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1. Introduction

Let Mn be the set of n × n complex matrices. If X is positive semidefinite, we put X ≥ 0. For two
Hermitian matrices X,Y ∈ Mn, X ≥ Y means X −Y is positive semidefinite. If X is positive definite, we
put X > 0.

The Hadamard product of A, B ∈ Mn is denoted by A◦B, and the Hadamard product of A1, . . . , Am ∈

Mn is denoted by
∏m

i=1 ◦Ai. The Kronecker product of A and B is denoted by A ⊗ B = (ai jB). If

A =
(

A11 A12

A21 A22

)
∈ Mn with A11 nonsingular, then the Schur complement of A11 in A is defined as

A/A11 = A22 − A21A−1
11 A12. A well known property of the Schur complement is

det A = det A11 det(A/A11). (1.1)

The set of all complex matrices partitioned as p × p blocks with each block q × q is denoted by
Mp(Mq). Let A = (Ai j),B = (Bi j) ∈ Mp(Mq). The block Hadamard product of A and B is given by
A�B := (Ai jBi j), where Ai jBi j denotes the usual matrix product of Ai j and Bi j. If every block of A
commutes with corresponding block of B, we say that A,B block commute. The Khatri-Rao product
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of A and B is given by A ∗ B := (Ai j ⊗ Bi j). We denote by Ip ∈ Mp(Mq) the pq × pq identity matrix,
which is partitioned according to the block structure of the matrices of Mp(Mq). Clearly, when q = 1,
that is, A and B are p × p matrices with complex entries, the block Hadamard product and the Khatri-
Rao product coincide with the Hadamard product. These matrix products have been used in many
fields, such as matrix analysis, statistical analysis, communication and information theory, etc. For
more information, we refer to [3–6, 9, 10].

Let Ai ∈ Mn, i = 1, . . . ,m, be positive definite matrices whose diagonal blocks are n j-square matrices
A( j)

i , j = 1, . . . , k (so n1 + · · · + nk = n). Denote
∑m

i=1 or
∏m

i=1 ◦ by ?, then

det
(
? Ai

)
≤ det

(
?

(
A(1)

i
))
· · · det

(
?

(
A(k)

i
))

follows directly from Fischer’s inequality [2, p. 506].
By making use of a result of Lin [7], Choi [1] proved the following inquality,

det
( m∑

i=1

A−1
i

)
≥ det

( m∑
i=1

(
A(1)

i
)−1

)
· · · det

( m∑
i=1

(
A(k)

i
)−1

)
. (1.2)

Later, Liu et al. [8] gave a new proof of Choi’s inequality(1.2), and they also obtained the following
theorem.

Theorem 1. Let Ai ∈ Mn, i = 1, . . . ,m, be positive definite whose diagonal blocks are n j-square
matrices A( j)

i for j = 1, . . . , k (so n1 + · · · + nk = n). Then

det
( m∏

i=1

◦A−1
i

)
≥ det

( m∏
i=1

◦
(
A(1)

i
)−1

)
· · · det

( m∏
i=1

◦
(
A(k)

i
)−1

)
.

In this paper, we give an alternative proof of Theorem 1, this is done in Section 2. In Section 3,
we present the following inequality for the block Hadamard product. Clearly, when q = 1, Theorem 2
reduces to Theorem 1.

Theorem 2. Let Ai ∈ Mp(Mq), i = 1, . . . ,m, partition Ai with diagonal blocks A( j)
i ∈ Mp j(Mq),

j = 1, . . . , t (so p1 + · · · + pt = p). If Ai, i = 1, . . . ,m, are positive definite and block commute, then

det
( m∏

i=1

�A−1
i

)
≥ det

( m∏
i=1

�
(
A(1)

i
)−1

)
· · · det

( m∏
i=1

�
(
A(t)

i
)−1

)
.

The result for the Khatri-Rao product is given in Section 4.

2. Alternative proof of Theorem 1

We list some lemmas which are important for our proof.

Lemma 1. [2, Corollary 7.7.4] If A, B ∈ Mn such that A ≥ B > 0, then det A ≥ det B.

Lemma 2. [2, Theorem 7.5.3] Let A, B ∈ Mn be positive semidefinite. Then A ◦ B ≥ 0.
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Lemma 3. [11, Theorem 7.13] Let A ∈ Mn be positive definite. Partition A as A =
(

A11 A12

A21 A22

)
with

A11 square. Let A−1 be conformally partitioned as A, then
(1) (Aii)−1 ≤ (A−1)ii, i = 1, 2;
(2) A−1/(A−1)11 = (A22)−1.

Lemma 4. [2, p.504] Let A, B ∈ Mn be positive definite. Partition A, B as A =
(

A11 A12

A21 A22

)
, B =(

B11 B12

B21 B22

)
with A11, B11 ∈ Mk, 1 ≤ k < n, then

(A ◦ B)/(A11 ◦ B11) ≥ (A/A11) ◦ (B/B11).

By Lemma 4 and induction, we have

Lemma 5. Let Ai ∈ Mn, i=1,. . . ,m, be positive definite and conformally partitioned, and A(1)
i be

the (1, 1) block of Ai. Then ( m∏
i=1

◦Ai

)
/
( m∏

i=1

◦A(1)
i

)
≥

m∏
i=1

◦
(
Ai/A

(1)
i

)
.

Now we are ready to present.

Proof of Theorem 1. For all i = 1, . . . ,m, as Ai are positive definite, A−1
i are all positive definite.

Partition A−1
i as Ai for i = 1, . . . ,m, the diagonal blocks of A−1

i are n j-square matrices (A−1
i )( j) for

j = 1, . . . , p. Using mathematical induction on k , we may assume k = 2. By Lemma 5 and Lemma 1,
we get

det
(( m∏

i=1

◦A−1
i

)
/
( m∏

i=1

◦
(
A−1

i
)(1)

))
≥ det

( m∏
i=1

◦
(
A−1

i /
(
A−1

i
)(1)

))
. (2.1)

Then we have

det
( m∏

i=1

◦A−1
i

)
= det

( m∏
i=1

◦
(
A−1

i
)(1)

)
det

(( m∏
i=1

◦A−1
i

)
/
( m∏

i=1

◦
(
A−1

i
)(1)

))
≥ det

( m∏
i=1

◦
(
A−1

i
)(1)

)
det

( m∏
i=1

◦

(
A−1

i /
(
A−1

i
)(1)

))
≥ det

( m∏
i=1

◦
(
A(1)

i
)−1

)
det

( m∏
i=1

◦

(
A−1

i /
(
A−1

i
)(1)

))
= det

( m∏
i=1

◦
(
A(1)

i
)−1

)
det

( m∏
i=1

◦
(
A(2)

i
)−1

)
.

where the first equality above is by (1.1); the first inequality is by (2.1); the second inequality is by
Lemma 3(1); the last equality is due to Lemma 3(2). �
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3. Proof of Theorem 2

In order to prove Theorem 2, we need to show the following lemmas.

Lemma 6. [4, Corollary 3.3] Let A,B ∈ Mp(Mq). If A,B are positive semidefinite and block commute,
then A�B ≥ 0.

Lemma 7. [4, Lemma 2.4] Let A,B ∈ Mp(Mq). If B is invertible, then A,B block commute if and
only if A,B−1 block commute.

Lemma 8. Let A =
(

A11 A12

A∗12 A22

)
,B =

(
B11 B12

B∗12 B22

)
∈ Mp(Mq) with A11,B11 ∈ Mh(Mq), h < p. If

A,B are positive definite and block commute, then

(A�B)/(A11�B11) ≥ (A/A11)�(B/B11).

Proof. Let

E =
(

A11 A12

A∗12 A∗12A−1
11 A12

)
,

and

F =
(

B11 B12

B∗12 B∗12B−1
11 B12

)
.

Then E and F are positive semidefinite and block commute.
By Lemma 6, we get that

E�F =
(

A11�B11 A12�B12

A∗12�B∗12 (A∗12A−1
11 A12)�(B∗12B−1

11 B12)

)
is positive semidefinite, thus

(A∗12A−1
11 A12)�(B∗12B−1

11 B12) ≥ (A∗12�B∗12)(A11�B11)−1(A12�B12),

that is
(A22 − A/A11)�(B22 − B/B11) ≥ A22�B22 − (A�B)/(A11�B11),

which implies

(A�B)/(A11�B11) ≥ A22�(B/B11) + (A/A11)�B22 − (A/A11)�(B/B11).

It follows from
A22 ≥ A/A11, B22 ≥ B/B11,

that
(A�B)/(A11�B11) ≥ A22�(B/B11)

≥ (A/A11)�(B/B11).

This completes the proof. �
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Lemma 9. Let Ai =

(
(Ai)11 (Ai)12

(Ai)∗12 (Ai)22

)
∈ Mp(Mq) with (Ai)11 ∈ Mh(Mq), h < p, i = 1, . . . ,m. If

Ai, i = 1, . . . ,m, are positive definite and block commute, then

det
( m∏

i=1

�Ai

)
≥ det

( m∏
i=1

�(Ai)11

)
det

( m∏
i=1

�
(
Ai/(Ai)11

))
.

Proof. By Lemma 8 and induction, we can get( m∏
i=1

�Ai

)
/
( m∏

i=1

�(Ai)11

)
≥

m∏
i=1

�
(
Ai/(Ai)11

)
.

Then

det
( m∏

i=1

�Ai

)
= det

( m∏
i=1

�(Ai)11

)
det

(( m∏
i=1

�Ai

)
/
( m∏

i=1

�(Ai)11

))
≥ det

( m∏
i=1

�(Ai)11

)
det

( m∏
i=1

�
(
Ai/(Ai)11

))
.

�

Now we give the proof of Theorem 2.

Proof of Theorem 2. For all i = 1, . . . ,m, as Ai are positive definite, A−1
i are all positive definite.

Partition A−1
i as Ai for i = 1, . . . ,m, then the diagonal blocks of (A−1

i )( j) ∈ Mp j(Mq) for j = 1, . . . , t. By
Lemma 7, we get that A−1

i , i = 1, . . . ,m, block commute. Using mathematical induction on t , we may
assume t = 2. By Lemma 9, we get

det
( m∏

i=1

�A−1
i

)
≥ det

( m∏
i=1

�
(
A−1

i
)(1)

)
det

( m∏
i=1

�
(
A−1

i /
(
A−1

i
)(1)

))
.

By Lemma 3, we have

det
( m∏

i=1

�A−1
i

)
≥ det

( m∏
i=1

�
(
A(1)

i
)−1

)
det

( m∏
i=1

�
(
A−1

i /
(
A−1

i
)(1)

))
= det

( m∏
i=1

�
(
A(1)

i
)−1

)
det

( m∏
i=1

�
(
A(2)

i
)−1

)
.

This completes the proof. �

Corollary 1. Let A ∈ Mp(Mq) be positive definite, partition A with diagonal blocks A( j)∈ Mp j(Mq),
j = 1, . . . , t (so p1 + · · · + pt = p). Then

det
(
A−1�Ip

)
≥ det

((
A(1))−1�Ip1

)
· · · det

((
A(t))−1�Ipt

)
.

Corollary 2. Let A ∈ Mp(Mq) be positive definite, partition A with diagonal blocks A( j)∈ Mp j(Mq),
j = 1, . . . , t (so p1 + · · · + pt = p). Let B( j)∈ Mp j(Mq), j = 1, . . . , t, be positive semidefinite, B =
diag(B(1), . . . ,B(t)), A and B block commute. Then

det
(
A−1�B

)
≥ det

((
A(1))−1�B(1)

)
· · · det

((
A(t))−1�B(t)

)
. (3.1)
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Proof. Assume that B is nonsingular, that is, B( j) are all invertible for j = 1, . . . , t. Then, (3.1) follows
by Lemma 7 and Theorem 2. By a standard continuity argument, the statement is also true if B is
singular. �

When t = p in Theorem 2, we get the following.

Corollary 3. Let Ai ∈ Mp(Mq), i = 1, . . . ,m, with diagonal blocks q-square matrices A( j)
i , j = 1, . . . , p.

If Ai, i = 1, . . . ,m, are positive definite and block commute, then

det
( m∏

i=1

�A−1
i

)
≥ det

( m∏
i=1

(
A(1)

i
)−1

)
· · · det

( m∏
i=1

(
A(p)

i
)−1

)
.

4. Results for the Khatri-Rao product

The following lemmas will be used in the main result of this section.

Lemma 10. [9, Theorem 5] Let A ≥ B ≥ 0,C ≥ D ≥ 0, and A,B,C and D be compatibly partitioned
matrices. Then

A ∗ C ≥ B ∗ D ≥ 0.

Lemma 11. [5, Lemma 3.3] Let A =
(

A11 A12

A∗12 A22

)
,B =

(
B11 B12

B∗12 B22

)
∈ Mp(Mq) with A11,B11 ∈

Mh(Mq), h < p. If A,B are positive definite, then

(A ∗ B)/(A11 ∗ B11) ≥ (A/A11) ∗ (B/B11).

By Lemma 11 and induction, we have

Lemma 12. Let Ai =

(
(Ai)11 (Ai)12

(Ai)∗12 (Ai)22

)
∈ Mp(Mq) with (Ai)11 ∈ Mh(Mq), h < p, i = 1, . . . ,m. If

Ai, i = 1, . . . ,m, are positive definite, then

det
( m∏

i=1

∗Ai

)
≥ det

( m∏
i=1

∗(Ai)11

)
det

( m∏
i=1

∗
(
Ai/(Ai)11

))
.

Now, we give the result for the Khatri-Rao product. Clearly, when q = 1, Theorem 3 reduces to
Theorem 1.

Theorem 3. Let Ai ∈ Mp (Mq), i = 1, . . . ,m, partition Ai with diagonal blocks A( j)
i ∈ Mp j(Mq),

j = 1, . . . , t (so p1 + · · · + pt = p). If Ai, i = 1, . . . ,m, are positive definite, then

det
( m∏

i=1

∗A−1
i

)
≥ det

( m∏
i=1

∗
(
A(1)

i
)−1

)
· · · det

( m∏
i=1

∗
(
A(t)

i
)−1

)
.

Proof. This follows analogous steps to the proof of Theorem 2. �
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Corollary 4. Let A ∈ Mp(Mq) be positive definite, partition A with diagonal blocks A( j)∈ Mp j(Mq),
j = 1, . . . , t (so p1 + · · · + pt = p). Then

det
(
A−1 ∗ Ip

)
≥ det

((
A(1))−1

∗ Ip1

)
· · · det

((
A(t))−1

∗ Ipt

)
,

and
det

(
Ip ∗ A−1

)
≥ det

(
Ip1
∗
(
A(1))−1

)
· · · det

(
Ipt
∗
(
A(t))−1

)
.

Corollary 5. Let A ∈ Mp(Mq) be positive definite, partition A with diagonal blocks A( j)∈ Mp j(Mq),
j = 1, . . . , t (so p1 + · · · + pt = p). Let B( j)∈ Mp j(Mq), j = 1, . . . , t, be positive semidefinite, B =
diag(B(1), . . . ,B(t)). Then

det
(
A−1 ∗ B

)
≥ det

((
A(1))−1

∗ B(1)
)
· · · det

((
A(t))−1

∗ B(t)
)
,

and
det

(
B ∗ A−1

)
≥ det

((
B(1) ∗ A(1))−1

)
· · · det

(
B(t) ∗

(
A(t))−1

)
.

When t = p in Theorem 3, we get the following.

Corollary 6. Let Ai ∈ Mp(Mq), i = 1, . . . ,m, with diagonal blocks q-square matrices A( j)
i , j = 1, . . . , p.

If Ai, i = 1, . . . ,m, are positive definite, then

det
( m∏

i=1

∗A−1
i

)
≥ det

( m∏
i=1

⊗
(
A(1)

i
)−1

)
· · · det

( m∏
i=1

⊗
(
A(p)

i
)−1

)
.
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