http://www.aimspress.com/journal/Math

Research article

Determinantal inequalities for block Hadamard product and Khatri-Rao product of positive definite matrices

Sheng Dong ${ }^{1,2}$, Qingwen Wang ${ }^{2, *}$ and Lei Hou ${ }^{2}$
${ }^{1}$ School of Mathematics, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
${ }^{2}$ Department of Mathematics, Shanghai University, Shanghai 200444, China
* Correspondence: Email: wqw@t.shu.edu.cn.

Abstract

In this paper, we first give an alternative proof for a result of Liu et al. in [Math. Inequal. Appl. 20 (2017) 537-542]. Then we present two inequalities for the block Hadamard product and the Khatri-Rao product respectively. The inequalities obtained extend the result of Liu et al.

Keywords: determinantal inequality; block Hadamard product; Khatri-Rao product; positive definite matrix
Mathematics Subject Classification: 15A45, 47A63

1. Introduction

Let \mathbb{M}_{n} be the set of $n \times n$ complex matrices. If X is positive semidefinite, we put $X \geq 0$. For two Hermitian matrices $X, Y \in \mathbb{M}_{n}, X \geq Y$ means $X-Y$ is positive semidefinite. If X is positive definite, we put $X>0$.

The Hadamard product of $A, B \in \mathbb{M}_{n}$ is denoted by $A \circ B$, and the Hadamard product of $A_{1}, \ldots, A_{m} \in$ \mathbb{M}_{n} is denoted by $\prod_{i=1}^{m} \circ A_{i}$. The Kronecker product of A and B is denoted by $A \otimes B=\left(a_{i j} B\right)$. If $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right) \in \mathbb{M}_{n}$ with A_{11} nonsingular, then the Schur complement of A_{11} in A is defined as $A / A_{11}=A_{22}-A_{21} A_{11}^{-1} A_{12}$. A well known property of the Schur complement is

$$
\begin{equation*}
\operatorname{det} A=\operatorname{det} A_{11} \operatorname{det}\left(A / A_{11}\right) . \tag{1.1}
\end{equation*}
$$

The set of all complex matrices partitioned as $p \times p$ blocks with each block $q \times q$ is denoted by $\mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$. Let $\mathbf{A}=\left(A_{i j}\right), \mathbf{B}=\left(B_{i j}\right) \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$. The block Hadamard product of \mathbf{A} and \mathbf{B} is given by $\mathbf{A} \square \mathbf{B}:=\left(A_{i j} B_{i j}\right)$, where $A_{i j} B_{i j}$ denotes the usual matrix product of $A_{i j}$ and $B_{i j}$. If every block of \mathbf{A} commutes with corresponding block of \mathbf{B}, we say that \mathbf{A}, \mathbf{B} block commute. The Khatri-Rao product
of \mathbf{A} and \mathbf{B} is given by $\mathbf{A} * \mathbf{B}:=\left(A_{i j} \otimes B_{i j}\right)$. We denote by $\mathbf{I}_{\mathbf{p}} \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$ the $p q \times p q$ identity matrix, which is partitioned according to the block structure of the matrices of $\mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$. Clearly, when $q=1$, that is, A and B are $p \times p$ matrices with complex entries, the block Hadamard product and the KhatriRao product coincide with the Hadamard product. These matrix products have been used in many fields, such as matrix analysis, statistical analysis, communication and information theory, etc. For more information, we refer to [3-6,9, 10].

Let $A_{i} \in \mathbb{M}_{n}, i=1, \ldots, m$, be positive definite matrices whose diagonal blocks are n_{j}-square matrices $A_{i}^{(j)}, j=1, \ldots, k\left(\right.$ so $\left.n_{1}+\cdots+n_{k}=n\right)$. Denote $\sum_{i=1}^{m}$ or $\prod_{i=1}^{m} \circ$ by \star, then

$$
\operatorname{det}\left(\star A_{i}\right) \leq \operatorname{det}\left(\star\left(A_{i}^{(1)}\right)\right) \cdots \operatorname{det}\left(\star\left(A_{i}^{(k)}\right)\right)
$$

follows directly from Fischer's inequality [2, p. 506].
By making use of a result of Lin [7], Choi [1] proved the following inquality,

$$
\begin{equation*}
\operatorname{det}\left(\sum_{i=1}^{m} A_{i}^{-1}\right) \geq \operatorname{det}\left(\sum_{i=1}^{m}\left(A_{i}^{(1)}\right)^{-1}\right) \cdots \operatorname{det}\left(\sum_{i=1}^{m}\left(A_{i}^{(k)}\right)^{-1}\right) . \tag{1.2}
\end{equation*}
$$

Later, Liu et al. [8] gave a new proof of Choi's inequality(1.2), and they also obtained the following theorem.

Theorem 1. Let $A_{i} \in \mathbb{M}_{n}, i=1, \ldots, m$, be positive definite whose diagonal blocks are n_{j}-square matrices $A_{i}^{(j)}$ for $j=1, \ldots, k\left(\right.$ so $\left.n_{1}+\cdots+n_{k}=n\right)$. Then

$$
\operatorname{det}\left(\prod_{i=1}^{m} \circ A_{i}^{-1}\right) \geq \operatorname{det}\left(\prod_{i=1}^{m} \circ\left(A_{i}^{(1)}\right)^{-1}\right) \cdots \operatorname{det}\left(\prod_{i=1}^{m} \circ\left(A_{i}^{(k)}\right)^{-1}\right) .
$$

In this paper, we give an alternative proof of Theorem 1, this is done in Section 2. In Section 3, we present the following inequality for the block Hadamard product. Clearly, when $q=1$, Theorem 2 reduces to Theorem 1.
Theorem 2. Let $\mathbf{A}_{i} \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$, $i=1, \ldots, m$, partition \mathbf{A}_{i} with diagonal blocks $\mathbf{A}_{i}^{(j)} \in \mathbb{M}_{p_{j}}\left(\mathbb{M}_{q}\right)$, $j=1, \ldots, t\left(\right.$ so $\left.p_{1}+\cdots+p_{t}=p\right)$. If $\mathbf{A}_{i}, i=1, \ldots, m$, are positive definite and block commute, then

$$
\operatorname{det}\left(\prod_{i=1}^{m} \square \mathbf{A}_{i}^{-1}\right) \geq \operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}^{(1)}\right)^{-1}\right) \cdots \operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}^{(t)}\right)^{-1}\right) .
$$

The result for the Khatri-Rao product is given in Section 4.

2. Alternative proof of Theorem 1

We list some lemmas which are important for our proof.
Lemma 1. [2, Corollary 7.7.4] If $A, B \in \mathbb{M}_{n}$ such that $A \geq B>0$, then $\operatorname{det} A \geq \operatorname{det} B$.
Lemma 2. [2, Theorem 7.5.3] Let $A, B \in \mathbb{M}_{n}$ be positive semidefinite. Then $A \circ B \geq 0$.

Lemma 3. [11, Theorem 7.13] Let $A \in \mathbb{M}_{n}$ be positive definite. Partition A as $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$ with A_{11} square. Let A^{-1} be conformally partitioned as A, then
(1) $\left(A_{i i}\right)^{-1} \leq\left(A^{-1}\right)_{i i}, i=1,2$;
(2) $A^{-1} /\left(A^{-1}\right)_{11}=\left(A_{22}\right)^{-1}$.

Lemma 4. [2, p.504] Let $A, B \in \mathbb{M}_{n}$ be positive definite. Partition A, B as $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$, $B=$ $\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)$ with $A_{11}, B_{11} \in \mathbb{M}_{k}, 1 \leq k<n$, then

$$
(A \circ B) /\left(A_{11} \circ B_{11}\right) \geq\left(A / A_{11}\right) \circ\left(B / B_{11}\right) .
$$

By Lemma 4 and induction, we have
Lemma 5. Let $A_{i} \in \mathbb{M}_{n}, i=1, \ldots, m$, be positive definite and conformally partitioned, and $A_{i}^{(1)}$ be the $(1,1)$ block of A_{i}. Then

$$
\left(\prod_{i=1}^{m} \circ A_{i}\right) /\left(\prod_{i=1}^{m} \circ A_{i}^{(1)}\right) \geq \prod_{i=1}^{m} \circ\left(A_{i} / A_{i}^{(1)}\right) .
$$

Now we are ready to present.
Proof of Theorem 1. For all $i=1, \ldots, m$, as A_{i} are positive definite, A_{i}^{-1} are all positive definite. Partition A_{i}^{-1} as A_{i} for $i=1, \ldots, m$, the diagonal blocks of A_{i}^{-1} are n_{j}-square matrices $\left(A_{i}^{-1}\right)^{(j)}$ for $j=1, \ldots, p$. Using mathematical induction on k, we may assume $k=2$. By Lemma 5 and Lemma 1 , we get

$$
\begin{equation*}
\operatorname{det}\left(\left(\prod_{i=1}^{m} \circ A_{i}^{-1}\right) /\left(\prod_{i=1}^{m} \circ\left(A_{i}^{-1}\right)^{(1)}\right)\right) \geq \operatorname{det}\left(\prod_{i=1}^{m} \circ\left(A_{i}^{-1} /\left(A_{i}^{-1}\right)^{(1)}\right)\right) . \tag{2.1}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
\operatorname{det}\left(\prod_{i=1}^{m} \circ A_{i}^{-1}\right) & =\operatorname{det}\left(\prod_{i=1}^{m} \circ\left(A_{i}^{-1}\right)^{(1)}\right) \operatorname{det}\left(\left(\prod_{i=1}^{m} \circ A_{i}^{-1}\right) /\left(\prod_{i=1}^{m} \circ\left(A_{i}^{-1}\right)^{(1)}\right)\right) \\
& \geq \operatorname{det}\left(\prod_{i=1}^{m} \circ\left(A_{i}^{-1}\right)^{(1)}\right) \operatorname{det}\left(\prod_{i=1}^{m} \circ\left(A_{i}^{-1} /\left(A_{i}^{-1}\right)^{(1)}\right)\right) \\
& \geq \operatorname{det}\left(\prod_{i=1}^{m} \circ\left(A_{i}^{(1)}\right)^{-1}\right) \operatorname{det}\left(\prod_{i=1}^{m} \circ\left(A_{i}^{-1} /\left(A_{i}^{-1}\right)^{(1)}\right)\right) \\
& =\operatorname{det}\left(\prod_{i=1}^{m} \circ\left(A_{i}^{(1)}\right)^{-1}\right) \operatorname{det}\left(\prod_{i=1}^{m} \circ\left(A_{i}^{(2)}\right)^{-1}\right) .
\end{aligned}
$$

where the first equality above is by (1.1); the first inequality is by (2.1); the second inequality is by Lemma 3(1); the last equality is due to Lemma 3(2).

3. Proof of Theorem 2

In order to prove Theorem 2, we need to show the following lemmas.
Lemma 6. [4, Corollary 3.3] Let $\mathbf{A}, \mathbf{B} \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$. If \mathbf{A}, \mathbf{B} are positive semidefinite and block commute, then $\mathbf{A} \square \mathbf{B} \geq 0$.

Lemma 7. [4, Lemma 2.4] Let $\mathbf{A}, \mathbf{B} \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$. If \mathbf{B} is invertible, then \mathbf{A}, \mathbf{B} block commute if and only if $\mathbf{A}, \mathbf{B}^{-1}$ block commute.
Lemma 8. Let $\mathbf{A}=\left(\begin{array}{ll}\mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{12}^{*} & \boldsymbol{A}_{22}\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}\mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{12}^{*} & \mathbf{B}_{22}\end{array}\right) \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$ with $\mathbf{A}_{11}, \mathbf{B}_{11} \in \mathbb{M}_{h}\left(\mathbb{M}_{q}\right), h<p$. If \mathbf{A}, \mathbf{B} are positive definite and block commute, then

$$
(\mathbf{A} \square \mathbf{B}) /\left(\mathbf{A}_{11} \square \mathbf{B}_{11}\right) \geq\left(\mathbf{A} / \mathbf{A}_{11}\right) \square\left(\mathbf{B} / \mathbf{B}_{11}\right) .
$$

Proof. Let

$$
\mathbf{E}=\left(\begin{array}{cc}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{12}^{*} & \mathbf{A}_{12}^{*} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}
\end{array}\right),
$$

and

$$
\mathbf{F}=\left(\begin{array}{cc}
\mathbf{B}_{11} & \mathbf{B}_{12} \\
\mathbf{B}_{12}^{*} & \mathbf{B}_{12}^{*} \mathbf{B}_{11}^{-1} \mathbf{B}_{12}
\end{array}\right) .
$$

Then \mathbf{E} and \mathbf{F} are positive semidefinite and block commute.
By Lemma 6, we get that

$$
\mathbf{E} \square \mathbf{F}=\left(\begin{array}{cc}
\mathbf{A}_{11} \square \mathbf{B}_{11} & \mathbf{A}_{12} \square \mathbf{B}_{12} \\
\mathbf{A}_{12}^{*} \square \mathbf{B}_{12}^{*} & \left(\mathbf{A}_{12}^{*} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}\right) \square\left(\mathbf{B}_{12}^{*} \mathbf{B}_{11}^{-1} \mathbf{B}_{12}\right)
\end{array}\right)
$$

is positive semidefinite, thus

$$
\left(\mathbf{A}_{12}^{*} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}\right) \square\left(\mathbf{B}_{12}^{*} \mathbf{B}_{11}^{-1} \mathbf{B}_{12}\right) \geq\left(\mathbf{A}_{12}^{*} \square \mathbf{B}_{12}^{*}\right)\left(\mathbf{A}_{11} \square \mathbf{B}_{11}\right)^{-1}\left(\mathbf{A}_{12} \square \mathbf{B}_{12}\right),
$$

that is

$$
\left(\mathbf{A}_{22}-\mathbf{A} / \mathbf{A}_{11}\right) \square\left(\mathbf{B}_{22}-\mathbf{B} / \mathbf{B}_{11}\right) \geq \mathbf{A}_{22} \square \mathbf{B}_{22}-(\mathbf{A} \square \mathbf{B}) /\left(\mathbf{A}_{11} \square \mathbf{B}_{11}\right),
$$

which implies

$$
(\mathbf{A} \square \mathbf{B}) /\left(\mathbf{A}_{11} \square \mathbf{B}_{11}\right) \geq \mathbf{A}_{22} \square\left(\mathbf{B} / \mathbf{B}_{11}\right)+\left(\mathbf{A} / \mathbf{A}_{11}\right) \square \mathbf{B}_{22}-\left(\mathbf{A} / \mathbf{A}_{11}\right) \square\left(\mathbf{B} / \mathbf{B}_{11}\right) .
$$

It follows from

$$
\mathbf{A}_{22} \geq \mathbf{A} / \mathbf{A}_{11}, \quad \mathbf{B}_{22} \geq \mathbf{B} / \mathbf{B}_{11}
$$

that

$$
\begin{aligned}
(\mathbf{A} \square \mathbf{B}) /\left(\mathbf{A}_{11} \square \mathbf{B}_{11}\right) & \geq \mathbf{A}_{22} \square\left(\mathbf{B} / \mathbf{B}_{11}\right) \\
& \geq\left(\mathbf{A} / \mathbf{A}_{11}\right) \square\left(\mathbf{B} / \mathbf{B}_{11}\right) .
\end{aligned}
$$

This completes the proof.

Lemma 9. Let $\mathbf{A}_{i}=\left(\begin{array}{ll}\left(\mathbf{A}_{i}\right)_{11} & \left(\mathbf{A}_{i}\right)_{12} \\ \left(\mathbf{A}_{i}\right)_{12}^{*} & \left(\mathbf{A}_{i}\right)_{22}\end{array}\right) \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$ with $\left(\mathbf{A}_{i}\right)_{11} \in \mathbb{M}_{h}\left(\mathbb{M}_{q}\right), h<p, i=1, \ldots$, m. If $\mathbf{A}_{i}, i=1, \ldots, m$, are positive definite and block commute, then

$$
\operatorname{det}\left(\prod_{i=1}^{m} \square \mathbf{A}_{i}\right) \geq \operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}\right)_{11}\right) \operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i} /\left(\mathbf{A}_{i}\right)_{11}\right)\right) .
$$

Proof. By Lemma 8 and induction, we can get

$$
\left(\prod_{i=1}^{m} \square \mathbf{A}_{i}\right) /\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}\right)_{11}\right) \geq \prod_{i=1}^{m} \square\left(\mathbf{A}_{i} /\left(\mathbf{A}_{i}\right)_{11}\right) .
$$

Then

$$
\begin{aligned}
\operatorname{det}\left(\prod_{i=1}^{m} \square \mathbf{A}_{i}\right) & =\operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}\right)_{11}\right) \operatorname{det}\left(\left(\prod_{i=1}^{m} \square \mathbf{A}_{i}\right) /\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}\right)_{11}\right)\right) \\
& \geq \operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}\right)_{11}\right) \operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i} /\left(\mathbf{A}_{i}\right)_{11}\right)\right) .
\end{aligned}
$$

Now we give the proof of Theorem 2.
Proof of Theorem 2. For all $i=1, \ldots, m$, as \mathbf{A}_{i} are positive definite, \mathbf{A}_{i}^{-1} are all positive definite. Partition \mathbf{A}_{i}^{-1} as \mathbf{A}_{i} for $i=1, \ldots, m$, then the diagonal blocks of $\left(\mathbf{A}_{i}^{-1}\right)^{(j)} \in \mathbb{M}_{p_{j}}\left(\mathbb{M}_{q}\right)$ for $j=1, \ldots, t$. By Lemma 7, we get that $\mathbf{A}_{i}^{-1}, i=1, \ldots, m$, block commute. Using mathematical induction on t, we may assume $t=2$. By Lemma 9, we get

$$
\operatorname{det}\left(\prod_{i=1}^{m} \square \mathbf{A}_{i}^{-1}\right) \geq \operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}^{-1}\right)^{(1)}\right) \operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}^{-1} /\left(\mathbf{A}_{i}^{-1}\right)^{(1)}\right)\right) \text {. }
$$

By Lemma 3, we have

$$
\begin{aligned}
\operatorname{det}\left(\prod_{i=1}^{m} \square \mathbf{A}_{i}^{-1}\right) & \geq \operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}^{(1)}\right)^{-1}\right) \operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}^{-1} /\left(\mathbf{A}_{i}^{-1}\right)^{(1)}\right)\right) \\
& =\operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}^{(1)}\right)^{-1}\right) \operatorname{det}\left(\prod_{i=1}^{m} \square\left(\mathbf{A}_{i}^{(2)}\right)^{-1}\right) .
\end{aligned}
$$

This completes the proof.
Corollary 1. Let $\mathbf{A} \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$ be positive definite, partition \mathbf{A} with diagonal blocks $\mathbf{A}^{(j)} \in \mathbb{M}_{p_{j}}\left(\mathbb{M}_{q}\right)$, $j=1, \ldots, t\left(\right.$ so $\left.p_{1}+\cdots+p_{t}=p\right)$. Then

$$
\operatorname{det}\left(\mathbf{A}^{-1} \square \mathbf{I}_{p}\right) \geq \operatorname{det}\left(\left(\mathbf{A}^{(1)}\right)^{-1} \square \mathbf{I}_{p_{1}}\right) \cdots \operatorname{det}\left(\left(\mathbf{A}^{(t)}\right)^{-1} \square \mathbf{I}_{p_{t}}\right) .
$$

Corollary 2. Let $\mathbf{A} \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$ be positive definite, partition \mathbf{A} with diagonal blocks $\mathbf{A}^{(j)} \in \mathbb{M}_{p_{j}}\left(\mathbb{M}_{q}\right)$, $j=1, \ldots, t\left(\right.$ so $\left.p_{1}+\cdots+p_{t}=p\right)$. Let $\mathbf{B}^{(j)} \in \mathbb{M}_{p_{j}}\left(\mathbb{M}_{q}\right), j=1, \ldots, t$, be positive semidefinite, $\mathbf{B}=$ $\operatorname{diag}\left(\mathbf{B}^{(1)}, \ldots, \mathbf{B}^{(t)}\right), \mathbf{A}$ and \mathbf{B} block commute. Then

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}^{-1} \square \mathbf{B}\right) \geq \operatorname{det}\left(\left(\mathbf{A}^{(1)}\right)^{-1} \square \mathbf{B}^{(1)}\right) \cdots \operatorname{det}\left(\left(\mathbf{A}^{(t)}\right)^{-1} \square \mathbf{B}^{(t)}\right) . \tag{3.1}
\end{equation*}
$$

Proof. Assume that \mathbf{B} is nonsingular, that is, $\mathbf{B}^{(j)}$ are all invertible for $j=1, \ldots, t$. Then, (3.1) follows by Lemma 7 and Theorem 2. By a standard continuity argument, the statement is also true if \mathbf{B} is singular.

When $t=p$ in Theorem 2, we get the following.
Corollary 3. Let $\mathbf{A}_{i} \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right), i=1, \ldots, m$, with diagonal blocks q-square matrices $A_{i}^{(j)}, j=1, \ldots, p$. If $\mathbf{A}_{i}, i=1, \ldots, m$, are positive definite and block commute, then

$$
\operatorname{det}\left(\prod_{i=1}^{m} \square \mathbf{A}_{i}^{-1}\right) \geq \operatorname{det}\left(\prod_{i=1}^{m}\left(A_{i}^{(1)}\right)^{-1}\right) \cdots \operatorname{det}\left(\prod_{i=1}^{m}\left(A_{i}^{(p)}\right)^{-1}\right) .
$$

4. Results for the Khatri-Rao product

The following lemmas will be used in the main result of this section.
Lemma 10. [9, Theorem 5] Let $\mathbf{A} \geq \mathbf{B} \geq 0, \mathbf{C} \geq \mathbf{D} \geq 0$, and $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} be compatibly partitioned matrices. Then

$$
\mathbf{A} * \mathbf{C} \geq \mathbf{B} * \mathbf{D} \geq 0
$$

Lemma 11. [5, Lemma 3.3] Let $\mathbf{A}=\left(\begin{array}{ll}\mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{12}^{*} & \mathbf{A}_{22}\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}\mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{12}^{*} & \mathbf{B}_{22}\end{array}\right) \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$ with $\mathbf{A}_{11}, \mathbf{B}_{11} \in$ $\mathbb{M}_{h}\left(\mathbb{M}_{q}\right), h<p$. If \mathbf{A}, \mathbf{B} are positive definite, then

$$
(\mathbf{A} * \mathbf{B}) /\left(\mathbf{A}_{11} * \mathbf{B}_{11}\right) \geq\left(\mathbf{A} / \mathbf{A}_{11}\right) *\left(\mathbf{B} / \mathbf{B}_{11}\right)
$$

By Lemma 11 and induction, we have
Lemma 12. Let $\mathbf{A}_{i}=\left(\begin{array}{ll}\left(\mathbf{A}_{i}\right)_{11} & \left(\mathbf{A}_{i}\right)_{12} \\ \left(\mathbf{A}_{i}\right)_{12}^{*} & \left(\mathbf{A}_{i}\right)_{22}\end{array}\right) \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$ with $\left(\mathbf{A}_{i}\right)_{11} \in \mathbb{M}_{h}\left(\mathbb{M}_{q}\right), h<p, i=1, \ldots, m$. If $\mathbf{A}_{i}, i=1, \ldots, m$, are positive definite, then

$$
\operatorname{det}\left(\prod_{i=1}^{m} * \mathbf{A}_{i}\right) \geq \operatorname{det}\left(\prod_{i=1}^{m} *\left(\mathbf{A}_{i}\right)_{11}\right) \operatorname{det}\left(\prod_{i=1}^{m} *\left(\mathbf{A}_{i} /\left(\mathbf{A}_{i}\right)_{11}\right)\right)
$$

Now, we give the result for the Khatri-Rao product. Clearly, when $q=1$, Theorem 3 reduces to Theorem 1.

Theorem 3. Let $\mathbf{A}_{i} \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$, $i=1, \ldots$, , partition \mathbf{A}_{i} with diagonal blocks $\mathbf{A}_{i}^{(j)} \in \mathbb{M}_{p_{j}}\left(\mathbb{M}_{q}\right)$, $j=1, \ldots, t\left(\right.$ so $\left.p_{1}+\cdots+p_{t}=p\right)$. If $\mathbf{A}_{i}, i=1, \ldots, m$, are positive definite, then

$$
\operatorname{det}\left(\prod_{i=1}^{m} * \mathbf{A}_{i}^{-1}\right) \geq \operatorname{det}\left(\prod_{i=1}^{m} *\left(\mathbf{A}_{i}^{(1)}\right)^{-1}\right) \cdots \operatorname{det}\left(\prod_{i=1}^{m} *\left(\mathbf{A}_{i}^{(t)}\right)^{-1}\right)
$$

Proof. This follows analogous steps to the proof of Theorem 2.

Corollary 4. Let $\mathbf{A} \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$ be positive definite, partition \mathbf{A} with diagonal blocks $\mathbf{A}^{(j)} \in \mathbb{M}_{p_{j}}\left(\mathbb{M}_{q}\right)$, $j=1, \ldots, t\left(\right.$ so $\left.p_{1}+\cdots+p_{t}=p\right)$. Then

$$
\operatorname{det}\left(\mathbf{A}^{-1} * \mathbf{I}_{p}\right) \geq \operatorname{det}\left(\left(\mathbf{A}^{(1)}\right)^{-1} * \mathbf{I}_{p_{1}}\right) \cdots \operatorname{det}\left(\left(\mathbf{A}^{(t)}\right)^{-1} * \mathbf{I}_{p_{t}}\right)
$$

and

$$
\operatorname{det}\left(\mathbf{I}_{p} * \mathbf{A}^{-1}\right) \geq \operatorname{det}\left(\mathbf{I}_{p_{1}} *\left(\mathbf{A}^{(1)}\right)^{-1}\right) \cdots \operatorname{det}\left(\mathbf{I}_{p_{t}} *\left(\mathbf{A}^{(t)}\right)^{-1}\right)
$$

Corollary 5. Let $\mathbf{A} \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right)$ be positive definite, partition \mathbf{A} with diagonal blocks $\mathbf{A}^{(j)} \in \mathbb{M}_{p_{j}}\left(\mathbb{M}_{q}\right)$, $j=1, \ldots, t\left(\right.$ so $\left.p_{1}+\cdots+p_{t}=p\right)$. Let $\mathbf{B}^{(j)} \in \mathbb{M}_{p_{j}}\left(\mathbb{M}_{q}\right), j=1, \ldots, t$, be positive semidefinite, $\mathbf{B}=$ $\operatorname{diag}\left(\mathbf{B}^{(1)}, \ldots, \mathbf{B}^{(t)}\right)$. Then

$$
\operatorname{det}\left(\mathbf{A}^{-1} * \mathbf{B}\right) \geq \operatorname{det}\left(\left(\mathbf{A}^{(1)}\right)^{-1} * \mathbf{B}^{(1)}\right) \cdots \operatorname{det}\left(\left(\mathbf{A}^{(t)}\right)^{-1} * \mathbf{B}^{(t)}\right)
$$

and

$$
\operatorname{det}\left(\mathbf{B} * \mathbf{A}^{-1}\right) \geq \operatorname{det}\left(\left(\mathbf{B}^{(1)} * \mathbf{A}^{(1)}\right)^{-1}\right) \cdots \operatorname{det}\left(\mathbf{B}^{(t)} *\left(\mathbf{A}^{(t)}\right)^{-1}\right)
$$

When $t=p$ in Theorem 3, we get the following.
Corollary 6. Let $\mathbf{A}_{i} \in \mathbb{M}_{p}\left(\mathbb{M}_{q}\right), i=1, \ldots, m$, with diagonal blocks q-square matrices $A_{i}^{(j)}, j=1, \ldots, p$. If $\mathbf{A}_{i}, i=1, \ldots, m$, are positive definite, then

$$
\operatorname{det}\left(\prod_{i=1}^{m} * \mathbf{A}_{i}^{-1}\right) \geq \operatorname{det}\left(\prod_{i=1}^{m} \otimes\left(A_{i}^{(1)}\right)^{-1}\right) \cdots \operatorname{det}\left(\prod_{i=1}^{m} \otimes\left(A_{i}^{(p)}\right)^{-1}\right) .
$$

Acknowledgments

The work was supported by National Natural Science Foundation of China (NNSFC) [Grant Number 11971294].

Conflict of interest

We declare no conflict of interest.

References

1. D. Choi, Determinantal inequalities of positive definite matrices, Math. Inequal. Appl., 19 (2016), 167-172. http://dx.doi.org/10.7153/mia-19-12
2. R. Horn, C. Johnson, Matrix analysis, Cambridge: Cambridge University Press, 2012.
3. R. Horn, R. Mathias, Y. Nakamura, Inequalities for unitarily invariant norms and bilinear matrix products, Linear Multilinear A., 30 (1991), 303-314. http://dx.doi.org/10.1080/03081089108818114
4. M. Günther, L. Klotz, Schur's theorem for a block Hadamard product, Linear Algebra Appl., 437 (2012), 948-956. http://dx.doi.org/10.1016/j.laa.2012.04.002
5. S. Kim, J. Kim, H. Lee, Oppenheim and Schur type inequalities for Khatri-Rao products of positive definite matrices, Kyungpook Math. J., 57 (2017), 641-649. http://dx.doi.org/10.5666/KMJ.2017.57.4.641
6. M. Lin, An Oppenheim type inequalities for a block Hadamard product, Linear Algebra Appl., 452 (2014), 1-6. http://dx.doi.org/10.1016/j.laa.2014.03.025
7. M. Lin, Determinantal inequalities for block triangular matrices, Math. Inequal. Appl., 18 (2015), 1079-1086. http://dx.doi.org/10.7153/mia-18-83
8. J. Liu, Q. Wang, F. Sun, Determinantal inequalities for Hadamard product of positive definite matrices, Math. Inequal. Appl., 20 (2017), 537-542. http://dx.doi.org/10.7153/mia-20-36
9. S. Liu, Matrix results on the Khatri-Rao and Tracy-Singh products, Linear Algebra Appl., 289 (1999), 267-277. http://dx.doi.org/10.1016/S0024-3795(98)10209-4
10. C. Rao, Estimation of heteroscedastic variances in linear models, J. Am. Stat. Assoc., 65 (1970), 161-172. http://dx.doi.org/10.1080/01621459.1970.10481070
11. F. Zhang, Matrix theory, basic results and techniques, New York: Springer Press, 2011. http://dx.doi.org/10.1007/978-1-4614-1099-7

AIMS Press
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

