Research article Special Issues

Numerical and analytical approach to the Chandrasekhar quadratic functional integral equation using Picard and Adomian decomposition methods

  • Received: 19 July 2024 Revised: 12 October 2024 Accepted: 24 October 2024 Published: 05 November 2024
  • This research aimed to find numerical solutions to a type of nonlinear initial value problem (IVP) for hybrid fractional differential equations. Using the Adomian decomposition method (ADM) and the Picard method (PM), we studied the Chandrasekhar quadratic integral equation (QIE). Furthermore, we investigated existence and uniqueness results using measures of weak noncompactness. Through a set of examples and numerical simulations, a comparison was made between the results of the AMD and PM.

    Citation: Eman A. A. Ziada, Hind Hashem, Asma Al-Jaser, Osama Moaaz, Monica Botros. Numerical and analytical approach to the Chandrasekhar quadratic functional integral equation using Picard and Adomian decomposition methods[J]. Electronic Research Archive, 2024, 32(11): 5943-5965. doi: 10.3934/era.2024275

    Related Papers:

  • This research aimed to find numerical solutions to a type of nonlinear initial value problem (IVP) for hybrid fractional differential equations. Using the Adomian decomposition method (ADM) and the Picard method (PM), we studied the Chandrasekhar quadratic integral equation (QIE). Furthermore, we investigated existence and uniqueness results using measures of weak noncompactness. Through a set of examples and numerical simulations, a comparison was made between the results of the AMD and PM.



    加载中


    [1] J. J. Nieto, R. Rodríguez-López, Fractional Differential Equations: Theory, Methods and Applications, MDPI, 2019.
    [2] A. J. da S. Neto, J. C. Becceneri, H. F. de C. Velho, Computational Intelligence Applied to Inverse Problems in Radiative Transfer, Springer, 2023. https://doi.org/10.1007/978-3-031-43544-7
    [3] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, American Mathematical Society, 2010.
    [4] Y. Zhou, Basic Theory of Fractional Differential Equations, World scientific, 2023.
    [5] B. C. Dhage, Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations, Differ. Equations Appl., 2 (2010), 465–486. https://doi.org/10.7153/dea-02-28 doi: 10.7153/dea-02-28
    [6] B. C. Dhage, Nonlinear quadratic first order functional integro-differential equations with periodic boundary conditions, Dyn. Syst. Appl., 18 (2009), 303–322. Available from: http://www.dynamicpublishers.com/DSA/dsa18pdf/23-DSA-138.pdf.
    [7] B. C. Dhage, B. D. Karande, First order integro-differential equations in Banach algebras involving Caratheodory and discontinuous nonlinearities, Electron. J. Qual. Theory Differ. Equations, 21 (2005), 1–16. Available from: https://real.mtak.hu/22810/1/p232.pdf.
    [8] B. C. Dhage, D. O'Regan, A fixed point theorem in Banach algebras with applications to functional integral equations, Funct. Differ. Equations, 7 (2004), 259–267.
    [9] B. C. Dhage, S. N. Salunkhe, R. P. Agarwal, W. Zhang, A functional differential equation in Banach algebras, Math. Inequal. Appl., 8 (2005), 89–99. Available from: https://files.ele-math.com/abstracts/mia-08-09-abs.pdf.
    [10] B. C. Dhage, On $ a $-condensing mappings in Banach algebras, Math. Stud., 63 (1994), 146–152.
    [11] B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear Anal. Hybrid Syst., 4 (2010), 414–424. https://doi.org/10.1016/j.nahs.2009.10.005 doi: 10.1016/j.nahs.2009.10.005
    [12] B. C. Dhage, A nonlinear alternative in Banach algebras with applications to functional differential equations, Nonlinear Funct. Anal. Appl., 9 (2004), 563–575. Available from: file:///C:/Users/97380/Downloads/681-1991-1-PB.pdf.
    [13] B. C. Dhage, Fixed point theorems in ordered Banach algebras and applications, Panam. Math. J., 9 (1999), 83–102.
    [14] S. Chandrasekhar, Radiative Transfer, London, UK: Oxford University, 1950.
    [15] I. K. Argyros, S. Hilout, M. A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering, Nova Science Publishers, Incorporated, 2011.
    [16] I. W. Busbridge, On solutions of Chandrasekhar's integral equation, Trans. Am. Math. Soc., 105 (1962), 112–117. https://doi.org/10.2307/1993922 doi: 10.2307/1993922
    [17] T. Tanaka, Integration of chandrasekhar's integral equation, J. Quant. Spectrosc. Radiat. Transfer, 76 (2003), 121–144. https://doi.org/10.1016/S0022-4073(02)00050-X doi: 10.1016/S0022-4073(02)00050-X
    [18] J. Banas, K. Goeble, Measure of noncompactness in Banach space, in Lecture Notes in Pure and Applied Mathematics, NewYork, 1980.
    [19] G. Adomian, Stochastic System, Academic press, 1983.
    [20] G. Adomian, Nonlinear Stochastic Operator Equations, Academic press, 1986.
    [21] G. Adomian, Nonlinear Stochastic Systems Theory and Applications to Physics, Springer Science & Business Media, 1988.
    [22] R. Rach, G. Adomian, R. E. Mayer, A modified decomposition, Comput. Math. Appl., 23 (1992), 17–23. https://doi.org/10.1016/0898-1221(92)90076-T doi: 10.1016/0898-1221(92)90076-T
    [23] K. Abbaoui, Y. Cherruault, Convergence of Adomian's method applied to differential equations, Comput. Math. Appl., 28 (1994), 103–109. https://doi.org/10.1016/0898-1221(94)00144-8 doi: 10.1016/0898-1221(94)00144-8
    [24] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, 1994.
    [25] A. M. A. El-Sayed, I. L. El-Kalla, E. A. A. Ziada, Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations, Appl. Numer. Math., 60 (2010), 788–797. https://doi.org/10.1016/j.apnum.2010.02.007 doi: 10.1016/j.apnum.2010.02.007
    [26] R. Rach, On the Adomian (decomposition) method and comparisons with Picard's method, J. Math. Anal. Appl., 128 (1987), 480–483. https://doi.org/10.1016/0022-247X(87)90199-5 doi: 10.1016/0022-247X(87)90199-5
    [27] Y. Cherruault, Convergence of Adomian's method, Kybernetes, 18 (1989), 31–38. https://doi.org/10.1108/eb005812 doi: 10.1108/eb005812
    [28] Y. Cherruault, G. Adomian, K. Abbaoui, R. Rach, Further remarks on convergence of decomposition method, Int. J. Bio-Med. Comput., 38 (1995), 89–93. https://doi.org/10.1016/0020-7101(94)01042-Y doi: 10.1016/0020-7101(94)01042-Y
    [29] N. Bellomo, D. Sarafyan, On Adomian's decomposition method and some comparisons with Picard's iterative scheme, J. Math. Anal. Appl., 123 (1987), 389–400. https://doi.org/10.1016/0022-247X(87)90318-0 doi: 10.1016/0022-247X(87)90318-0
    [30] M. A. Golberg, A note on the decomposition method for operator equation, Appl. Math. Comput., 106 (1999), 215–220. https://doi.org/10.1016/S0096-3003(98)10124-8 doi: 10.1016/S0096-3003(98)10124-8
    [31] A. M. A. El-Sayed, H. H. G. Hashem, E. A. A. Ziada, Picard and Adomian methods for quadratic integral equation, Comput. Appl. Math., 29 (2010), 447–463. https://doi.org/10.1590/S1807-03022010000300007 doi: 10.1590/S1807-03022010000300007
    [32] A. M. A. El-Sayed, H. H. G. Hashem, E. A. A. Ziada, Picard and Adomian Methods for coupled systems of quadratic integral equations of fractional order, J. Nonlinear Anal. Optim. Theor. Appl., 3 (2012), 171–183.
    [33] A. M. A. El-Sayed, H. H. G. Hashem, E. A. A. Ziada, Picard and Adomian decomposition methods for a quadratic integral equation of fractional order, Comput. Appl. Math., 33 (2014), 95–109. https://doi.org/10.1007/s40314-013-0045-3 doi: 10.1007/s40314-013-0045-3
    [34] E. A. A. Ziada, Picard and Adomian solutions of nonlinear fractional differential equations system containing Atangana–Baleanu derivative, J. Eng. Appl. Sci., 71 (2024), 31. https://doi.org/10.1186/s44147-024-00361-6 doi: 10.1186/s44147-024-00361-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(242) PDF downloads(31) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog