Research article

Improved algorithms for determining the injectivity of 2D and 3D rational Bézier curves


  • Received: 28 December 2021 Revised: 19 March 2022 Accepted: 24 March 2022 Published: 30 March 2022
  • Bézier curves and surfaces are important to computer-aided design applications. This paper presents algorithms for checking the injectivity of 2D and 3D Bézier curves. An injective Bézier curve or surface is one that has no self-intersections. The proposed algorithms use recently proposed sufficient and necessary conditions under which Bézier curves are guaranteed to be non-self-intersecting. As well as a rigorous derivation of the proposed algorithms, we present a series of examples and derive the complexity and computation times of the proposed algorithms. We find that the complexity our algorithms is approximately $ O(m) $, representing an improvement over previous injectivity-checking algorithms.

    Citation: Xuanyi Zhao, Jinggai Li, Ying Wang, Chungang Zhu. Improved algorithms for determining the injectivity of 2D and 3D rational Bézier curves[J]. Electronic Research Archive, 2022, 30(5): 1799-1812. doi: 10.3934/era.2022091

    Related Papers:

  • Bézier curves and surfaces are important to computer-aided design applications. This paper presents algorithms for checking the injectivity of 2D and 3D Bézier curves. An injective Bézier curve or surface is one that has no self-intersections. The proposed algorithms use recently proposed sufficient and necessary conditions under which Bézier curves are guaranteed to be non-self-intersecting. As well as a rigorous derivation of the proposed algorithms, we present a series of examples and derive the complexity and computation times of the proposed algorithms. We find that the complexity our algorithms is approximately $ O(m) $, representing an improvement over previous injectivity-checking algorithms.



    加载中


    [1] W. Boehm, H. Prautzsch, Geometric Foundations of Geometric Design, AK Peter, Boston, 1992.
    [2] G. Farin, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Academic Press, 1993.
    [3] G. E. Farin, D. Hansford, The Essentials of CAGD, A K Peters/CRC Press, 2000. http://doi.org/10.2307/3621635
    [4] J. Hoschek, D. Lasser, Grundlagen der geometrischen Datenverarbeitung, B. G. Teubner Stuttgart, 1992.
    [5] M. Duncan, Applied Geometry for Computer Graphics and CAD, Springer-Verlag, 2005.
    [6] M. Mortenson, Geometric modeling, New York: Wiley Computer Publishing, 2006.
    [7] L. A. Piegl, W. Tiller, The NURBS book, Springer-Verlag, 1997.
    [8] A. Rockwood, P. Chambers, Interactive curves and surfaces, in Technology-Based Re-Engineering Engineering Education Proceedings of Frontiers in Education FIE'96 26th Annual Conference, 1996,471–474.
    [9] F. P. Preparata, M. I. Shamos, Computational Geometry, Springer-Verlag, 1985.
    [10] P. E. Bézier, Example of an existing system in the motor industry: The Unisurf system, Proc. Roy. Soc. A, 321 (1971), 207–218. http://doi.org/10.1098/rspa.1971.0027 doi: 10.1098/rspa.1971.0027
    [11] P. Casteljau, De Casteljau's autobiography: My time at Citroën, Comput. Aided Geom. Design, 16 (1999), 583–586. http://doi.org/10.1016/S0167-8396(99)00024-2 doi: 10.1016/S0167-8396(99)00024-2
    [12] G. Farin, Some aspects of car body design at Daimler-Benz, in North-Holland Publ Co, (1983), 93–97.
    [13] H. J. Hochfeld, M. Ahlers, Role of Bézier curves and surfaces in the Volkswagen CAD approach from 1967 to today, Comput. Aided Design, 22 (1990), 598–608. http://doi.org/10.1016/0010-4485(90)90045-E doi: 10.1016/0010-4485(90)90045-E
    [14] P. Bézier, Numerical control: mathematics and applications, Jhon Wiley & Sons Ltd., Bristol, 1972.
    [15] P. Bézier, The Mathematical Basis of the UNISURF CAD System, Butterworth-Heinemann, 1986.
    [16] A. R. Forrest, Interactive interpolation and approximation by Bézier polynomials, Comput. Aided Design, 22 (1990), 527–537. http://doi.org/10.1016/0010-4485(90)90038-e doi: 10.1016/0010-4485(90)90038-e
    [17] W. J. Gordon, R. F. Riesenfeld, Bernstein-Bézier methods for the computer-aided design of free-form curves and surfaces, J. ACM, 21 (1974), 293–310. http://doi.org/10.1145/321812.321824 doi: 10.1145/321812.321824
    [18] G. Farin, Algorithms for rational Bézier curves, Comput. Aided Design, 15 (1983), 73–77.
    [19] G. Farin, J. Hoschek, M. S. Kim, Handbook of Computer Aided Geometric Design, Elsevier, 2002.
    [20] P. J. Barry, R. N. Goldman, Three examples of dual properties of Bézier curves, Math. Methods Comput. Aided Geom. Design, (1989), 61–69.
    [21] W. Boehm, On cubics: A survey, Comput. Graph. Image Process., 19 (1982), 201–226. http://doi.org/10.1016/0146-664X(82)90009-0 doi: 10.1016/0146-664X(82)90009-0
    [22] D. Nairn, J. Peters, D. Lutterkort, Sharp, quantitative bounds on the distance between a Bézier curve and its control polygon, Comput. Aided Geom. Design, 16 (1999), 613–631. http://doi.org/10.1016/S0167-8396(99)00026-6 doi: 10.1016/S0167-8396(99)00026-6
    [23] H. Lin, Geometric iterative methods and their applications, Zhejiang University, 2021.
    [24] H. Lin, T. Maekawa, C. Deng, Survey on geometric iterative methods and their applications, Comput. Aided Design, 95 (2018), 40–51. http://doi.org/10.1016/j.cad.2017.10.002 doi: 10.1016/j.cad.2017.10.002
    [25] J. Hoschek, Offset curves in the plane, Comput. Aided Design, 17 (1985), 77–82. http://doi.org/10.1016/0010-4485(85)90249-0 doi: 10.1016/0010-4485(85)90249-0
    [26] Y. S. Chua, Bézier brushstrokes, Comput. Aided Design, 22 (1990), 550–555. http://doi.org/10.1016/0010-4485(90)90040-J doi: 10.1016/0010-4485(90)90040-J
    [27] H. N. Phien, N. D. Ejdumrong, Efficient algorithms for Bézier curves, Comput. Aided Geom. Design, 17 (2000), 247–250. http://doi.org/10.1016/S0167-8396(99)00048-5 doi: 10.1016/S0167-8396(99)00048-5
    [28] C. M. Hoffmann, Geometric and solid modeling : An introduction, Morgan Kaufmann, 1989.
    [29] D. Lasser, Calculating the self-intersections of Bézier curves, Comput. Ind., 12 (1988), 259–268.
    [30] W. Tiller, E. G. Hanson, Offsets of two-dimensional profiles, IEEE Comput. Graph. Appl., 4 (1984), 36–46. http://doi.org/10.1109/MCG.1984.275995 doi: 10.1109/MCG.1984.275995
    [31] G. Craciun, L. Garcia-Puente, F. Sottile, Some geometrical aspects of control points for toric patches, Lect. Notes Comput. Sci., 5862 (2010), 111–135.
    [32] F. Sottile, C. G. Zhu, Injectivity of 2D toric Bézier patches, in International Conference on Computer-aided, (2011), 235–238.
    [33] C. Zhu, X. Zhao, Self-intersections of rational Bézier curves, Graph. Models, 76 (2014), 312–320. http://doi.org/10.1016/j.gmod.2014.04.001 doi: 10.1016/j.gmod.2014.04.001
    [34] Y. Yu, Y. Ji, C. Zhu, An improved algorithm for checking the injectivity of 2D toric surface patches, Comput. Math. Appl., 79 (2020), 2973–2986. http://doi.org/10.1016/j.camwa.2020.01.001 doi: 10.1016/j.camwa.2020.01.001
    [35] Y. Yu, Y. Ji, C. Zhu, Conditions for injectivity of toric volumes with arbitrary positive weights, Comput. Graph., 97 (2021), 88–98. http://doi.org/10.1016/j.cag.2021.04.026 doi: 10.1016/j.cag.2021.04.026
    [36] X. Zhao, J. Li, S. He, C. Zhu, Geometric conditions for injectivity of 3D Bézier volumes, AIMS Math., 6 (2021), 11974–11988. http://doi.org/10.3934/math.2021694 doi: 10.3934/math.2021694
    [37] F. P. Preparata, K. J. Supowit, Testing a simple polygon for monotonicity, Inf. Process. Lett., 12 (1981), 161–164. http://doi.org/10.1016/0020-0190(81)90091-0 doi: 10.1016/0020-0190(81)90091-0
    [38] R. Krasauskas, Toric surface patches, Adv. Comput. Math., 17 (2002), 89–113. http://doi.org/10.1023/A:1015289823859 doi: 10.1023/A:1015289823859
    [39] Y. Zhou, A new algorithm for polygon intersection operation, in International Conference on Computer & Electrical Engineering, 2009. http://doi.org/10.1109/ICCEE.2009.19
    [40] S. Park, H. Shin, Polygonal chain intersection, Comput. Graph-UK, 26 (2002), 341–350. http://doi.org/10.1016/S0097-8493(02)00060-2 doi: 10.1016/S0097-8493(02)00060-2
    [41] X. Zhao, C. Zhu, Injectivity of NURBS curves, J. Comput. Appl. Math., 302 (2016), 129–138. http://doi.org/10.1016/j.cam.2016.01.046 doi: 10.1016/j.cam.2016.01.046
    [42] X. Zhao, C. Zhu, H. Wang, Geometric conditions of non-self-intersecting NURBS surfaces, Appl. Math. Comput., 310 (2017), 89–96. http://doi.org/10.1016/j.amc.2017.04.016 doi: 10.1016/j.amc.2017.04.016
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1701) PDF downloads(69) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog