This research aimed to find numerical solutions to a type of nonlinear initial value problem (IVP) for hybrid fractional differential equations. Using the Adomian decomposition method (ADM) and the Picard method (PM), we studied the Chandrasekhar quadratic integral equation (QIE). Furthermore, we investigated existence and uniqueness results using measures of weak noncompactness. Through a set of examples and numerical simulations, a comparison was made between the results of the AMD and PM.
Citation: Eman A. A. Ziada, Hind Hashem, Asma Al-Jaser, Osama Moaaz, Monica Botros. Numerical and analytical approach to the Chandrasekhar quadratic functional integral equation using Picard and Adomian decomposition methods[J]. Electronic Research Archive, 2024, 32(11): 5943-5965. doi: 10.3934/era.2024275
This research aimed to find numerical solutions to a type of nonlinear initial value problem (IVP) for hybrid fractional differential equations. Using the Adomian decomposition method (ADM) and the Picard method (PM), we studied the Chandrasekhar quadratic integral equation (QIE). Furthermore, we investigated existence and uniqueness results using measures of weak noncompactness. Through a set of examples and numerical simulations, a comparison was made between the results of the AMD and PM.
[1] | J. J. Nieto, R. Rodríguez-López, Fractional Differential Equations: Theory, Methods and Applications, MDPI, 2019. |
[2] | A. J. da S. Neto, J. C. Becceneri, H. F. de C. Velho, Computational Intelligence Applied to Inverse Problems in Radiative Transfer, Springer, 2023. https://doi.org/10.1007/978-3-031-43544-7 |
[3] | F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society, 2010. |
[4] | Y. Zhou, Basic Theory of Fractional Differential Equations, World scientific, 2023. |
[5] | B. C. Dhage, Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations, Differ. Equations Appl., 2 (2010), 465–486. https://doi.org/10.7153/dea-02-28 doi: 10.7153/dea-02-28 |
[6] | B. C. Dhage, Nonlinear quadratic first order functional integro-differential equations with periodic boundary conditions, Dyn. Syst. Appl., 18 (2009), 303–322. Available from: http://www.dynamicpublishers.com/DSA/dsa18pdf/23-DSA-138.pdf. |
[7] | B. C. Dhage, B. D. Karande, First order integro-differential equations in Banach algebras involving Caratheodory and discontinuous nonlinearities, Electron. J. Qual. Theory Differ. Equations, 21 (2005), 1–16. Available from: https://real.mtak.hu/22810/1/p232.pdf. |
[8] | B. C. Dhage, D. O'Regan, A fixed point theorem in Banach algebras with applications to functional integral equations, Funct. Differ. Equations, 7 (2004), 259–267. |
[9] | B. C. Dhage, S. N. Salunkhe, R. P. Agarwal, W. Zhang, A functional differential equation in Banach algebras, Math. Inequal. Appl., 8 (2005), 89–99. Available from: https://files.ele-math.com/abstracts/mia-08-09-abs.pdf. |
[10] | B. C. Dhage, On $ a $-condensing mappings in Banach algebras, Math. Stud., 63 (1994), 146–152. |
[11] | B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear Anal. Hybrid Syst., 4 (2010), 414–424. https://doi.org/10.1016/j.nahs.2009.10.005 doi: 10.1016/j.nahs.2009.10.005 |
[12] | B. C. Dhage, A nonlinear alternative in Banach algebras with applications to functional differential equations, Nonlinear Funct. Anal. Appl., 9 (2004), 563–575. Available from: file:///C:/Users/97380/Downloads/681-1991-1-PB.pdf. |
[13] | B. C. Dhage, Fixed point theorems in ordered Banach algebras and applications, Panam. Math. J., 9 (1999), 83–102. |
[14] | S. Chandrasekhar, Radiative Transfer, London, UK: Oxford University, 1950. |
[15] | I. K. Argyros, S. Hilout, M. A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering, Nova Science Publishers, Incorporated, 2011. |
[16] | I. W. Busbridge, On solutions of Chandrasekhar's integral equation, Trans. Am. Math. Soc., 105 (1962), 112–117. https://doi.org/10.2307/1993922 doi: 10.2307/1993922 |
[17] | T. Tanaka, Integration of chandrasekhar's integral equation, J. Quant. Spectrosc. Radiat. Transfer, 76 (2003), 121–144. https://doi.org/10.1016/S0022-4073(02)00050-X doi: 10.1016/S0022-4073(02)00050-X |
[18] | J. Banas, K. Goeble, Measure of noncompactness in Banach space, in Lecture Notes in Pure and Applied Mathematics, NewYork, 1980. |
[19] | G. Adomian, Stochastic System, Academic press, 1983. |
[20] | G. Adomian, Nonlinear Stochastic Operator Equations, Academic press, 1986. |
[21] | G. Adomian, Nonlinear Stochastic Systems Theory and Applications to Physics, Springer Science & Business Media, 1988. |
[22] | R. Rach, G. Adomian, R. E. Mayer, A modified decomposition, Comput. Math. Appl., 23 (1992), 17–23. https://doi.org/10.1016/0898-1221(92)90076-T doi: 10.1016/0898-1221(92)90076-T |
[23] | K. Abbaoui, Y. Cherruault, Convergence of Adomian's method applied to differential equations, Comput. Math. Appl., 28 (1994), 103–109. https://doi.org/10.1016/0898-1221(94)00144-8 doi: 10.1016/0898-1221(94)00144-8 |
[24] | G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, 1994. |
[25] | A. M. A. El-Sayed, I. L. El-Kalla, E. A. A. Ziada, Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations, Appl. Numer. Math., 60 (2010), 788–797. https://doi.org/10.1016/j.apnum.2010.02.007 doi: 10.1016/j.apnum.2010.02.007 |
[26] | R. Rach, On the Adomian (decomposition) method and comparisons with Picard's method, J. Math. Anal. Appl., 128 (1987), 480–483. https://doi.org/10.1016/0022-247X(87)90199-5 doi: 10.1016/0022-247X(87)90199-5 |
[27] | Y. Cherruault, Convergence of Adomian's method, Kybernetes, 18 (1989), 31–38. https://doi.org/10.1108/eb005812 doi: 10.1108/eb005812 |
[28] | Y. Cherruault, G. Adomian, K. Abbaoui, R. Rach, Further remarks on convergence of decomposition method, Int. J. Bio-Med. Comput., 38 (1995), 89–93. https://doi.org/10.1016/0020-7101(94)01042-Y doi: 10.1016/0020-7101(94)01042-Y |
[29] | N. Bellomo, D. Sarafyan, On Adomian's decomposition method and some comparisons with Picard's iterative scheme, J. Math. Anal. Appl., 123 (1987), 389–400. https://doi.org/10.1016/0022-247X(87)90318-0 doi: 10.1016/0022-247X(87)90318-0 |
[30] | M. A. Golberg, A note on the decomposition method for operator equation, Appl. Math. Comput., 106 (1999), 215–220. https://doi.org/10.1016/S0096-3003(98)10124-8 doi: 10.1016/S0096-3003(98)10124-8 |
[31] | A. M. A. El-Sayed, H. H. G. Hashem, E. A. A. Ziada, Picard and Adomian methods for quadratic integral equation, Comput. Appl. Math., 29 (2010), 447–463. https://doi.org/10.1590/S1807-03022010000300007 doi: 10.1590/S1807-03022010000300007 |
[32] | A. M. A. El-Sayed, H. H. G. Hashem, E. A. A. Ziada, Picard and Adomian Methods for coupled systems of quadratic integral equations of fractional order, J. Nonlinear Anal. Optim. Theor. Appl., 3 (2012), 171–183. |
[33] | A. M. A. El-Sayed, H. H. G. Hashem, E. A. A. Ziada, Picard and Adomian decomposition methods for a quadratic integral equation of fractional order, Comput. Appl. Math., 33 (2014), 95–109. https://doi.org/10.1007/s40314-013-0045-3 doi: 10.1007/s40314-013-0045-3 |
[34] | E. A. A. Ziada, Picard and Adomian solutions of nonlinear fractional differential equations system containing Atangana–Baleanu derivative, J. Eng. Appl. Sci., 71 (2024), 31. https://doi.org/10.1186/s44147-024-00361-6 doi: 10.1186/s44147-024-00361-6 |