This study aims at extending and implementing an iterative spectral scheme for fractional-order unsteady nonlinear integro-partial differential equations with weakly singular kernel. In this scheme, the unknown function u(x, t) is estimated by using shifted Gegenbauer polynomials vector Λ(x, t), and Picard iterative scheme is used to handle underlying nonlinearities. Some novel operational matrices are developed for the first time in order to approximate the singular integral like, $ \int_0^x {\int_0^y {u(p{a_1} + {b_1}, q{a_2} + {b_2}, t)/{{({x^{{\rho _1}}} - {p^{{\rho _1}}})}^{{\alpha _1}}}{{({y^{{\rho _2}}} - {q^{{\rho _2}}})}^{{\alpha _2}}}{\text{d}}q{\text{d}}p} } $ and $ \int_0^t {{u^\gamma }({\bf{x}}, \xi)/{{({t^{{\rho _3}}} - {\xi ^{{\rho _3}}})}^{{\alpha _3}}}{\text{d}}\xi } $, where ρ's > 1, 0 < α's < 1 by means of shifted Gegenbauer polynomials vector. The advantage of this extended method is its ability to convert nonlinear problems into systems of linear algebraic equations. A computer program in Maple for the proposed scheme is developed for a sample problem, and we validate it to compare the results with existing results. Six new problems are also solved to illustrate the effectiveness of this extended computational method. A number of simulations are performed for different ranges of the nonlinearity n, α, fractional-order, ρ, and convergence control M, parameters. Our results demonstrate that the extended scheme is stable, accurate, and appropriate to find solutions of complex problems with inherent nonlinearities.
Citation: M. Usman, T. Zubair, J. Imtiaz, C. Wan, W. Wu. An iterative spectral strategy for fractional-order weakly singular integro-partial differential equations with time and space delays[J]. Electronic Research Archive, 2022, 30(5): 1775-1798. doi: 10.3934/era.2022090
This study aims at extending and implementing an iterative spectral scheme for fractional-order unsteady nonlinear integro-partial differential equations with weakly singular kernel. In this scheme, the unknown function u(x, t) is estimated by using shifted Gegenbauer polynomials vector Λ(x, t), and Picard iterative scheme is used to handle underlying nonlinearities. Some novel operational matrices are developed for the first time in order to approximate the singular integral like, $ \int_0^x {\int_0^y {u(p{a_1} + {b_1}, q{a_2} + {b_2}, t)/{{({x^{{\rho _1}}} - {p^{{\rho _1}}})}^{{\alpha _1}}}{{({y^{{\rho _2}}} - {q^{{\rho _2}}})}^{{\alpha _2}}}{\text{d}}q{\text{d}}p} } $ and $ \int_0^t {{u^\gamma }({\bf{x}}, \xi)/{{({t^{{\rho _3}}} - {\xi ^{{\rho _3}}})}^{{\alpha _3}}}{\text{d}}\xi } $, where ρ's > 1, 0 < α's < 1 by means of shifted Gegenbauer polynomials vector. The advantage of this extended method is its ability to convert nonlinear problems into systems of linear algebraic equations. A computer program in Maple for the proposed scheme is developed for a sample problem, and we validate it to compare the results with existing results. Six new problems are also solved to illustrate the effectiveness of this extended computational method. A number of simulations are performed for different ranges of the nonlinearity n, α, fractional-order, ρ, and convergence control M, parameters. Our results demonstrate that the extended scheme is stable, accurate, and appropriate to find solutions of complex problems with inherent nonlinearities.
[1] | K. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, 1st edition, Elsevier Science, Netherland, 1971. |
[2] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, 1st edition, Wiley-Interscience, New York, 1993. |
[3] | A Babaei, B. P. Moghaddam, S. Banihashemi, J. A. T. Machado, Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations, Commun. Nonlinear Sci. Numer. Simul., 82 (2020), 104985. https://doi.org/10.1016/j.cnsns.2019.104985 doi: 10.1016/j.cnsns.2019.104985 |
[4] | M. Asgari, R. Ezzati, Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order, Appl. Math. Comput., 307 (2017), 290-298. https://doi.org/10.1016/j.amc.2017.03.012 doi: 10.1016/j.amc.2017.03.012 |
[5] | N. Mollahasani, M. M. Moghadam, G. Chuev, Hybrid Functions of Lagrange Polynomials and Block-Pulse Functions for Solving Integro-partial Differential Equations, Iran. J. Sci. Technol., Trans. A: Sci., (2018), 1-9. https://dx.doi.org/10.22099/ijsts.2015.3377 doi: 10.22099/ijsts.2015.3377 |
[6] | S. Singh, V. K. Patel, V. K. Singh, E. Tohidi, Numerical solution of nonlinear weakly singular partial integro-differential equation via operational matrices, Appl. Math. Comput., 298 (2017), 310-321. https://doi.org/10.1016/j.amc.2016.11.012 doi: 10.1016/j.amc.2016.11.012 |
[7] | S. Arshed, B‐spline solution of fractional integro partial differential equation with a weakly singular kernel, Numer. Methods Partial Differ. Equations, 33 (2017), 1565-1581. https://doi.org/10.1002/num.22153 doi: 10.1002/num.22153 |
[8] | M. A. Zaky, A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comput. Appl. Math., 37 (2018), 3525-3538. https://doi.org/10.1007/s40314-017-0530-1 doi: 10.1007/s40314-017-0530-1 |
[9] | A. H. Bhrawy, M. A. Zaky, J. A. T. Machado, Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev tau approximation, J. Optim. Theory Appl., 174 (2017), 321-341. https://doi.org/10.1007/s10957-016-0863-8 doi: 10.1007/s10957-016-0863-8 |
[10] | A. H. Bhrawy, M. A. Zaky, Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations, Comput. Math. Appl., 73 (2017), 1100-1117. https://doi.org/10.1016/j.camwa.2016.11.019 doi: 10.1016/j.camwa.2016.11.019 |
[11] | A. H. Bhrawy, M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281 (2015), 876-895. https://doi.org/10.1016/j.jcp.2014.10.060 doi: 10.1016/j.jcp.2014.10.060 |
[12] | A. H. Bhrawy, M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 80 (2015), 101-116. http://doi.org/10.1007/S11071-014-1854-7 doi: 10.1007/S11071-014-1854-7 |
[13] | A. H. Bhrawy, M. A. Zaky, An improved collocation method for multi-dimensional space-time variable-order fractional Schrödinger equations, Appl. Numer. Math., 111 (2017), 197-218. https://doi.org/10.1016/j.apnum.2016.09.009 doi: 10.1016/j.apnum.2016.09.009 |
[14] | M. A. Zaky, Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems, Appl. Mumer. Math., 145 (2019), 429-457. https://doi.org/10.1016/j.apnum.2019.05.008 doi: 10.1016/j.apnum.2019.05.008 |
[15] | M. A. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl. Numer. Math., 154 (2020), 205-222. https://doi.org/10.1016/j.apnum.2020.04.002 doi: 10.1016/j.apnum.2020.04.002 |
[16] | N. A. Elkot, M. A. Zaky, E. H. Doha, I. G. Ameen, On the rate of convergence of the Legendre spectral collocation method for multi-dimensional nonlinear Volterra-Fredholm integral equations, Commun. Theor. Phys., 73 (2021), 025002. https://doi.org/10.1088/1572-9494/abcfb3 doi: 10.1088/1572-9494/abcfb3 |
[17] | I. G. Ameen, M. A. Zaky, E. H. Doha, Singularity preserving spectral collocation method for nonlinear systems of fractional differential equations with the right-sided Caputo fractional derivative, J. Comput. Appl. Math., 392 (2021), 113468. https://doi.org/10.1016/j.cam.2021.113468 doi: 10.1016/j.cam.2021.113468 |
[18] | F. Salehi, H. Saeedi, M. M. Moghadam, Discrete Hahn polynomials for numerical solution of two-dimensional variable-order fractional Rayleigh-Stokes problem, Comput. Appl. Math., 37 (2018), 5274-5292. https://doi.org/10.1007/S40314-018-0631-5 doi: 10.1007/S40314-018-0631-5 |
[19] | Z. Abdollahi, A computational approach for solving fractional Volterra integral equations based on two-dimensional Haar wavelet method, Int. J. Comput. Math., (2021), 1-17. https://doi.org/10.1080/00207160.2021.1983549 doi: 10.1080/00207160.2021.1983549 |
[20] | S. Zaeri, H. Saeedi, M. Izadi, Fractional integration operator for numerical solution of the integro-partial time fractional diffusion heat equation with weakly singular kernel, Asian-Europ. J. Math., 10 (2017), 1750071. https://doi.org/10.1142/S1793557117500711 doi: 10.1142/S1793557117500711 |
[21] | H. Saeedi, N. Mollahasani, M. M. Moghadam, G. N. Chuev, An operational Haar wavelet method for solving fractional Volterra integral equations, Int. J. Appl. Math. Comput. Sci., 21 (2011), 535-547. https://doi.org/10.2478/v10006-011-0042-x doi: 10.2478/v10006-011-0042-x |
[22] | R. Agarwal, M. Belmekki, M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Differ. Equations, 1 (2009), 981728. https://doi.org/10.1155/2009/981728 doi: 10.1155/2009/981728 |
[23] | M. Usman, S. T. Mohyud-Din, Traveling wave solutions of 7 th order Kaup Kuperschmidt and Lax equations of fractional-order, Int. J. Adv. Appl. Math. Mech., 1 (2013), 17-34. |
[24] | M. Usman, H. Muhammad, U. H. Rizwan, W. Wang, An efficient algorithm based on Gegenbauer wavelets for the solutions of variable-order fractional differential equations, Europ. Phys. J. Plus, 133 (2018), 327. https://doi.org/10.1140/epjp/i2018-12172-1 doi: 10.1140/epjp/i2018-12172-1 |
[25] | M. Usman, Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials, Appl. Math. Comput., 372 (2020), 124985. https://doi.org/10.1016/j.amc.2019.124985 doi: 10.1016/j.amc.2019.124985 |
[26] | M. Usman, A robust scheme based on novel‐operational matrices for some classes of time‐fractional nonlinear problems arising in mechanics and mathematical physics, Numer. Methods Partial Differ. Equations, 36 (2020), 1566-1600. https://doi.org/10.1002/num.22492 doi: 10.1002/num.22492 |
[27] | D. S. Kim, T. Kim, S. H. Rim, Some identities involving Gegenbauer polynomials, Adv. Differ. Equations, 1 (2012), 219. https://doi.org/10.1186/1687-1847-2012-219 doi: 10.1186/1687-1847-2012-219 |
[28] | M. Usman, M. Hamid, R. U. Haq, M. Liu, Linearized novel operational matrices-based scheme for classes of nonlinear time-space fractional unsteady problems in 2D, Appl. Numer. Math., 162 (2021), 351-373. https://doi.org/10.1016/j.apnum.2020.12.021 doi: 10.1016/j.apnum.2020.12.021 |
[29] | M. Hosseininia, M. H. Heydari, F. M. M. Ghaini, Z. Avazzadeh, A wavelet method to solve nonlinear variable-order time fractional 2D Klein-Gordon equation, Comput. Math. Appl., 78 (2019), 3713-3730. https://doi.org/10.1016/j.camwa.2019.06.008 doi: 10.1016/j.camwa.2019.06.008 |
[30] | M. Heydari, M. Hooshmandasl, C. Cattani, A new operational matrix of fractional order integration for the Chebyshev wavelets and its application for nonlinear fractional Van der Pol oscillator equation, Proceed. Math. Sci., 128 (2018), 1-26. https://doi.org/10.1007/s12044-018-0393-4 doi: 10.1007/s12044-018-0393-4 |
[31] | X. Cao, Y. Lin, H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Probl. Imaging, 13 (2019), 197-210. |
[32] | X. Cao, H. Liu, Determining a fractional Helmholtz equation with unknown source and scattering potential, Commun. Math. Sci., 17 (2019), 1861-1876. https://doi.org/10.4310/CMS.2019.v17.n7.a5 doi: 10.4310/CMS.2019.v17.n7.a5 |
[33] | H. Liu, J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Probl., 22 (2006), 515-524. |
[34] | J. Li, H. Liu, J. Zou, Strengthened linear sampling method with a reference ball, SIAM J. Sci. Comput., 31 (2009/10), 4013-4040. https://doi.org/10.1137/080734170 |
[35] | H. Diao, X. Cao, H. Liu, On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications, Comm. Partial Differ. Equations, 46 (2021), 630-679. |
[36] | Y. Chow, Y. Deng, Y. He, H. Liu, X. Wang, Surface-localized transmission eigenstates, super-resolution imaging, and pseudo surface plasmon modes, SIAM J. Imaging Sci., 14 (2021), 946-975. https://doi.org/10.1137/20M1388498 doi: 10.1137/20M1388498 |