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Abstract: Bézier curves and surfaces are important to computer-aided design applications. This paper
presents algorithms for checking the injectivity of 2D and 3D Bézier curves. An injective Bézier curve
or surface is one that has no self-intersections. The proposed algorithms use recently proposed suffi-
cient and necessary conditions under which Bézier curves are guaranteed to be non-self-intersecting.
As well as a rigorous derivation of the proposed algorithms, we present a series of examples and derive
the complexity and computation times of the proposed algorithms. We find that the complexity our
algorithms is approximately O(m), representing an improvement over previous injectivity-checking
algorithms.
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1. Introduction

Bézier techniques bring sophisticated mathematical concepts into highly geometric and intuitive
forms, and are thus at the core of computer-aided geometric design and 3D modeling. An in-depth
introduction to Bézier techniques can be found in many textbooks [1–9], and industrial applica-
tions of Bézier techniques have been widely described [10–13]. Bézier proposed the UNISURF sys-
tem [10, 14, 15] for the design of curves and surfaces based on approximations in 1962. Forrest [16]
and Gordon and Riesenfeld [17] revealed the relationship between Bézier curves and Bernstein poly-
nomials, while Farin [18] gave a description of rational Bézier curves. Various interesting properties
characterize Bézier curves [19], such as endpoint interpolation, symmetry, affine invariance, convex
hull, and diminishing variation [3, 20–22]. The theories of progressive-iterative approximation (PIA),
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least-squares progressive iterative approximation (LSPIA) and extended progressive-iterative approxi-
mation (ExPIA) of Bézier curves can be found in literature [23]. These methods have widely applica-
tions in academic studies and engineering practices as shown in [24]. Some effective algorithms and
applications of Bézier curves can be found in [16, 25–27].

Hoffmann [28] pointed out that the intersection problem was fundamental in both solid modeling
and the integration of geometric objects. Self-intersecting curves or surfaces may lead to unexpected
results in geometric modeling and image morphing. For example, in human-face deformation, the
existence of a fold (self-intersection of a curve or surface) will lead to information loss. Numerous
studies on the self-intersection problem have presented calculations and proofs of the existence of self-
intersections. The curve–curve algorithm proposed by Lasser [29] calculates the self-intersections of
Bézier curves by subdividing control polygons using de Casteljau’s algorithm, and an algorithm for
calculating the self-intersections of B-spline curves were proposed by Tiller et al. [30].

Craciun et al. [31] derived the sufficient and necessary conditions that guarantee the injectivity of
toric-Bézier patches, and it is known that injective Bézier surfaces have no self-intersections. Their
results are suitable for Bézier curves as they are the one-dimensional analogue of toric-Bézier patches.
However, there is a minor flaw in their result, which was corrected for 2D patches by Sottile et al. [32].
For rational Bézier curves, Zhu et al. [33] proposed a sufficient and necessary condition on the control
polygons that guarantees the curves have no self-intersections for any choice of positive weights. Zhu
et al. [33] also proposed an algorithm for checking the injectivity of rational Bézier curves. They
also explained that the complexity of their algorithm is O(m5) for spacial cases (and is O(m4) for
2D cases). Although this algorithm terminates quickly in the case of self-intersecting curves, a less
complex algorithm is still necessary. Yu et al. [34] proposed an improved algorithm for checking the
injectivity of 2D toric surface and applied their algorithm to iso-geometric analysis. Conditions for
checking injectivity of toric volumes with arbitrary positive weights were proposed by Yu et al. [35]
and geometric conditions of injective 3D Bézier volumes were proposed by Zhao et al. [36].

Using injectivity results of Bézier curves proposed by Craciun et al. [31], we derive a new, less
complex algorithm for checking the injectivity of Bézier curves. It has been proved that rational Bézier
curves have no self-intersections if and only if their control points and lattice points are strongly com-
patible. Using the theory of monotone chains [37], Preparata et al. [37] proposed an algorithm of
linear complexity that tests for monotonicity. Using the definition of a monotone chain, we propose an
equivalent theorem for the condition of the injectivity of Bézier curves. This reduces the complexity
of algorithms for checking the injectivity of rational Bézier curves. In this paper, we present two algo-
rithms for checking the injectivity of 2D and 3D rational Bézier curves that the complexity of them is
approximately O(m).

The rest of paper is organized as follows. Section 2 introduces some related work and improved
algorithms are proposed. The complexity of the algorithms are also analyzed. Some examples are
shown in Section 3. Finally, we conclude the paper and present the future work in Section 4.

2. Algorithms

Looking at the history of computer-aided geometric design in industry, it can be argued that rational
techniques and representations are at the root of geometric modeling [19]. The definition of rational
Bézier curves have been widely used. Krasauskas [38] defined toric surface patches as an extension
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of rational Bézier curves in one dimension, called toric-Bézier patches. To complete our theorem and
proof, we present the following definition of toric Bézier curves.

Definition 1. Consider lattice points A = {0, 1, 2, . . . ,m} ⊂ R, then its convex hull is ∆ = [0,m].
Given control points P = {pi ∈ R

d, |i = 0, 1, . . . ,m} (d ∈ {2, 3}). A toric-Bézier curve (rational
Bézier curve) of degree m is a parametric curve that is described by the control points pi, weights
ω = {ωi|i = 0, 1, . . . ,m}. The map FA,ω,P : ∆→ Rd is defined as:

FA,ω,P(x) =

m∑
i=0
ωipiβ

m
i (x)

m∑
i=0
ωiβ

m
i (x)

, x ∈ ∆. (2.1)

The basis functions are defined as
βm

i (x) = ci(1 − x)ixm−i. (2.2)

The image FA,ω,P is called toric Bézier curve. The functions βm
i (x) are called toric Bézier basis.

It is easy to check that these functions are non negative and have no common zeros on ∆. The
polygon obtained by connecting adjacent control points is called the control polygon, and is denoted
by P. When the coefficients ci =

(
m
i

)
m−m and x = mt, they are the Bernstein basis functions:

Bm
i (t) =

(
m
i

)
(1 − t)itm−i. (2.3)

If the parametric domain is changed to [0, 1], then the toric Bézier curve is right the rational Bézier
curve. This means the definition of toric Bézier curve is equivalent to the definition of rational Bézier
curve. For convenience of analysis, we use Definition 1.

In 2009, Craciun et al. [31] proposed several results on injectivity of toric surfaces. In this section,
we illustrate the lower dimension results for Bézier curves. An ordered list p0, . . . ,pd of affinely
independent points in Rd determines an orientation of Rd − simply consider the basis p1 − p0, p2 − p0,
. . ., pd − p0.

LetA andB be the finite sets of points in Rd. Suppose that {a1, a2, . . . , ad} is an affinely independent
subset of A. If the corresponding subset {b1,b2, . . . ,bd} of B is also affinely independent, then each
subset determines an orientation, and the two orientations are either the same or they are opposite. A
and B are said to be compatible if either every pair of orientations is the same, or if every such pair of
orientations is opposite.

In Figure 1, the first and second point sets are compatible, but neither is compatible with the third.
Actually,A and Bmay not lie in the same space, like curves. By the compatible definition, Craciun

et al. proved the following conditions.

Lemma 1. [31] Let A ⊂ R, ω = {ωi > 0|i = 0, 1, . . . ,m}, and P ⊂ Rd(d ∈ {2, 3}), be the lattice
points, weights, and control points of FA,ω,P and ∆ be the convex hull of A. If there is a projection
πd : Rd → R such thatA is compatible with the image πd(P) of P, then the mapping F◦

A,ω,P : ∆ → Rd

is injective.

The proof of Lemma 1 is in Theorem 3.7 on page 12 in reference [31] and its 2D supplementary
proof in reference [32].

Electronic Research Archive Volume 30, Issue 5, 1799–1812.



1802

Figure 1. Compatible and incompatible points.

Remark 1. F◦
A,ω,P is the interior of curves.

Definition 2. If the boundary control points p0 and pm do not coincide, and there exists a projection
πd : Rd → R such thatA is compatible with the image πd(P) of P, then the lattice pointsA and control
points P are called strongly compatible.

Given point sets Q,Q′,Q′′ ⊂ Rd , it is easy to check the following relationships.

• Reflexivity. Q is compatible with itself.
• Transitivity. If Q and Q′ are compatible and Q′ and Q′′ are compatible, then Q and Q′′ are

compatible.

Lemma 2. [31] The map FA,ω,P is injective for all ω > 0 if and only if A and P are strongly
compatible.

Proof. The lattice points A and control points P being strongly compatible is equivalent to A and P
being compatible and p0, pm do not coincide. By Lemma 1,A and P being compatible is equivalent to
F◦
A,ω,P being injective. As rational Bézier curves satisfy endpoint interpolation, p0, pm not coinciding

implies that the boundary of FA,ω,P is not self-intersecting. This completes the proof.
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Figure 2. A compatible projection.
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Example 1. For the curve in Figure 2, the projection π : R2 → R maps control points {p0, . . . ,p5}

to the points on the line in the same order as the lattice points A = {0, 1, 2, 3, 4, 5}, which implies
the curve has no self-intersections. In this figure, the projection π is simply the vertical projection
forgetting the second coordinate.

To reduce the complexity of the algorithm for checking the injectivity of rational Bézier curves,
we first introduce the concept of monotone chains. The concept of monotone chain a basic concept in
computational geometry, which can be found in a lot of literatures, such as [37, 39, 40]. We borrow its
definition from literature [37].

Definition 3. [39] Given a direction, if a chain has only one intersection point with each line which
is perpendicular to this direction, the chain would be called as monotone chain along this direction.
The given direction is called scan-line direction, and the line perpendicular to the direction is called
scan-line.

In [37], the concept of monotone chain is explained in geometry. It implies that if the orthogonal
projection on line of every coordinate point on the chain is orderly, the chain is monotony relative
to the line [39]. The illustrations of monotone chains in this paragraph are borrow from [37]. Let
P be a control polygon with vertices p0,p1, . . . ,pm running counterclockwise around its boundary.
It is obvious that p0,p1, . . . ,pm are the control points. The sides of P, called arcs, are denoted as
ei = (pi,pi+1) and are directed from pi to pi+1. A chain C = (e0, e1, . . . , em−1) is a sequence of arcs on
the boundary of P. C is monotone with respect to a (straight) line l if the projections of the vertices
p0,p1, . . . ,pm on l are ordered the same as the vertices in C. Let θi be the counterclockwise polar angle
at arc ei (i = 0, . . . ,m− 1) with respect to a chosen direction. Define αi as the counterclockwise wedge
from θi−1 to θi if the external angle at vertex pi is greater than or equal to 180 degrees; as the clockwise
wedge αi, (i = 1, . . . ,m− 1) has size less than 180 degrees. Given a chain C = (e0, e1, . . . , em−1), define

α(C) ,
m−1⋃
i=1

αi is the union of the wedges α1, . . . , αm−1. Obviously, α(C) is a wedge. Then the following

results hold.

Lemma 3. [37] C = (e1, . . . , ek) is monotone with respect to l if and only if the normal to l has a polar
angle θ < α(C).

The proof of Lemma 3 can be found in Lemma 1 of reference [37]. We use Lemma 3 to check
whether a chain is monotone in our algorithm. (See Algorithm 1).

Theorem 1. Given lattice points A = {0, 1, . . . ,m}, control points P = {p0,p1, . . . ,pm} ⊂ R
2. The

chain defined by p0,p1, . . . ,pm in counterclockwise is denoted as C = (e0, . . . , em−1). A and P are
strongly compatible if and only if C is monotone.

Proof. If C is monotone, then by the definition of monotone chain C, the projections of control points
p0,p1, . . . ,pm on l have the same or opposite order as 0, . . . ,m. The following results then hold.

• There are no control points coinciding with each other.
• There exists a projection π : R2 → R, such that image π(P) have the same or opposite order as
{0, 1, . . . ,m}, which equal the lattice pointsA.

This implies that p0 and pm do not coincide and control points P are compatible with lattice points
A. Therefore, P is strongly compatible with lattice pointsA.
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Meanwhile, if A ⊂ R and P ⊂ R2 are strongly compatible, then by Definition 2, the following
holds.

• p0 and pm do not coincide.
• There is a projection π : R2 → R such thatA is compatible with the image π(P) of P.

π(pi) (i = 0, . . . ,m) then has the same or opposite order as {0, . . . ,m}. Meanwhile, the lattice points
of Bézier curves lie on a line. This means that there exists a projection π such that image π(pi) (i =

0, . . . ,m) on a line have the same or the opposite order as {0, . . . ,m}. The chain C = (e0, . . . , em−1)
is defined by p0,p1, . . . ,pm in a counterclockwise direction. This means that projection π does not
change the order of the vertices {p0, . . . ,pm} when projecting them onto a line and that the chain C is
monotone.

By the theory of order-preserving mappings, Lemma 4 is obvious.

Lemma 4. Given lattice points A = {0, 1, . . . ,m}, control points P = {p0,p1, . . . ,pm} ⊂ R
3. If A and

P are strongly compatible, there exists an order-preserving mapping φ : R3 → R2 such that A and
image φ(P) are strongly compatible.

Proof. By an order-preserving mapping φ : R3 → R2, it is obvious that φ(pi), i = 0, . . . ,m defines the
same orders as pi, i = 0, . . . ,m. φ(P) is then compatible with P. Therefore, φ(P) is compatible withA.
Moreover, p0 does not coincide with pm. Therefore, φ(p0) does not coincide with φ(pm). A and image
φ(P) are then strongly compatible.

Theorem 2. Given lattice points A = {0, 1, . . . ,m}, control points P = {p0,p1, . . . ,pm} ⊂ R
3 and an

order-preserving mapping φ : R3 → R2. The chain defined by φ(p0), φ(p1), . . . , φ(pm) in counterclock-
wise is denoted as φ(C) = (φ(e0), . . . , φ(em−1)). A and P are strongly compatible if and only if φ(C) is
monotone.

Proof. If A and P are strongly compatible, then by Lemma 4, the image φ(P) under an order-
preserving mapping φ : R3 → R2 is strongly compatible with A. By Theorem 1, φ(P) and A are
strongly compatible is equivalent to φ(C) is monotone. On the other hand, given an order-preserving
mapping φ : R3 → R2 such that φ(C) is monotone. By Theorem 1, φ(P) is strongly compatible with
A. As φ is an order-preserving mapping, orientations φ(p0) − φ(p1), φ(p0) − φ(p2), . . . , φ(p0) − φ(pm)
decided by φ(pi), i = 0, . . . ,m is the same as that decided by pi, i = 0, . . . ,m. By the definition of
strongly compatible, P is strongly compatible with φ(P). Therefore, P andA are strongly compatible.
This completes the proof.

By Theorem 1, we propose algorithms (see Algorithms 1–3) for checking the strong compatibility
of the lattice points A and control points P of rational Bézier curves. Furthermore, by Lemma 2, the
strong compatibility of the lattice pointsA and control points P of rational Bézier curves is equivalent
to rational Bézier curves being injective.

Algorithm 1 is for computing wedge α(C). α(C) < 180◦ is equivalent to chain C being monotone.
It has been discussed in literature [37] that the complexity of this procedure is approximately O(m).
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Algorithm 1 Computing α(C)
Input: control points P = {pi|i = 0, . . . ,m} ⊂ R2

Output: α(C)
1: Computing arcs of P, denoted as C = (e1, . . . , em−1)
2: for all ei ∈ C (i = 0, . . . ,m − 1 ) do
3: computing polar angles θi of ei

4: let θ = {θ0, . . . , θm−1}.
5: end for
6: for all θi ∈ θ (i = 0, . . . ,m − 2 ) do
7: computing wedges αi from θi to θi+1

8: let α = {α0, . . . , αm−2}.
9: end for

10: computing the α(C), union of the wedges α0, . . . , αm−2

11: return α(C)

By Algorithm 1, we propose an algorithm for checking the strong compatibility of lattice pointsA and
control points P, as shown in Algorithm 2.

Algorithm 2 Checking the strong compatibility of control points P ⊂ R2 and lattice pointsA
Input: control points P = {pi|i = 0, . . . ,m} ⊂ R2 and lattice pointsA = {0, 1, . . . ,m}.
Output: The compatibility of control points P and lattice pointsA
1: if there exist two control points of P that are coincided then
2: return P andA are not compatible
3: else Computing wedges of control points α(C) by Algorithm 1
4: if α(C) ≥ 180◦ then
5: return P andA are not strongly compatible
6: else
7: return P andA are strongly compatible
8: end if
9: end if

In Algorithm 2, Step 1 needs to check whether the two points coincide. The complexity of this
procedure is approximately O(m) (using Matlab). Step 3 requires α(C) to be computed. The complexity
of this procedure is approximately O(m) (as mentioned in Algorithm 1 ). Therefore, the complexity of
Algorithm 2 is approximately O(m), which deduces the complexity O(m4) of the algorithm in reference
[33] a lot.

In Algorithm 3, Step 1 needs to check whether the two points coincide. The complexity of this
procedure is approximately O(m) (using Matlab). Steps 4 to 9 require the algorithm to go through
all the points once in computing normal vectors and projections. This process has complexity of
approximately O(m). Step 10 requires α(C) to be computed. The complexity of this procedure is
approximately O(m). Therefore, the complexity of Algorithm 3 is approximately O(m).

In Table 1, we present the computing time of Algorithms 2 and 3 for injective and non-injective
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Table 1. Computing time of algorithms.

m 10 102 103 104 105

Algorithm 2
t1(s) 0.0198 0.0209 0.0216 0.0541 3.2816
t2(s) 0.0185 0.0223 0.0256 0.0411 1.7086

Algorithm 3
t3(s) 0.0434 0.0460 0.0494 0.1483 3.4961
t4(s) 0.0480 0.0496 0.0527 0.0986 3.5299

Algorithm in [33]
t5(s) 0.0976 10971 − − −

t6(s) 0.0290 0.0309 0.5712 56.2309 5970.8
1 m is the number of control points of Bézier curves, t1, t3 and t5 are the

times required for computing injective curves, and t2, t4 and t6 are the
times required for computing non-injective curves.

2 “−” indicates that the computing time exceeds 3 hours.

rational Bézier curves of degree m = 10, 102, 103, 104 and 105. Meanwhile, we make a comparison
with an algorithm from the literature [33]. In Table 1, m is the number of control points of Bézier
curves, t1, t3 and t5 are the times required for computing injective curves, and t2, t4 and t6 are the times
required for computing non-injective curves. Our algorithms clearly take less time to run. When m
exceeds 102, our algorithms run quickly, whereas the algorithm from [33] takes more than 3 hours to
run. Additionally, we also present computing times of Algorithms 2 and 3 in Figure 3. Each result
given in Table 1 is the average for 10 experiments conducted. All experiments are implemented by
Matlab 2020b running on 3.20GHz, Intel(R) Core(TM) i7-8700U CPU with 8 GB RAM.
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(b) Computing time of Algorithm 3.

Figure 3. Computing time of Algorithms.
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Algorithm 3 Checking the strong compatibility of control points P ⊂ R3 and lattice pointsA
Input: control points P = {pi|i = 0, . . . ,m} ⊂ R3 and lattice pointsA = {0, 1, . . . ,m}.
Output: The compatibility of control points P and lattice pointsA
1: if there exist two (or several) control points of P that coincide then
2: return P andA are not compatible
3: else
4: Select an order-preserving projection φ
5: for i = 0→ m do
6: Calculate the projection φ(pi) of pi

7: Calculate the plane S on which φ(pi) i = 0, . . . ,m lie.
8: end for
9: Rotate S to S ′, which is parallel to the plane z = 0

10: Computing wedges α(C) of the points φ(pi) by Algorithm 1
11: if α(C) ≥ 180◦ then
12: return P andA are not strongly compatible
13: else
14: return P andA are strongly compatible
15: end if
16: end if

3. Examples

In this section, we illustrate some numerical examples of checking the injectivity of rational Bézier
curves by Algorithms 2 and 3. Some two-dimensional examples are considered in Example 2. Some
three-dimensional examples are considered in Example 3. An interesting example, a rabbit composed
by five rational Bézier curves, is shown in Example 4. All the experiments in this section are conducted
using an Intel(R) Core(TM) i7-8700U CPU @ 3.20GHz 3.19GHz.

Example 2. We consider five 2D rational Bézier curves. The control points, control polygons, and
curves are given in Table 2. By Definition 2, we can check whether the control points and lattice
points are strongly compatible. By Theorem 1, we can judge their injectivity. The results are given in
Table 2. The first column presents each control point and each control polygon. The second column
presents the degree m. The third column presents the strong compatibility. The forth column presents
the computing time when using Algorithm 2 to check whether the control points are strongly compatible
with the lattice points. The computing time is measured in seconds. The fifth column presents rational
Bézier curves together with weights. The sixth column presents the injectivity of the corresponding
rational Bézier curves. The numerical experiments show that the use of Algorithm 2 is effective and
feasible.

Example 3. Consider two 3D rational Bézier curves of degrees 4 and 8. Using Algorithm 3, it takes
0.01s and 0.012s to determine that the control points are both not strongly compatible with their lattice
points. Therefore, these two rational Bézier curves are not injective by Theorem 1. We can find these
two curves be self-intersecting with weights 1, 1, 1, 100, 1 and 10, 10, 1, 1, 1, 1, 1, 100, 1. The control
points and the self-intersecting rational Bézier curves are shown in Figure 4.

Electronic Research Archive Volume 30, Issue 5, 1799–1812.
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Table 2. Two-dimensional rational Bézier curves.

Control points Degree strongly compatible Time(s) Curves Injectivity

3 Yes 0.021 Yes

ω = {1, 2, 2, 1}

4 Yes 0.018 Yes

ω = {1, 2, 2, 2, 1}

3 No 0.02 No

ω = {1, 1, 1, 1}

4 No 0.021 No

ω = {2, 1, 1, 30, 2}

4 No 0.021 No

ω = {1, 1, 2, 5, 1}

Example 4. In this example, we use five rational Bézier curves drawing a “rabbit-shape” as shown
in Figure 5. The control points, control polygons, weights, and the rational Bézier curves are shown
in Figure 5. We check the strong compatibility of each control points and lattice points by Algorithm
2. The computing times are 0.039, 0.0056, 0.0372, 0.0033, 0.0367s. The coordinates of five rational
Bézier curves in “rabbit-shape” is shown in Table 3.

Electronic Research Archive Volume 30, Issue 5, 1799–1812.
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(a) Self-intersecting 3D rational Bézier curve of degree 4. (b) Self-intersecting 3D rational Bézier curve of degree 8.

Figure 4. Two self-intersecting 3D rational Bézier curves.

Table 3. Coordinates of control points of five rational Bézier curves in “rabbit-shape”.

Bézier curves Coordinates of control points

c1(t) (−0.6230,−0.3300) (−0.6217, 0.0820) (−0.3138, 0.7315) ( 0.0570, 0.1966)
( 0.1298, 0.2982)

c2(t) ( 0.3312,−0.5862) ( 0.4061,−0.4024) (−0.2202,−0.2154) ( 0.9951,−0.2946)
(−0.0112, 0.1600) ( 0.7604, 0.0177) ( 0.60744, 0.22224)

c3(t) (−0.6230,−0.3300) (−0.6234,−0.7756) ( 0.0595,−0.8362) (−0.1105,−0.5442)
c4(t) ( 0.1298, 0.2982) (−0.2931, 0.6686) ( 0.3928, 1.1666) ( 0.6074, 0.2222)
c5(t) (−0.1105,−0.5442) ( 0.1559,−0.3302) ( 0.2329,−0.6752) ( 0.3312,−0.5862)

ω4 = {1, 1, 1, 1}

ω1 = {1, 1.5, 1, 1, 1} ω2 = {1, 1, 1, 1, 1, 1, 1}

ω3 = {1, 1.5, 2.5, 1} ω5 = {1, 0.8, 2, 1}

Figure 5. A “rabbit” composed by five rational Bézier curves.
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4. Conclusions

In this paper, we have presented algorithms for checking the injectivity of rational Bézier curves
in Rd, d ∈ {2, 3}. Some typical examples have been used to show that the proposed algorithms are
effective. The complexity and computing time of these two algorithms have also been derived. In
summary, two effective and time-saving algorithms with a complexity of just O(m) have been proposed,
representing a significant improvement on the previous algorithm [33], which has O(m5) complexity
for spacial case and O(m4) for 2D cases. Zhao and Zhu [41, 42] studied the sufficient and necessary
conditions of injectivity of NURBS curves and surfaces. Yu et al. [35] studied the geometric conditions
of injectivity of toric volumes. Zhao et al. [36] studied sufficient and necessary conditions of injectivity
of Bézier volumes. To generalize our algorithm to check the injectivity of NURBS curves and surfaces,
and volumes is an interesting work for us in future. Moreover, applying our algorithms in computing
non-self-intersecting offset curves and surfaces is another interesting work for us in future.
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