𝑓 =  1 − 𝜙  𝜌𝑐𝑝 𝑓 + 𝜙 𝜌𝑐𝑝 𝑠 ,  𝜌𝛽 𝑛𝑓 =  1 − 𝜙  𝜌𝛽 𝑓 + 𝜙 𝜌𝛽 𝑠,  (3b) 

where 𝜌𝑓 , 𝜌𝑠 , 𝛽𝑓 , 𝛽𝑠 , 𝜇𝑛𝑓 , 𝜇𝑓  and 𝜙 are density of fluid, density of solid particle, heat transfer 

constant for fluid, heat transfer constant for solid particle, viscosity of nano-fluid, viscosity of fluid, 

viscosity of solid particle and solid volume fraction respectively. 

The value of current density is 

 𝐉 = 𝜎𝑛𝑓  𝐸 + 𝐕 × 𝐁 ,         (4) 

where 𝐸 is the electric field. Cogley et al. [43], shows that [30]: 

  
𝜕𝑞𝑟

𝜕𝑦
= 4 𝑇 − 𝑇∞  𝑘𝜆𝑤  

𝑑𝑒𝑏𝜆

𝑑𝑡
 
𝑤

d𝜆
∞

0
,      (5) 

where 𝑘𝜆 , 𝑒𝑏𝜆 , 𝑤  are the absorption coefficient, plank function and value at the wall 𝑦 = 𝑑. 

Substituting the values from Eqs (4) and (5) into Eqs (1) and (2), once obtained 

 
𝜕𝑢

𝜕𝑡
= 𝜈𝑛𝑓

𝜕2𝑢

𝜕𝑦2 +
𝑔

𝜌𝑛𝑓
𝛽𝑛𝑓  𝑇 − 𝑇∞ −

𝜎𝐵0
2

𝜌𝑛𝑓
𝑢,      (6) 

  𝜌𝑐𝑃 𝑛𝑓
𝜕𝑇

𝜕𝑡
= 𝑘𝑛𝑓

𝜕2𝑇

𝜕𝑦2 − 4 𝑇 − 𝑇∞ 𝐼,       (7) 

where 𝐼 =  𝑘𝜆𝑤  
𝑑𝑒𝑏𝜆

𝑑𝑡
 
𝑤
𝑑𝜆

∞

0
.  

The associated initial and boundary condition of problem (6)–(7) are 

𝑢 𝑦, 0 = 𝑢 0, 𝑡 = 𝑢 1, 𝑡 = 0, 

𝑇 𝑦, 0 = 𝑇 0, 𝑡 = 𝑇∞ , 𝑇 1, 𝑡 = 𝑇𝑤 . 

Introducing the transformation for Eqs (6) and (7) is given by 

 𝑢 =
𝜈𝑓

𝑑
𝑈, 𝑡 =

𝑑2

𝑣𝑓
𝑡∗, 𝑦 = 𝑑𝑌, 𝑇 − 𝑇∞ =  𝑇𝑤 − 𝑇∞  

 𝑇∗.    (8) 

Using (3) and (8), once obtained 
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   1 − 𝜙 + 𝜙
𝜌𝑠

𝜌𝑓
 
𝜕𝑈

𝜕𝑡∗
=

1

 1−𝜙 2.5

𝜕2𝑈

𝜕𝑌2 + 𝐺𝑟𝑇∗   1 − 𝜙 + 𝜙
 𝜌𝛽  𝑠

 𝜌𝛽  𝑓
 − 𝑀2𝑈,   (9) 

   1 − 𝜙 + 𝜙
 𝜌𝛽  𝑠

 𝜌𝛽  𝑓
 𝑃𝑟

𝜕𝑇∗

𝜕𝑡∗
=

𝑘𝑛𝑓

𝑘𝑓

𝜕2𝑇∗

𝜕𝑌2 − 𝑅𝑇∗, 𝑦 ∈  0,1 , 𝑡 ≥ 0,  (10) 

where 𝐺𝑟,𝑀2 , 𝑃𝑟 and 𝑅 are the Grashof number, Hartmann number, Prandtl number and radiation 

parameter and is defined as 

𝐺𝑟 =
𝑔𝛽𝑓 𝑇𝑤 − 𝑇∞  

 𝑑3

𝜈𝑓
2 , 𝑀2 =

𝜎𝐵0
2𝑑2

𝜇𝑓
, 𝑃𝑟 =

𝜇𝑓 𝑐𝑃 𝑓
𝑘𝑓

, 𝑅 =
4𝐼𝑑2

𝑘𝑓
. 

After applying the above transformations boundary condition reduces as: 

𝑢 𝑦, 0 = 0, 𝑢 0, 𝑡 = 0, 𝑢 1, 𝑡 = 0, 

𝑇 𝑦, 0 = 0, 𝑇 0, 𝑡 = 0, 𝑇 1, 𝑡 = 1. 

The Caputo time fractional form of Eqs (9) and (10) are explained as 

   1 − 𝜙 + 𝜙
𝜌𝑠

𝜌𝑓
 𝐷𝑡

𝛼𝑢 𝑦, 𝑡 =
1

 1−𝜙 2.5

𝜕2𝑢

𝜕𝑦2 + 𝐺𝑟𝑇   1 − 𝜙 + 𝜙
 𝜌𝛽  𝑠

 𝜌𝛽  𝑓
 − 𝑀2𝑢,  (11) 

   1 − 𝜙 + 𝜙
 𝜌𝛽  𝑠

 𝜌𝛽  𝑓
 Pr𝐷𝑡

𝛼𝑇 𝑦, 𝑡 =
𝑘𝑛𝑓

𝑘𝑓

𝜕2𝑇

𝜕𝑦2 − 𝑅𝑇,     (12) 

where 𝐷𝑡
𝛼𝑇 𝑦, 𝑡  

1

Γ(1−𝛼)
 

1

 𝑡−𝜏 𝛼
𝜕𝑇(𝑦,𝜏)

𝜕𝜏
𝑑𝜏,   0 < 𝛼 < 1,

𝑡

0

𝜕𝑇(𝑦,𝑡)

𝜕𝑡
,   𝛼 = 1.

  

3. Finite difference scheme 

In this section, we introduce the well-known Crank-Nicholson finite difference scheme for the 

numerical solution of the following fractional partial differential equations: 

 
𝜌𝑛𝑓

𝜌𝑓

𝜕𝛼

𝜕𝑡 𝛼
𝑢 𝑦, 𝑡 =

1

 1−𝜙 2.5

𝜕2

𝜕𝑦 2 𝑢 𝑦, 𝑡 − 𝑀2𝑢 𝑦, 𝑡 +
 𝜌𝛽  𝑛𝑓

 𝜌𝛽  𝑓
𝐺𝑟𝑇 𝑦, 𝑡 ,  (13) 

 
 𝜌𝑐𝑝  𝑛𝑓

 𝜌𝑐𝑝  𝑓
Pr

𝜕𝛼

𝜕𝑡 𝛼
𝑇 𝑦, 𝑡 =

𝑘𝑛𝑓

𝑘𝑓

𝜕2

𝜕𝑦 2 𝑇 𝑦, 𝑡 − 𝑅𝑇 𝑦, 𝑡 ,     (14) 

along with the boundary conditions associated with (13–14). In above 0 < 𝛼 ≤ 1  is Caputo 

derivative of fractional order. Consider that the above fractional-order system has sufficiently smooth 

and has a unique. Assume that 𝑥𝑗 = 𝑗𝑕, 0 ≤ 𝑗 ≤ 𝑀 with 𝑀𝑕 = 1 and 𝑡𝑛 = 𝑛𝜏, 0 ≤ 𝑛 ≤ 𝑁. Here 𝑕 

and 𝜏 indicates the space and time step length, M and N are represents the number of grids point. 

Fractional order derivate can discretize as [41]: 

𝐷𝑡
𝛼𝑄 𝑦, 𝑡 =

1

𝜏𝛼Γ 2 − 𝛼 
 𝑄𝑗

𝑛+1 − 𝑄𝑗
𝑛 +   𝑄𝑗

𝑛−𝑖+1 − 𝑄𝑗
𝑛−𝑖   𝑖 + 1 1−𝛼 − 𝑖1−𝛼 

𝑛

𝑖=1

 + 𝑂 𝜏 , 

and the second order derivative using Crank-Nicholson idea can be discretize as under: 

𝜕2

𝜕𝑦2
𝑄 𝑦, 𝑡 =

1

2𝑕2
  𝑄𝑗+1

𝑛+1 − 2𝑄𝑗
𝑛+1 + 𝑄𝑗−1

𝑛+1 +  𝑄𝑗+1
𝑛 − 2𝑄𝑗

𝑛 + 𝑄𝑗−1
𝑛   + 𝑂 𝑕2 . 
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Using the above discretize formulas, system (12–13) takes the following form: 

 −𝜔𝑢 𝑢 𝑗+1
𝑛+1 +  𝜗𝑢 + 2𝜔𝑢  𝑢 𝑗

𝑛+1 − 𝜔𝑢 𝑢 𝑗−1
𝑛+1 = 𝜔𝑢 𝑢 𝑗+1

𝑛 +  𝜗𝑢 − 2𝜔𝑢 −𝑀2 𝑢 𝑗
𝑛 + 𝜔𝑢 𝑢 𝑗−1

𝑛 +

 𝜌𝛽  𝑛𝑓

 𝜌𝛽  𝑓
𝐺𝑟𝑇 𝑗

𝑛 − 𝜗𝑢   𝑢 𝑗
𝑛−𝑖+1 − 𝑢 𝑗

𝑛−𝑖 𝑏𝑖
𝑛
𝑖=1 ,  

 −𝜔𝑇 𝑇 𝑗+1
𝑛+1 +  𝜗𝑇 + 2𝜔𝑇  𝑇 𝑗

𝑛+1 − 𝜔𝑇 𝑇 𝑗−1
𝑛+1 = 𝜔𝑇 𝑇 𝑗+1

𝑛 +  𝜗𝑇 − 2𝜔𝑇 − 𝑅 𝑇 𝑗
𝑛 + 𝜔𝑇 𝑇 𝑗−1

𝑛 −

 𝜗𝑇   𝑇 𝑗
𝑛−𝑖+1 − 𝑇 𝑗

𝑛−𝑖 𝑏𝑖
𝑛
𝑖=1 , 

where 𝜔𝑢 =
1

 1−𝜙 2.5

1

2𝑕2 , 𝜗𝑢 =
𝜌𝑛𝑓

𝜌𝑓

1

𝜏𝛼Γ 2−𝛼 
, 𝜔𝑇 =

𝑘𝑛𝑓

𝑘𝑓

1

2𝑕2 , 𝜗𝑇 =
 𝜌𝑐𝑝  𝑛𝑓

 𝜌𝑐𝑝  𝑓

Pr

𝜏𝛼Γ 2−𝛼 
,  

𝑏𝑖 =   𝑖 + 1 1−𝛼 − 𝑖1−𝛼 .  

𝐀1𝐯
1 = 𝐁𝐯0 +

 𝜌𝛽 𝑛𝑓
 𝜌𝛽 𝑓

𝐺𝑟𝐂𝐯0, 

for 𝑛 ≥ 1, 

𝐀𝑛+1𝐯
𝑛+1 = 𝐁𝑛+1𝐯

𝑛 + 𝐬1
𝑛+1𝐯𝑛 + 𝐬2

𝑛+1𝐯𝑛−1 + ⋯+ 𝐬𝑛
𝑛+1𝐯1 + 𝐛𝑛+1𝐯0 +

 𝜌𝛽 𝑛𝑓
 𝜌𝛽 𝑓

𝐺𝑟𝐂𝐯𝑛 . 

In above 𝐀𝑛+1 , 𝐁𝑛+1, 𝐯𝑛 , 𝐬𝑛
𝑛+1, 𝐂 and 𝐛𝑛+1  are represents the block matrices which defined as 

follow: 

𝐀𝑛+1 =  
𝐀𝑛+1
𝑢 𝐎

𝐎 𝐀𝑛+1
𝑇 

 , 𝐁𝑛+1 =  
𝐁𝑛+1
𝑢 𝐎

𝐎 𝐁𝑛+1
𝑇 

 , 𝐂 =  
𝐎 𝐈
𝐎 𝐎

 , 𝐬𝑛
𝑛+1 =  

𝐜𝑛
𝑻 𝐎

𝐎 𝐝𝑛
𝑻 

𝑛+1

, 𝐯𝑛 =

 
𝐮
𝐓
 
𝑛

, 𝐛𝑛+1 =  
𝐛𝑛
𝑻 𝐎

𝐎 𝐛𝑛
𝑻 

𝑛+1

,  

where the matrices 𝐀𝑛+1
𝑢 , 𝐀𝑛+1

𝑇 , 𝐁𝑛+1
𝑢 , 𝐁𝑛+1

𝑇 , 𝐁𝑛+1
𝑢 , 𝐜𝑛

𝑻, 𝐝𝑛
𝑻 , 𝐈 and 𝐛𝑛

𝑻 present in [31] and 𝐮 and 𝐓 

are given as: 

𝐮𝑛 =  𝑢1
𝑛 , 𝑢2

𝑛 , 𝑢3
𝑛 , … , 𝑢𝑀−2

𝑛 , 𝑢𝑀−1
𝑛  𝑇 , 

𝐓𝑛 =  𝑇1
𝑛 , 𝑇2

𝑛 , 𝑇3
𝑛 , … , 𝑇𝑀−2

𝑛 , 𝑇𝑀−1
𝑛  𝑇 . 

4. Results and discussion 

This section explore the behavior of non-dimensional velocity and temperature profiles under 

the influence of the various physical parameters for various values of 𝛼. Figures 1–7 are plotted 

along with comprehensive discussion for the purpose.  

In Figures 1 and 2 are plotted to explain the behavior of velocity of nano- fluid (Copper Cu and 

Aluminum oxide Al2O3 based) for different values of fractional parameter “𝛼” as well as Grashof 

number “Gr”, Hartmann number “M”, time “t” and solid volume fraction “𝜙”. Figure 1(a) is plotted 

against the variation of Grashof number “Gr” for the numerous values of “𝛼”. It is observed that 
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velocity profiles demonstrate the increasing behavior with the increase in both Grashof number “Gr” 

and parameter “𝛼”. For the small value of Grashof number the effect of parameter “𝛼” is 

insignificant and vice versa. Effect of Hartman number “M” and parameter “𝛼” on velocity profile 

plotted in Figure 1(b). Decreasing behavior of velocity field is detected for different values of 

Hartmann number “M”. This is because the increasing values of Hartmann number “M” corresponds 

the increaser the magnitude of magnetic field. That is why, magnetic forces against the flow process 

is increasing which become the cause to decrease the velocity of nano- fluid (Copper Cu and 

Aluminum oxide Al2O3-based). Behavior of the velocity profile due to the variation in Prandtl 

number “Pr” and parameter “𝛼”. Again similar behavior is achieved under the impact of Prandtl 

number “Pr” as we got in previous figure that is velocity profiles decreases gradually as Prandtl 

number “Pr” increases. Dominant effect of parameter “𝛼” can be seen for the least value of Prandtl 

number “Pr”. Effect of time “t” and parameter “𝛼” analyze in Figure 2(b). Velocity field increases 

gradually as time increase. Behavior of velocity for different values of fractional parameter “𝛼” and 

solid volume fraction “𝜙” is present in Figure 3.  

  

Figure 1. Behavior of 𝑢 for different values of Gr and M when Pr = 0.7, 𝑅 = 0.1,𝑀 = 1, 𝜙 = 0.1. 

  

(a)              (b) 

Figure 2. (a) Behavior of 𝑢 for different values of Pr when 𝐺𝑟 = 2, 𝑅 = 1,𝑀 = 1, 𝜙 =

0.1, (b) Behavior of 𝑢 for different values of t when Pr = 0.7, 𝑅 = 1, 𝐺𝑟 = 2,𝑀 =

1, 𝜙 = 0.1. 
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Figure 3. Behavior of 𝑢 for different values of 𝜙 when Pr = 0.3, 𝑅 = 1,𝑀 = 1, 𝐺𝑟 = 2. 

Observation shows that velocity is decreasing gradually while we are increasing the values of 

fractional parameter 𝛼 and solid volume fraction “𝜙”. From Figures 1–3, we observed that velocity 

profiles have dominant values for the case of Cu-based nanofluid as compare to Al2O3-based 

nanofluid. 

To scrutinize the variation in temperature distribution against the different values of time “t”, 

radiation parameter “R”, Prandtl number “Pr” and solid volume fraction “𝜙” Figures 4–8 are 

portrayed for both Copper (Cu) and Aluminum oxide (Al2O3) based nanofluid.  

 

(a)           (b) 

Figure 4. Behavior of 𝑇 for different values of 𝑡 when Pr = 0.7, 𝑅 = 0.1, 𝜙 = 0.1. 
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(a)             (b) 

Figure 5. Behavior of 𝑇 for different values of 𝑅 when Pr = 0.7, 𝜙 = 0.1. 

Figure 4 shows the effect of time “t” and parameter “𝛼” on the temperature field. It is found that 

temperature profiles increases as upsurge the values of time “t”. On the other hand, for the small 

value of “𝛼” behavior of temperature profile is linear. Effect of radiation parameter “R” with the 

numerous values of “𝛼” deliberated in Figure 5. 

 

(a)          (b) 

Figure 6. Behavior of 𝑇 for different values of 𝑃𝑟 when 𝑅 = 1, 𝜙 = 0.1. 
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(a)          (b) 

Figure 7. Behavior of 𝑢 for different values of 𝜙 when Pr = 0.3, 𝑅 = 1. 

 

       (a)          (b) 

Figure 8. Comparison of obtained solutions with existing solutions [30] 

Temperature profiles decreases as increasing the radiation parameter. Dominant effect of 

radiation parameter “R” can be seen at the center of channel. Also, temperature increases as 

parameter “𝛼” decreases gradually. Behavior of Prandtl number “Pr” and “𝛼” on the dimensionless 

temperature profile demonstrated in Figure 8. Enhancement in Prandtl number decrease the 

temperature distribution gradually. Lastly, effect of solid volume fraction “𝜙” and parameter “𝛼” on 

temperature distribution pondered in Figure 7. Here temperature of the fluid enhanced as enhancing 

both parameters. From Figures 4–7, we observe that temperature profiles have dominant values for 

the case of Cu-based nanofluid as compare to Al2O3 based nanofluid. Figure 8(a–b) is plotted to 

demonstrate the comparison of proposed finite difference scheme with published work [30]. Figure 

8(a) clearly exhibit that the obtained solutions are excellent agreement with published work. The 

main advantage of the proposed method that it is accurate and can be extended for nonlinear problem. 

Figure 8(b) shows the comparison of temperature profile for different values of time and 

fractional-order parameter 𝛼, it can be noted that for all values of 𝛼 and 𝑡 the achieved solutions 
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shows the good agreement with analytical solutions [30]. Table 1 is constructed for the estimation of 

𝐿2 , 𝐿∞  and RMS norms using the following relations.  

𝐸𝑗 = 𝑇𝑗 − 𝑇 𝑗 , 

𝐿∞ = max
𝑗
 𝐸𝑗  , 𝐿2 =    𝐸𝑗

2 

𝑀

𝑗=1

, 𝑅𝑀𝑆 =  
1

𝑀
  𝐸𝑗

2 

𝑀

𝑗=1

. 

It concluded that proposed method is accurate, stable and well-matched to tackle this problem and 

also can be extended fractional-order nonlinear problem of physical nature. 

Table 1. Error analysis of 𝐿2, 𝐿∞  and RMS using proposed method when 𝑕 = 0.04, 𝑘 = 0.001. 

𝜶 Norms 𝒕 = 𝟎. 𝟏 𝒕 = 𝟎. 𝟓  𝒕 = 𝟎. 𝟗 

0.4 𝐿2 2.65×10
-2

 3.28×10
-3

 1.50×10
-3

 

 𝐿∞  2.64×10
-2

 3.27×10
-3

 1.49×10
-3

 

 RMS 5.90×10
-3

 7.33×10
-4

 3.37×10
-4

 

0.7 𝐿2 1.80×10
-2

 1.78×10
-3

 6.45×10
-4

 

 𝐿∞  1.79×10
-2

 1.77×10
-3

 6.44×10
-4

 

 RMS 4.02×10
-3

 3.98×10
-4

 1.44×10
-4

 

1.0 𝐿2 5.07×10
-2

 3.90×10
-4

 3.82×10
-5

 

 𝐿∞  5.06×10
-2

 3.90×10
-4

 3.82×10
-5

 

 RMS 1.13×10
-2

 8.73×10
-5

 8.55×10
-6

 

5. Conclusion 

In the presence of magnetic effects, we analyzed the unsteady natural convection radiating flow 

in an open ended vertical channel. We assumed the channel is stationary with non-uniform 

temperature. The finite difference approach coupled with Crank Nicolson method has been 

successfully applied to obtain the solution of said fluid model. Hence, key findings of our study are 

stated below:  

 The temperature decreased due to increase in fractional parameter and radiative parameter 𝑅. 
 The temperature increased when we enhanced the value of time. 
 The velocity of the fluid decreased while enhancing the radiative parameter 𝑅 as well as Prandtl 

number Pr. 

 The Grashof number 𝐺𝑟 enhanced the velocity of the fluid while fluid velocity decreased with 

the passage of time 𝑡. 

 For lesser values of time 𝑡, while increase in the fractional parameter 𝛼 the velocity of the fluid 

increases but after some critical values of time 𝑡𝑐  the behavior is reverse. 
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