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Abstract: This research aimed to find numerical solutions to a type of nonlinear initial value problem
(IVP) for hybrid fractional differential equations. Using the Adomian decomposition method (ADM)
and the Picard method (PM), we studied the Chandrasekhar quadratic integral equation (QIE). Fur-
thermore, we investigated existence and uniqueness results using measures of weak noncompactness.
Through a set of examples and numerical simulations, a comparison was made between the results of
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1. Introduction

Studying the theory of fractional differential equations (FDEs) and fractional integral equations
(FIEs) is crucial because they are used in many modeling applications. Fractional equations are es-
sential for many areas of fundamental analysis and their applications in economics, physics, and other
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disciplines. Quadratic integral equations (QIE), in particular, tend to be helpful in describing a wide
range of everyday issues, such as theory of radiative transfer, the theory of neutron transport, the kinetic
theory of gases, the queuing theory, and the traffic theory (see, for example, [1-4]).

One of the studied QIEs is called the hybrid integral equation (HIE); see [S]. This issue has re-
ceived great attention in the last few years; see [6-9]. As we see, the hybrid fixed point theory is
used to develop the existing solution of the hybrid equations; see [10-13]. Other researchers focused
on the analysis of QIEs in Orlicz spaces [14], equations of QIEs with fractional order arising in the
queuing theory and biology [15], and the analysis of QIEs depending on both Schauder and Schauder—
Tychonoff fixed point principles [16].

1.1. Chandrasekhar quadratic integral equation

The Chandrasekhar quadratic integral equation (CQIE) occurs in the theory of radiative transfer
in a plane-parallel atmosphere [2]. The radiative transfer process and the integral equation for the
scattering function and transmitted functions were developed by Chandrasekhar’s work in the 1950s;
see [14]. This work quickly turned into a major scientific topic in both mathematics and astrophysics,
see [15,16]. The radiative transfer process and the simultaneous integral equation for the transmitted
and scattering functions were developed in Chandrasekhar’s seminal work from 1960. In [17], the
simultaneous integral equation of Chandrasekhar was presented, along with the iteration scheme for
the transmitted and scattering functions.

CQIE takes the form

D) = ¢(0) + 00(0) [} ~Z1 (5. @ () ds + i (0.9(0) " (0. V(@) )

oel, I=1[0,b], ue(0,1),

where RLJ# denotes the Riemann-Liouville fractional integral (RLFI) of order u, f; (o, ®(0)) €
C(IxR,R-{0}), and g, (0. D(0)) € C(I x R,R), fork = 1,2.

As a result of the applications of these equations, researchers were interested in studying them, and
as a result of the difficulty of finding exact solutions, CQIEs are solved using the ADM and the PM. The
ADM provides many advantages, including the ability to solve a variety of linear and nonlinear equa-
tions in deterministic or stochastic fields effectively and present an analytical solution for all of these
equation types without requiring linearization or discretization. Additionally, it is reliable and provides
faster convergence than other classical methods. Moreover, we use measures of weak noncompactness
to study existence and uniqueness results. These results demonstrate that the two solutions provide
nearly equal accuracy; however, when comparing the time required in each case, the ADM is found to
take less time than the PM.

It can be summarized as follows: first, the second section introduces the basic concepts of the
measure of noncompactness and the hypothesis. In the third section, we show that if the solution
exists, then it will be unique and convergent. After that, we solve some nonlinear Chandraseker QIEs
with fractional orders with a comparison between ADM and PM techniques. Finally, graphs are also
constructed to illustrate the effectiveness of these two approaches and to compare them.
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2. Measure of noncompactness (MNC)

In the complement of this work, the classical Banach space C (f ) = C|0, b] is used, which contains
all real continuous functions defined on / having the norm

| = max {|®()] : ¢ € I} . 2.1)

Let us recall the MNC definition in C(f) which is used in this investigation and fix a bounded
nonempty subset Q of C(J). For 7 € Q and € > 0, the modulus of continuity of the function 1 on the
interval [ is defined by

w(. €) = sup @) = n ()| : 0. s € Llo— 5| < €} (2.2)

and
w(Q, ) =sup{w @, €) :neQ},wy(Q) = lin&w(Q, €). (2.3)

It is well-known that w, (€2) is a measure of noncompactness in C(1) such that the Hausdorff measure
x may be expressed by the formula

1
x () = 5o (Q), (2.4)
see [18]. We use the following theorem to prove our investigation.

Theorem 1. [18] Let Q be a bounded, nonempty, and closed convex subset in the space E. Also, let
H : Q — Q be a continuous operator such that y(HQ) < [ x(Q) to any nonempty subset Q of Q, as
1 €10, 1) is constant, so H has a fixed point in the set Q.

Considering the hypothesis:

i. ¢ : I — R is continuous.
ii. fi : I xR — R is continuous and the function f; (0,0) € C(R),R is the space of all bounded
continuous functions, and there exists a positive constant M = sup |f; (0, 0)| .
o€l
1fi (0, @) = fi (0,0 < L|® — ¢ for any o € [ for all ®,¢ € R.
. 8 : IxR — R,k = 1,2 satisfies the Carathéodory condition (CC) so, it is measurable in o for all
® € R and continuous in @ for all o € I, and there exist functions m,, Kk = 1,2 € L; such that:

—_

il

18, (0, D) < my(o) for all (o, D) € [ x R. (2.5)

KL Py (@) < M,y < 1, C > 0,and [ -Lmy (s)ds < M,.
vi. There exists a number Ry > 0, such that

<

MyLbY  MoMb
[u-y+1) Tu-y+1)

-1
Ro = |llgll + [1-p*Mmy| . (2.6)
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3. Existence and uniqueness theorems
Define the ball Bg, as
By, ={® e C(I): @l < Ry}. 3.1)

M, LbH™
—-y+1)

Theorem 2. Using the hypotheses (i)— (vi), if [
® e C (1) for HIE (1.1).

+M lbz] < 1, then there exists at least a solution

Proof. Let the operator H defined on C (f ) be

(ﬁ®y@=¢@w¢@@{fgg 81 (s, ®(5))ds
o+s

+/1 (0, (0)) fg (0= T (u) S 5, (s, D(s))ds,0€ 1.

From the hypotheses (i)— (vi), the function H® is continuous on 7 for any ® € Bg,. Further, applying
the given hypothesis, we derive the following estimate:

00| < 9@ +100@ [ —Z—m s+ 1 @0 [ €=, (9
@ =< lel+lo Qll:9+sm1s s+ £ (o, |O TG0 my (s)ds
0
< gl + lo®(o)| f £y (s)ds
0 Q+S
@D - fi@ol+ 1 0ol [ €=, (5 ds
1O, 10, 10, 0 r(/,l) 2
b
1
< gl + [P(o) f L (s)ds
0 Q+S
S 1fi @@ — fi (0.0 + 1fi (0. O)] *-7 R- 'y (o) (3.2)
< ||(p||+b2RoM1+ M, LR b*™ M, MbH™Y

+ .
Fp-y+1) T@-y+1
So H® is bounded on the interval 1. Also, we get

MoLRGDY  MyMb*?
Fu-y+1) Tu-y+1)

|A®|| < llgll + b>RoM; +

for the operator H, which transforms the ball Bg, into itself, and Ry is:

—y -1

M2Mb# 2 Mszﬂ—Y
ity | T X VR
”9"”+r(y—y+1)H M T D

Now, we are going to show that the operator H is continuous on the ball Bg,. So, we need to prove
that the operator G, defined by

R():

_ W1l R
G, Do) = f (QF(Z)) 2 (5, D (s)ds,0 € 1,
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is continuous on Bg,. To do this, fix € > 0, let @y € Bg,, and from hypothesis (ii), we find 6 > 0 such
that ||® — ®y|| < 6, and then we have |, (s, D) — 2> (5, Dy)| < € for s € I, where @ is any arbitrary
element in Bg,. For arbitrary fixed o € I, we get

1
|G,® (0) — G2 Dy (0)| = T f (0= 5V 182 (5, @ (5)) — &2 (5, Dy (5))|ds

Y
r(u)fo e @
€

Tu+1)

The operator f1® (0) = fi (0, P (0)) is continuous, and then the operator f;.G, is continuous on Bg,,
and similarly, we can prove that the operator

Q

21 (s, @ (s)ds,0 €1,
Q+S

0
610 =00 [
0

is continuous on Bg,. This shows that H is continuous on Bg,. Let y be a nonempty subset of Bg,. Fix
e > 0, and choose @ € y and 0y, 0> € I such that |0, — 01| < €. Let 0; < 0,, and then

|(ﬂ®)(92) - (FI‘D)(QM = [ ¢(0,) — p(01)

2 1
n 01 .
+0,0(0,) f 9o (5, 0(s)ds - 0,D(0,) fQ L5 (s, D(s)) ds
0 Oyt 0 O ts
+0,0(0,) f 95 (5. D(s)ds — 0,D(0y) f U9 o (5, 0(s)) ds
0o O tS 0o O t+S

+ f1(05, D(0,)) M1 I 82(0,, D(0,)) — filoy, Do1) *I* 2200y, Do)
+ fi(01, D(0))) 1 J* 82(0,, D(0,)) — fi(0y, D(0))) *FIH 82(0,, D(0,))-

Hence,
(A9) (02 - (A®) ()] < Ieer) - ¢lon
9

Q2
)
+lo, ® - my(s)ds
02 (gz>|f0 T oM

01
o, +s

01
+10,0(0) — 0,0(0,)] fo mi(s)ds

2
%)
+|o,D d
lo, (Qz)|]: IQZHIml(s) s

+ [f1(02, P(0y)) — fi(05, P(0)))] RL gr 82(0,5, ©(0,))
+ [fi1(0,, ®(01)) — fi(oy, P(01))] RL gr 82(0,, ©(0,))
+ fi(01, @) [ *J* 82(05, D(0)) — "1 @a(0y, Do),

and so
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| ®E0#82 (02, @ (0,)) = "“J"82 (01, @ (01))]

"oy - S)/H "
. T 2 (5,D(s))ds
2 (0= 9", A CED
+ ) T 8> (5, D (s))ds ; M) 8 (s5,D(s))ds
@ (Qz )ﬂ : f (Qz )ﬂ :
< ; (o) ———2,(s,D(s))ds + ., ) ———8,(s,D(5))ds
% (0, = s)' "
; ) ————&(s5,P(s))ds
2 (0, — )# IA
< 22 Y 5 (s, @ (s5))ds].
., T 8, (s, D (s))ds
Then
| KET# 82 (00, @ (0,)) = MJ" 82(01. @ (0)))] < ™% |82 (02, @ (0))]
< R my (0,)
< M FRI ma(e,)
(QQ_ )ll_y
BRI
Then
. . s (9 ]er ol
(A2) (02) - (A®) (0)| < |p(es) - ¢ (0| + b Ry f s (@ 9 (9)ds
1

L |
+b*R, fﬁ ot Sml (s)ds
01 2

+b HQz(D (02) —0,® (Ql)| + |92q) (@) -0 ® (Ql)” L 01 1"' S

+|f1 (02 @ (0)) = fi (02- @ (0)))] *-I#7 *-T my (0,)
+|f1 (02 @ (01) = fi (1. @ (0)))] *EI*7 *ET my (0,)

— MUY
+]fi (01, @ (@1)) - i (01,0) M%
(0, = Ql)ﬂ_y

Cu-y+1)

my (s)ds

+| (01, 0)| M2

We get
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S0,

(#0) ) - (AD) @] = loten - elen|+ bRales - e [

(A9) () - (A®) (o))

1
01 +s

my (s)ds

0>
+b°Ry f my (s)ds + M,b* | @ (0,) — D (0,)| + bRo |0, — 0|

01
+L|® (0,) — @ (0,)| *-9"m2 (0,) + 1 (fi, €©) "-*ms (0,)

|Q2 - Ql|ﬂ_n MM |Q2 - Q1|ﬂ_y

+L|D (Q1)|Mm 2 m,

IA

¢ (02) — ¢ (01)] + bRoM, |0, — 04| + b"Rg f "y (s)ds

01

+M,b* |® (0,) — @ (0,)| + bRoM, |0, — 04|

Mo Lb*™Y
()] -d -
-y
Mo (f1,€) b*Y -
LV (fi,€) +L|(D(Ql)|M|92 Ql|
F'u—-y+1) F'u-y+1)
|Qz—Ql|IH7
M M —m—m—
MR PP I

where ¥ (f;. €) = sup {|fi(2. ©(01) - fi(o1. @) : 01,02 € L]0, - 0, < €. ® € By, }.
Knowing that f; is uniformly continuous on the set / X Bg,, we derive the inequality

Then

(o0 (ﬂq)) < _

+ M b* | wo (D).

+ M b | wo (D).

From (2.4), this inequality leads to

M, Lb*™Y
It [1"(#—7+1)

(1.1)

The following hypotheses are satisfied if there exist &, x = 1,2, such that (iv)* g, : I xR — R, «
= 1,2, satisfies CC, so it can be measurable in o for all ® € R and continuous in ® for all o € I. Then

x (A®) < [

M,Lb*™

2

+ Mlbz] < 1 and using Theorem 1, there exists at least a solution ® € C (f) for HIE

18« (0, @) = 8 (0. DI < L |@ = ¢], «k=1,2, (3.3)

forall o € [ and @, { € R. Let ®,and @, be two solutions for the HIE (1.1), and hence

Electronic Research Archive
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0 0
©,(0) - ,(0)| = ‘Q ®,(0) f 24 (5, D, (s))ds — 0, (0) f 2 (5, @, (s))ds
0 Q + S 0 Q + S

0 0
+00.0) [ =2 0165.0, (s - 00,0 [ L 21050, (90
0o O + S 0o O + S

(o— sy
o T
o— s !
()

S () S .
+ fi(0,D,(0) f (5., (9)ds ~ file, 0.(0) 8205, @, (s))ds

— #1
+ fi(o, ©,(0)) fg (© ) ———— (5, D, (5))ds — fi(o, P, (0) f ( ————8(5, D, (5))ds| (3.4)

L)

0

< 0|0,(0) -, f Lml (s)ds+o |<I>2<g>| f Ly |®, (5) = @[ ds

+|fi (0, @,(0) - fi (0. @ (g))l f i - (ﬂ) ————8(s5, @, (5)ds

+|fi (0, @, ()] f - - (ﬂ) 2 (5, D, (5)) — &2 (5, D, (5)))ds

2 2 b Lzbﬂ(LRo + M)
< (b M1+L1b RO+LM2F(/J—’)/+1)+ r(,u+1) )|(D1(Q)_(I)2(Q)|
<T@, (o) - D,(0)], (3.5)

where Y = (szl + Lb’Ry + LM, F(/x o 1) + LZH;(ULE({;M)) . Then we get the theorem:

Theorem 3. Assume that the hypotheses (i)—(vi) are satisfied, and (" < 1. Then, the solution ® € c)
of (1.1) is unique.

4. Methods for the solutions

4.1. Adomian decomposition method (ADM)

In the 1980s, Adomian presented the ADM [19-21], which is an analytical method used to solve a
lot of different equations such as DEs, IEs, integro-differential equations, and partial DEs [22-25]. The
obtained solution is an infinite series that converges to the exact solution. An important benefit of the
ADM is that there is no linearization or perturbation that can change the main problem that has been
solved, which is serious. A lot of researchers are interested in using the ADM, as it is successfully
applied to many applications that appear in applied sciences [26-28]. In this research, the ADM is
used as the first method to solve the HIE (1.1).

Applying the ADM to (1.1), the ADM solution algorithm is

Oo0) = ¢(0), 4.1)
Do) = 0Aci (@) + Do), (4.2)
where A,, and D, are Adomian polynomials of the nonlinear terms g, (0, @), fi (0, ), and 2, (o, D)

which take the forms
T (Z A0 f Sgl (s, I;)/l O, (s)|ds

Electronic Research Archive Volume 32, Issue 11, 5943-5965.
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9 _ 1 d C K RL K
D, = [M (f]( ZO J“gz( ZM)(Q) ] K (4.4)
Finally, the ADM solution is
Do) = ) D(0). (4.5)

k=0

4.1.1. Convergence analysis

Theorem 4. If hypotheses (i) — (vi) are satisfied, Y, < 1, and |®, (0)| < k, where k is a positive
constant, then the series solution (4.5) of (1.1) using the ADM is convergent.

A A P
Proof. Define the sequence {S p} such that §, = }, @, (o) is a sequence of partial sums taken from the
k=0

series (4.5), and
Q
(0]
© jj o+s

i (0, D(0)) *FJ*25 (0, D(0))

I
[
2

81 (s, D (s)ds

Il
=

Let p and S be two partial sums of the ADM series solution such that p > 6. We want to prove
that {S p} is a Cauchy sequence (CS) in this Banach space (Bs).

@K—ZQZ@K

k=0

Sp—Sg =

K

= QiAx—l (0) + ibk—l (0)
k=0 k=0
0 0
—© ZAK—I (0) — Z DK—I (0),
«=0 k=0

Mb

Il
(=)

hence,

(ZAK 1(@)—ZAK 1(@))]

k=0

ZDK 1 (0) —ZDK 1<g)]
(ZAK l@ﬂ ZDK 1@ |-

k=6+1 k=6+1

©

+

Thus, by applying || to both sides, we find

(Z A, 1@)

k=0+1

A

1S, -

Z Dy 1 (o) ‘

Electronic Research Archive Volume 32, Issue 11, 5943-5965.
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p—1 p—1
<l A @|+|>. D@
k=0 Kk =0

D p-l
< 'Q(Sp—l—se—l)‘f; Qﬁs 81 (S, KZ:;)(DK)] ds
p-1 p—1
+ fl [Q, Z(DK RLJ#§2 [Qa (I)K
K =0 k=0

IA

b
B (St = Soa)| fo Qis 21 (s, @) ds

+|fi(0:801) = i (0:S0r)| B0 12 (o 0,

IA

< b '(S‘p_1 - 5‘9_1)' My + LMy |8y = S| REJ#77 (1)

by
Fpw-y+1
T2 ||S oot = St

0
U

Sp1 = So

P

IA

0 [b2M1 + LM,

IA

where Y, = [b2M1 + LM, r(jfll:l)] .Letp =6+ 1, and we get

S = $oll = 2 S0 = S| = 3 S = S < - = TS, - S0

Using the triangle inequality, we arrive at

I8, = S0ll = S0os = Sall [0z = Soual| + -+ 5, =5,
< g+ rs ]IS - S|
< A1+ 1|8 = S|

-0
o=
2
1 -7,

o

If 0 <, < 1andp > 6, this leads to (1 — 5™) < 1. Then

b
A A 1 A A
b2 '(Sp—l - Se—l)‘ L m |§1 (S, (D)l ds+ L |Sp_1 - Sg_ll RLJM_V RLﬂI’I’Q(Q)

Electronic Research Archive Volume 32, Issue 11, 5943-5965.
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0

S, =Sl < )
1S, =34 < 1_.][,zn il
9
max |®
o nax [©4(0)l-

If |®,(0)] < k, § — oo, then ||S'p - S'9|| — 0, which leads to {Sp} being a CS in this BS and the
series (4.5) is convergent.

4.1.2. Error analysis
Theorem 5. The maximum absolute error of the ADM series solution (4.5) is
0

T
2_max |D;(0)|. (4.6)
=2 gei

max
oel

D(o) - Z y(0)| <

Proof. In Theorem 2, we see that

9

< max |®
o max (o)l

~ p N
and S, = ) ®(0),p — oo . Then, §, — ®(p), and hence
k=0

[®C0) — S| < 1)
and the maximum absolute error is written as
max |®(g) - Z Q)] < T max [@1(0)].
oel - 2 o€ I

4.2. Picard method (PM)

The method of successive approximations (PM) was presented by Emile Picard in 1891. PM and
ADM methods were first compared by Rach and Bellomo in 1987 [26,29]. In 1999, Golberg deduced
that these two methods were equivalent for linear differential equations [30]. But this equivalence is
not achieved in the nonlinear case. In 2010, El-Sayed et al. used them to solve QIE [31]. In 2012,
El-Sayed et al. used them to solve a coupled system of fractional QIEs [32]. In 2014, El-Sayed et al.
used them to solve FQIE [33]. In 2024, Ziada used them to solve a nonlinear FDE system containing
the Atangana—Baleanu derivative [34]. In this research, we use them to get the solution for a nonlinear
HDE and compare their results.

Applying the PM to the QIE (1.1), the solution is a sequence constructed by

Oy(0) = ¢lo0),

Electronic Research Archive Volume 32, Issue 11, 5943-5965.
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0
Do) = Do)+ 0D,_1(0) f € 21 (5, Dy (5))ds
0 Q+S

+£i (0, ®1(0)) I8 (0, D1(0)) - 4.7)

All the functions @, (0) are continuous functions and @, are the sum of successive differences

(o8]

D (0) = Po(0) + ) (D= Dy y). (4.8)

k=1

Therefore, the sequence @, convergence is the same as the infinite series ), (®, — ®,_;) conver-
gence. The final PM solution takes the form

D(o) = lim @, (0). (4.9)

From the above relations, we can deduce that if the series ), (®, — ®,_;) is convergent, then the
sequence @, (o) is convergent to O (0). To prove that the sequence {®,(0)} is informally convergent,
consider the associated series

> [0.0) - @) (4.10)
k=1
From (4.7) for k = 1, we get
D(0) — Doy(0) = 0Po(0) f 0 f_ Sgl (5, Do (5))ds + fi (0, Do(0)) *J* &1 (0, Do(0)) - (4.11)
0

So, we have

|1 (0) — Do(0)|

0
‘Qq)o(Q) f £ (5,00 () + i @, 0ol) *" 2 2. Do)
0

lol |®o(@)|f 2112, (5, @ ()] ds
0o lO+S
+1f1 (0, Do) 7482 (0, Po(0)) - (4.12)

IA

Thus,

b
1
®1(0) -~ Do)l < B [Do(0)] f ——my (s)ds
0 Q+S

+[Ifi (0. o(0))) = £1 (,0) + fi (0, O] *“* *-J"my(0)
Mob*T(LRy + M) =y (4.13)

Fu-n+1

Now, we get an estimate for @, (0) — O, (0), k > 2:

< bzRoMl +

Electronic Research Archive Volume 32, Issue 11, 5943-5965.
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(DK(Q) - (DK—I(Q)

and

(DK(Q) - (DK—I(Q) =

Thus,

0
oD, 1(0) f (5,00t (9 ds + £ 0 Brcr0) " 2 0. D1 10)
0 . Q
oD, 2(0) fo £
00, 1(0) f (5.0t (9)ds + £ 0 Decr0) " 2 0. D11 0)
0

0
—0®,»(0) f o 81 (s, D5 (5))ds
0 Q + S

~fi (0, D2(0) I 22 (0, Di2(0)) 5 (4.14)

81 (5, D2 (8)) ds + fi (0, Pea(0)) *IH 82 (0, @i2(0))

0 0
0D,1(0) f € 5 (5, Dy (5)) ds + 0Dy (0) f € 5 (5, s (5))ds
0o O + S 0o O + S

0
—o®,.1(0) f € 4 (5,0, () ds — 0D, 2(0) f © 4 (5.0, () ds
0 Q+S 0 Q+S

+£1 (0, D,—1(0)) *1J* 82 (0, D1 (0)) + fi (0, Di—1(0)) *ET* &2 (0, D—2(0))
—fi (0, @e1(0)) *HJ* 22 (0, Pi2(0))
—f1 (0, Dr2(0)) HI* 82 (0, Dia(0)) - (4.15)

D (0) —Di(0) = 0D, 1(Q)f gl (5, Dy—y (8)) — &1 (5, Dy ()] ds

0
+0[®e-1(0) — By2(0)] f @ 51 (s, s (5))ds
0 Q+S

+£i (0, Dy1(0)) "I (82 (0, B1(0)) — 82 (0, De2(0))]
+ i (0, ®e1(0)) = fi (0, Dz (@))] 1T 82 (0, Da(0)) - (4.16)

From the hypotheses (ii) and (iii), we have

|(1)K(Q) _q)K—l(Q)' < |Qq)/< I(Q)lf

S0,

Electronic Research Archive

|g1 (5, @y () — 81 (5, Dy (5))] ds

+0[@-1(0) — D z(Q)lf — |g1 (5, @2 ()| ds

+1fi (0, @) " 182 (o, <I>K-1(Q)) 82 (0, D (0))l
+1£i (0, D1 (@) = fi (@, Dea@)] *HT |32 (0, Dz (@), (417)
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1
o+s

|D(0) — Dy (0)] ds

IA

b
bzRoLl |(DK—1(Q) - (I)K—Z(Q)l f
0

b
+wvm4@o—®hx@hf L ads
0 Q + 5
1 0. D 1(0) - fi (0.0) + i (0. 0l
+L, | D1 (0) — Da(0)] *EI* (1)
+L|Dy—1(0) — D2(0)| RL Jw RLJ"mz(Q)

L,b" (LRy + M) LM,b*"
< |P*RoL; + b*M,; + + D,_1(0) — D
< oL 1 Tu+ 1) Tu—n+1) |D,—1(0) 2(0)]
M0 (LRy + M)
< |BRoM O, 1(0) - D,
} [ oMy + = [1910) ~ @ @)l
< T @i (0) — Oua(o)l, 4.18)
where 1| = [b2R0M1 + %].

In the above relation, if we put k = 2 and use (4.13), we get

[Dy(0) — @1 < T |P1(0) — Do)l
|y — D] < Ty . 4.19)

Doing the same for k = 3,4, --- gives us

D3 — @y < T |Da(0) — Di(0)
< Ty
Dy — @3] < Ty [D3(0) — Do)l
< Ty
Then the general form of this relation is
O, — @, 4| < Ty (4.20)
Since Y| < 1, then the series
> [ @) - 01 (0)] (4.21)
k=1
is uniformly convergent. Hence, the sequence {®,(0)} is uniformly convergent. Since

21(0,D(0)), 8 (0,P(0)) , and f (0, D (0)) are continuous in O, then

(o) lim o®, (o) fg ¢ 21 (5, @ () ds + fi (0, Di(0)) I 22 (0, Dil0))
k=00 0

o+s

0®(0) fg Qf: 281 (5, @ () ds + f1 (0. Dlo)) K18, (0, ©(0)) - (4.22)
0

Hence, the solution exists.
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5. Numerical examples

Example 1. For the HIE of Chandraseker type:

1 1
D) = 556PE) f: é%ssz &) ds + 550(&) K o’€), £0)=0,

where

I'(7)

.
so(f)—[-f ( %

and its exact solution is @ (¢) = &2
Applying the ADM to Eq (5.1), we get

Dy (£)
(&)

(),
1 .

50
Using the PM in Eq (5.1), the solution algorithm is

Dy (&) @(é),

~Z +1n(2) J-
200(7 + 1)

§8+/J ,

1 .
_é:AK—l (f) + % DK— l(f)aK > 1.

(5.1)

(5.2)
(5.3)

(5.4)

1 ~ 1
D (&) = Do(&) + %fq)m(f)fé%@ﬁ_l (5)ds + 5 0(&) ol (6),k=1.  (5.5)

Figure 1 shows ADM solutions at different values of u (u = 0.5, 0.6, 0.7, 0.8, 0.9, 1), and Figure 2

shows PM solutions at the same values.

N

,_.

|
N

u=05
u=06
u=07
u=038
u=0.9
u=1

Figure 1. ADM solutions at different values of u.

Electronic Research Archive

Volume 32, Issue 11, 5943-5965.



5958

N

|
8

3

— u=05
— u=06
u=07
— u=038
— u=09
— u=1

Figure 2. PM solutions at different values of u.

Remark 1. A comparison between the absolute relative error (ARE) of ADM and PM solutions with
the exact solution (where u = 0.5) is given in Table 1. It is clear from these results that the two
solutions nearly give the same accuracy, but when a comparison is made between the time used in
these two cases, it is found that the ADM takes less time than the PM (ADM time = 22 sec., PM time
= 319.188 sec.). Figure 3(a) shows the ADM and the exact solution, while Figure 3(b) shows the PM

with the exact solution.

Table 1. ARE of (ADM, PM) for Example 1.

@ps —DPapm Qps —Ppy
Q T Ops T dps
0.1 2.48379x107° 2.19628x1078
0.2 2.47045x1077 7.0281x1077
0.3 2.04146x10°° 5.33709x10°¢
0.4 6.32111x10°° 0.0000224935
0.5 5.3704x107° 0.0000686815
0.6 0.0000360447 0.000171175
0.7 0.000215013 0.000371487
0.8 0.000750286 0.000731218
0.9 0.0020904 0.00134688
1 0.00511876 0.00240123
1.1 0.0115464 0.00436134
1.2 0.024631 0.00870185
1.3 0.0503602 0.0201514
1.4 0.0990462 0.0519358
1.5 0.186618 0.132278
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x (t) x(t)

2
1 , ‘ Ficar ,
’ s
——— y — — — Fxac Vi
1 , 1 ,
4 I'd
I'd s
1 7 1 7
7’ 7’
7’ 7
7 ’
05 o 0.5 pd
» »
rd »
d -
— " e -
0.2 0.4 0.6 0.8 1 1.2 1.4 0.2 0.4 0.6 0.8 1 1.2 1.4
(a) Exact and ADM solutions (b) Exact and Picard solutions

Figure 3. The exact solution versus ADM and Picard solutions to (5.1).

Example 2. For the HIE of Chandraseker type:

D)= 9O + D) f VB s+ 2 PO upl (5+040). c0=0. 66

20
where 28
(&)= 15’
and its exact solution is ®© (&) = &.
Applying the ADM to Eq (5.6), we get
Do) = ¢, (5.7)
| A 1 .
D (&) = 1—O§AK-1 &+ %Dk_l &), k= 1. (5.8)
Using the PM in Eq (5.6), we have
Q&) = ¢, (5.9)
_ 1 &
D (&) = Dp(&)+ 105‘1%-1 ) f; Ets O, (s)ds
1
+%c1>§ L(© RLJﬂgo (5+@,©).k> 1. (5.10)

Figure 4(a) shows the ADM and exact solution, while Figure 4(b) shows the PM bwith the exact
solution.
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rd
s || rreardsol p, rd
rd s ”
0.4 -—- ” 0.4 -—- ,"
’” ”
rd »
> 4
0.3 _ ” 0.3 P »
r'd 4 » - -
0.2 ’” 0.2 ’
” o pe »”
” rd
» 4 r'd s
0.1 pe 0.1 ’
” r'd
r'd rd
rd r'd
t t
0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0
(a) Exact and ADM solutions (b) Exact and Picard solutions

Figure 4. The exact solution versus ADM and Picard solutions to (5.6).

Remark 2. The absolute difference (AD) between ADM and PM solutions (where u = 0.9) is
|Ppys — Papul = 0 for & = 0.2, 0.4, ...,2. It is clear from these results that the two solutions are
nearly the same, but when a comparison is made between the time used in these two cases, it is found
that the ADM takes less time than the PM (ADM time = 42 sec., PM time = 253.2 sec.). Figure 5 shows
ADM and PM solutions at (u = 0.9).

i/ ADM sol.

J/ — — — Picard sol.

"—’
B R = t

0.5 1 1.5 2 2.5 3

Figure 5. PM and ADM solutions at u = 0.9.

Example 3. For the HIE of Chandraseker type:

®

®(§)—¢(§)+—f®(§)f—®(~?) e’d szf) RJRE 1+ @), £00)=0, (5.11)

here 1 =& 10+ e(¢E-1)
_ - 25 3.5 + € —
(&)= [f 013 6(06018025 +0.51583¢£%) — M 7o ,

and its exact solution is ®© (£) = &.

Applying the ADM to Eq (5.11), we have

Oy (&) = ¢, (5.12)
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| A |
(&) = 15841+ 15 D1 €), k2 L. (5.13)

Using the PM in Eq (5.11), we get

Oy (&) = (&), (5.14)
1 ¢
0@ = OO+ SED © f: é%cbk_l (5)e'ds
1 O, (f) RL 70.5 2
l—Om J é: (1 + (DK—I (f)),K > 1. (515)

Remark 3. A comparison between the ARE of ADM and PM solutions with the exact solution is given
in Table 2. It is clear from these results that the two solutions nearly give the same accuracy, but when
a comparison is made between the time used in these two cases, it is found that the ADM takes less
time than the PM (ADM time = 69.124 sec., PM time = 70.875 sec.). Figure 6 shows ADM solutions at
different values of u (u = 0.5, 0.6, 0.7,0.8, 0.9, 1), and Figure 7 shows PM solutions at the same values.

Table 2. ARE of (ADM, PM) for Example 3.

XES “XADM XES—XPM
Q XES XES
0.1 1.0964%10° 0.0000724208
0.2 0.0000268761 0.00060454
0.3 0.000179457 0.00212539
0.4 0.000701695 0.0052377
0.5 0.00204302 0.0106117
0.6 0.00493079 0.0189737
0.7 0.0104472 0.0310892
0.8 0.0201116 0.0477376
0.9 0.0359674 0.0696801
1 0.0606745 0.0976178
—— u=05
—— u=06
pn=07
1 —— =08
— =09
— u=1

1 1.5 2 2.5

Figure 6. ADM solutions at different values of u.
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—— p=05
— u=086

=07
—— ©=08
— u=09
— u=1

1 1.5 2 2.5 3

Figure 7. PM solutions at different values of u.

6. Conclusions

In this research, two analytical methods (ADM and PM) are used to solve the fractional CQIE that
was found in the nonlinear analysis and its applications. The existence of a unique solution and its
convergence to the two methods are proved (see Theorems 2, 4, and 5). This article focused on making
a comparison between them with the exact solution (see the results in Tables 1 and 2). It is observed
from the obtained results that the difference between their accuracy is too small to consider, but when
we compare their used time, it was clear that the ADM takes less time than the PM (it is more clear in
Example 1). These results showed that the two methods satisfied certain criteria that were provided by
the solutions.

Table 3. Abbreviations.

IVP Initial value problem

ADM Adomian decomposition method

PM Picard method

FDEs Fractional differential equations

HDE Hybrid differential equation

CQIE Chandrasekhar quadratic integral equation
RLFI Riemann—Liouville fractional integral
MNC Measure of noncompactness

BS Banach space

CS Cauchy sequence

ARE Absolute relative error
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