Review Special Issues

A review of different deep learning techniques for sperm fertility prediction

  • Received: 02 January 2023 Revised: 15 April 2023 Accepted: 17 April 2023 Published: 08 May 2023
  • MSC : 68T07

  • Sperm morphology analysis (SMA) is a significant factor in diagnosing male infertility. Therefore, healthy sperm detection is of great significance in this process. However, the traditional manual microscopic sperm detection methods have the disadvantages of a long detection cycle, low detection accuracy in large orders, and very complex fertility prediction. Therefore, it is meaningful to apply computer image analysis technology to the field of fertility prediction. Computer image analysis can give high precision and high efficiency in detecting sperm cells. In this article, first, we analyze the existing sperm detection techniques in chronological order, from traditional image processing and machine learning to deep learning methods in segmentation and classification. Then, we analyze and summarize these existing methods and introduce some potential methods, including visual transformers. Finally, the future development direction and challenges of sperm cell detection are discussed. We have summarized 44 related technical papers from 2012 to the present. This review will help researchers have a more comprehensive understanding of the development process, research status, and future trends in the field of fertility prediction and provide a reference for researchers in other fields.

    Citation: Muhammad Suleman, Muhammad Ilyas, M. Ikram Ullah Lali, Hafiz Tayyab Rauf, Seifedine Kadry. A review of different deep learning techniques for sperm fertility prediction[J]. AIMS Mathematics, 2023, 8(7): 16360-16416. doi: 10.3934/math.2023838

    Related Papers:

  • Sperm morphology analysis (SMA) is a significant factor in diagnosing male infertility. Therefore, healthy sperm detection is of great significance in this process. However, the traditional manual microscopic sperm detection methods have the disadvantages of a long detection cycle, low detection accuracy in large orders, and very complex fertility prediction. Therefore, it is meaningful to apply computer image analysis technology to the field of fertility prediction. Computer image analysis can give high precision and high efficiency in detecting sperm cells. In this article, first, we analyze the existing sperm detection techniques in chronological order, from traditional image processing and machine learning to deep learning methods in segmentation and classification. Then, we analyze and summarize these existing methods and introduce some potential methods, including visual transformers. Finally, the future development direction and challenges of sperm cell detection are discussed. We have summarized 44 related technical papers from 2012 to the present. This review will help researchers have a more comprehensive understanding of the development process, research status, and future trends in the field of fertility prediction and provide a reference for researchers in other fields.



    加载中


    [1] V. Kumar, P. G. Kumar, J. K. Yadav, Impact of semen-derived amyloid (SEVI) on sperm viability and motility: Its implication in male reproductive fitness, Eur. Biophys. J., 48 (2019), 659–671. https://doi.org/10.1007/s00249-019-01391-2 doi: 10.1007/s00249-019-01391-2
    [2] E. Carlsen, A. Giwercman, N. Keiding, N. E. Skakkebaek, Evidence for decreasing quality of semen during past 50 years, BMJ: B. Med. J., 305 (1992), 609. https://doi.org/10.1136/BMJ.305.6854.609 doi: 10.1136/BMJ.305.6854.609
    [3] T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. G. Baker, H. M. Behre, et al., World Health Organization reference values for human semen characteristics, Hum Reprod Update, 16 (2010), 231–245. https://doi.org/10.1093/HUMUPD/DMP048 doi: 10.1093/HUMUPD/DMP048
    [4] S. H. Swan, E. P. Elkin, L. Fenster, The question of declining sperm density revisited: An analysis of 101 studies published 1934–1996, Environ. Health Perspect., 108 (2000), 961. https://doi.org/10.1289/EHP.00108961 doi: 10.1289/EHP.00108961
    [5] C. Huang, B. Li, K. Xu, D. Liu, J. Hu, Y. Yang, et al., Decline in semen quality among 30,636 young Chinese men from 2001 to 2015, Fertil. Steril., 107 (2017), 83–88.e2. https://doi.org/10.1016/j.fertnstert.2016.09.035 doi: 10.1016/j.fertnstert.2016.09.035
    [6] L. G. Jiang, L. Y. Cheng, S. H. Kong, Y. Yang, Y. J. Shen, C. Chen, et al., Toxic effects of polychlorinated biphenyls (Aroclor 1254) on human sperm motility, Asian J. Androl., 19 (2017), 561. https://doi.org/10.4103/1008-682X.186876 doi: 10.4103/1008-682X.186876
    [7] B. M. Ayad, G. van der Horst, S. S. du Plessis, Revisiting the relationship between the Ejaculatory abstinence period and semen characteristics, Int. J. Fertil. Steril., 11 (2018), 238. https://doi.org/10.22074/IJFS.2018.5192 doi: 10.22074/IJFS.2018.5192
    [8] Priyansi, B. Bhattacharjee, J. Rahim, Predicting Semen Motility using three-dimensional Convolutional Neural Networks, (2021). https://doi.org/10.48550/arXiv.2101.02888
    [9] C. Dai, Z. Zhang, G. Shan, L. T. Chu, Z. Huang, S. Moskovstev, et al., Advances in sperm analysis: Techniques, discoveries and applications, Nat. Rev. Urol., 18 (2021), 447–467. https://doi.org/10.1038/s41585-021-00472-2 doi: 10.1038/s41585-021-00472-2
    [10] V. Thambawita, T. B. Haugen, M. H. Stensen, O. Witczak, H. L. Hammer, P. Halvorsen, et al., P-029 Identification of spermatozoa by unsupervised learning from video data.
    [11] M. Sewak, S. K. Sahay, H. Rathore, An overview of deep learning architecture of deep neural networks and autoencoders, J. Comput. Theor. Nanosci., 17 (2020), 182–188. https://doi.org/10.1166/jctn.2020.8648 doi: 10.1166/jctn.2020.8648
    [12] K. K. Tseng, Y. Li, C. Y. Hsu, H. N. Huang, M. Zhao, M. Ding, Computer-assisted system with multiple feature fused support vector machine for sperm morphology diagnosis, Biomed. Res. Int., 2013 (2013). https://doi.org/10.1155/2013/687607 doi: 10.1155/2013/687607
    [13] M. J. Tomlinson, Uncertainty of measurement and clinical value of semen analysis: Has standardisation through professional guidelines helped or hindered progress? Andrology, 4 (2016), 763–770. https://doi.org/10.1111/ANDR.12209 doi: 10.1111/ANDR.12209
    [14] R. P. Amann, D. Waberski, Computer-assisted sperm analysis (CASA): Capabilities and potential developments, Theriogenology, 81 (2014), 5–17.e3. https://doi.org/10.1016/j.theriogenology.2013.09.004 doi: 10.1016/j.theriogenology.2013.09.004
    [15] S. A. Hicks, J. M. Andersen, O. Witczak, V. Thambawita, P. Halvorsen, H. L. Hammer, et al., Machine learning-based analysis of sperm videos and participant data for male fertility prediction, Sci. Rep., 9 (2019). https://doi.org/10.1038/s41598-019-53217-y doi: 10.1038/s41598-019-53217-y
    [16] L. F. Urbano, P. Masson, M. Vermilyea, M. Kam, Automatic tracking and motility analysis of human sperm in Time-Lapse images, IEEE Trans. Med. Imaging, 36 (2017), 792–801. https://doi.org/10.1109/TMI.2016.2630720 doi: 10.1109/TMI.2016.2630720
    [17] K. Dewan, T. R. Dastidar, M. Ahmad, Estimation of sperm concentration and total motility from microscopic videos of human semen samples, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, (2018) 2380–2387. https://doi.org/10.1109/CVPRW.2018.00307 doi: 10.1109/CVPRW.2018.00307
    [18] L. Wu, P. Cui, J. Pei, L. Zhao, L. Song, Graph Neural Networks.
    [19] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks?
    [20] B. Jiang, S. Chen, B. Luo, MGLNN: Semi-supervised learning via multiple graph cooperative learning neural networks, Neural Networks, 143 (2022), 204–214.
    [21] H. Elbardisi, A. Majzoub, S. al Said, K. al Rumaihi, W. el Ansari, A. Alattar, et al., Geographical differences in semen characteristics of 13 892 infertile men, Arab. J. Urol., 16 (2018), 3–9. https://doi.org/10.1016/j.aju.2017.11.018 doi: 10.1016/j.aju.2017.11.018
    [22] R. Jeamanukoolkit, C. Treetampinich, M. Sukprasert, S. Rattanasiri, W. Choktanasiri, C. Satirapod, Comparison of the Motility, Morphology, and DNA Integrity of Cryopreserved Human Spermatozoa from Processing Semen before and after Cryopreservation, J. Medical Association Thailand, 100 (2017), 1255.
    [23] M. T. Le, T. T. T. Nguyen, T. T. Nguyen, V. T. Nguyen, T. T. A. Nguyen, V. Q. H. Nguyen, et al., Cryopreservation of human spermatozoa by vitrification versus conventional rapid freezing: Effects on motility, viability, morphology and cellular defects, Eur. J. Obstet. Gyn. R. B.., 234 (2019), 14–20. https://doi.org/10.1016/j.ejogrb.2019.01.001 doi: 10.1016/j.ejogrb.2019.01.001
    [24] G. Anifandis, K. Katsanaki, G. Lagodonti, C. Messini, M. Simopoulou, K. Dafopoulos, et al., The effect of glyphosate on human sperm motility and sperm DNA fragmentation, Int. J. Environ. Res. Public Health, 15 (2018). https://doi.org/10.3390/ijerph15061117 doi: 10.3390/ijerph15061117
    [25] L. Boeri, P. Capogrosso, E. Ventimiglia, F. Pederzoli, W. Cazzaniga, F. Chierigo, et al., High-risk human papillomavirus in semen is associated with poor sperm progressive motility and a high sperm DNA fragmentation index in infertile men, Hum. Reprod., 34 (2019), 209–217. https://doi.org/10.1093/humrep/dey348 doi: 10.1093/humrep/dey348
    [26] A. Harlev, R. Henkel, L. Samanta, A. Agarwal, Ritalinic acid stimulates human sperm motility and maintains vitality in vitro, World J. Mens. Health, 38 (2020), 61–67. https://doi.org/10.5534/WJMH.180127 doi: 10.5534/WJMH.180127
    [27] F. Faja, T. Carlini, G. Coltrinari, F. Finocchi, M. Nespoli, F. Pallotti, et al., Human sperm motility: A molecular study of mitochondrial DNA, mitochondrial transcription factor A gene and DNA fragmentation, Mol. Biol. Rep., 46 (2019), 4113–4121. https://doi.org/10.1007/s11033-019-04861-0 doi: 10.1007/s11033-019-04861-0
    [28] R. P. Amann, D. F. Katz, Andrology Lab Corner*: Reflections on CASA After 25 Years, J. Androl., 25 (2004), 317–325. https://doi.org/10.1002/J.1939-4640.2004.TB02793.X doi: 10.1002/J.1939-4640.2004.TB02793.X
    [29] S. T. Mortimer, G. van der Horst, D. Mortimer, The future of computer-aided sperm analysis, Asian J. Androl., 17 (2015), 545–553. https://doi.org/10.4103/1008-682X.154312 doi: 10.4103/1008-682X.154312
    [30] H. O. Ilhan, G. Serbes, N. Aydin, Automated sperm morphology analysis approach using a directional masking technique, Comput. Biol. Med., 122 (2020), 103845. https://doi.org/10.1016/j.compbiomed.2020.103845 doi: 10.1016/j.compbiomed.2020.103845
    [31] S. Javadi, S. A. Mirroshandel, A novel deep learning method for automatic assessment of human sperm images, Comput. Biol. Med., 109 (2019), 182–194. https://doi.org/10.1016/j.compbiomed.2019.04.030 doi: 10.1016/j.compbiomed.2019.04.030
    [32] J. Riordon, C. McCallum, D. Sinton, Deep learning for the classification of human sperm, Comput. Biol. Med., 111 (2019). https://doi.org/10.1016/j.compbiomed.2019.103342 doi: 10.1016/j.compbiomed.2019.103342
    [33] S. A. Hicks, J. M. Andersen, O. Witczak, V. Thambawita, P. Halvorsen, H. L. Hammer, et al., Machine learning-based analysis of sperm videos and participant data for male fertility prediction. Sci. Rep., 9 (2019), 1–10. https://doi.org/10.1038/s41598-019-53217-y doi: 10.1038/s41598-019-53217-y
    [34] M. reza Mohammadi, M. Rahimzadeh, A. Attar, Sperm detection and tracking in Phase-Contrast microscopy image sequences using deep learning and modified CSR-DCF. (2020).
    [35] F. Ghasemian, S. A. Mirroshandel, S. Monji-Azad, M. Azarnia, Z. Zahiri, An efficient method for automatic morphological abnormality detection from human sperm images, Comput. Meth. Prog. Bio., 122 (2015), 409–420. https://doi.org/10.1016/J.CMPB.2015.08.013 doi: 10.1016/J.CMPB.2015.08.013
    [36] A. Bijar, A. P. Benavent, M. Mikaeili, R. khayati, Fully automatic identification and discrimination of sperm's parts in microscopic images of stained human semen smear, J. Biomed. Sci. Eng., 05 (2012), 384–395. https://doi.org/10.4236/jbise.2012.57049 doi: 10.4236/jbise.2012.57049
    [37] C. Wang, R. S. Swerdloff, Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests, Fertil. Steril., 102 (2014), 1502–1507. https://doi.org/10.1016/j.fertnstert.2014.10.021 doi: 10.1016/j.fertnstert.2014.10.021
    [38] W. C. Tan, N. A. M. Isa, Segmentation and detection of human spermatozoa using modified Pulse Coupled Neural Network optimized by Particle Swarm Optimization with Mutual Information, In: 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), (2015), 192–197. https://doi.org/10.1109/ICIEA.2015.7334109
    [39] P. S. Duggal, S. Paul, P. Tiwari, Analytics for the quality of fertility data using particle swarm optimization, Int. J. Bio-Sci. Bio-Technol., 7 (2015), 39–50. https://doi.org/10.14257/IJBSBT.2015.7.1.05 doi: 10.14257/IJBSBT.2015.7.1.05
    [40] L. E. M. van Raemdonck, Ata-ur-rehman, M. L. Davila-garcia, L. Mihaylova, R. F. Harrison, A. Pacey, An algorithm for Morphological classification of motile human sperm, 2015 Sensor Data Fusion: Trends, Solutions, Applications (SDF) (IEEE, 2015), 1–6. https://doi.org/10.1109/SDF.2015.7347714
    [41] W. C. Tan, N. A. Mat Isa, Automated sperm head detection using intersecting cortical model optimised by particle swarm optimization, PLoS One, 11 (2016), e0162985. https://doi.org/10.1371/journal.pone.0162985 doi: 10.1371/journal.pone.0162985
    [42] F. Shaker, S. A. Monadjemi, A. R. Naghsh-Nilchi, Automatic detection and segmentation of sperm head, acrosome and nucleus in microscopic images of human semen smears, Comput. Meth. Prog. Bio., 132 (2016), 11–20. https://doi.org/10.1016/j.cmpb.2016.04.026 doi: 10.1016/j.cmpb.2016.04.026
    [43] S. K. Mirsky, I. Barnea, M. Levi, H. Greenspan, N. T. Shaked, Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning, Cytom. A, 91 (2017), 893–900. https://doi.org/10.1002/CYTO.A.23189 doi: 10.1002/CYTO.A.23189
    [44] M. L. D. Garcia, D. A. P. Soto, L. S. Mihaylova, A Bag of Features Based Approach for Classification of Motile Sperm Cells, 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (IEEE, 2017), 104–109. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.21
    [45] V. Chang, A. Garcia, N. Hitschfeld, S. Härtel, Gold-standard for computer-assisted morphological sperm analysis, Comput. Biol. Med., 83 (2017), 143–150. https://doi.org/10.1016/J.COMPBIOMED.2017.03.004 doi: 10.1016/J.COMPBIOMED.2017.03.004
    [46] F. Shaker, S. A. Monadjemi, J. Alirezaie, A. R. Naghsh-Nilchi, A dictionary learning approach for human sperm heads classification, Comput. Biol. Med., 91 (2017), 181–190. https://doi.org/10.1016/j.compbiomed.2017.10.009 doi: 10.1016/j.compbiomed.2017.10.009
    [47] F. Shaker, S. A. Monadjemi, J. Alirezaie, Classification of human sperm heads using elliptic features and LDA, 3rd International Conference on Pattern Analysis and Image Analysis, IPRIA 2017 (Institute of Electrical and Electronics Engineers Inc., 2017), 151–155. https://doi.org/10.1109/PRIA.2017.7983036
    [48] M. S. Nissen, O. Krause, K. Almstrup, S. Kjærulff, T. T. Nielsen, M. Nielsen, Convolutional neural networks for segmentation and object detection of human semen, Lect. Notes Comput. Sc., 10269 LNCS (2017), 397–406. https://doi.org/10.48550/arXiv.1704.00498 doi: 10.48550/arXiv.1704.00498
    [49] E. El-Shafeiy, A. El-Desouky, S. El-Ghamrawy, An optimized artificial neural network approach based on sperm whale optimization algorithm for predicting fertility quality, Stud. Inform. Control, 27 (2018), 349–358. https://doi.org/10.24846/V27I3Y201810 doi: 10.24846/V27I3Y201810
    [50] H. O. Ilhan, G. Serbes, N. Aydin, The Effects of the Modified Overlapping Group Shrinkage Technique on the Sperm Segmentation in the Stained Images, 2018 41st International Conference on Telecommunications and Signal Processing, TSP 2018, 1–4. https://doi.org/10.1109/TSP.2018.8441271
    [51] P. Hernandez-Herrera, F. Montoya, J. M. Rendon-Mancha, A. Darszon, G. Corkidi, 3-D + t human sperm flagellum tracing in low SNR fluorescence images, IEEE T. Med. Imaging, 37 (2018), 2236–2247. https://doi.org/10.1109/TMI.2018.2840047 doi: 10.1109/TMI.2018.2840047
    [52] R. A. Movahed, M. Orooji, A Learning-Based Framework for the Automatic Segmentation of Human Sperm Head, Acrosome and Nucleus, 2018 25th Iranian Conference on Biomedical Engineering and 2018 3rd International Iranian Conference on Biomedical Engineering, ICBME 2018, (2018). https://doi.org/10.1109/ICBME.2018.8703544 doi: 10.1109/ICBME.2018.8703544
    [53] C. McCallum, J. Riordon, Y. Wang, T. Kong, J. B. You, S. Sanner, et al., Deep learning-based selection of human sperm with high DNA integrity, Commun. Biol., 2 (2019). https://doi.org/10.1038/s42003-019-0491-6 doi: 10.1038/s42003-019-0491-6
    [54] R. A. Movahed, E. Mohammadi, M. Orooji, Automatic segmentation of Sperm's parts in microscopic images of human semen smears using concatenated learning approaches, Comput. Biol. Med., 109 (2019), 242–253. https://doi.org/10.1016/j.compbiomed.2019.04.032 doi: 10.1016/j.compbiomed.2019.04.032
    [55] S. Qi, T. Nie, Q. Li, Z. He, D. Xu, Q. Chen, A Sperm Cell Tracking Recognition and Classification Method, 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), 2019-June (2019), 163–167. https://doi.org/10.1109/IWSSIP.2019.8787312
    [56] M. reza Mohammadi, M. Rahimzadeh, A. Attar, Sperm Detection and Tracking in Phase-Contrast Microscopy Image Sequences using Deep Learning and Modified CSR-DCF. (2020). https://doi.org/10.48550/arXiv.2002.04034
    [57] A. Zeadna, N. Khateeb, L. Rokach, Y. Lior, I. Har-Vardi, A. Harlev, et al., Prediction of sperm extraction in non-obstructive azoospermia patients: a machine-learning perspective, Hum. Reprod., 35 (2020), 1505–1514. https://doi.org/10.1093/HUMREP/DEAA109 doi: 10.1093/HUMREP/DEAA109
    [58] A. Lesani, S. Kazemnejad, M. Moghimi Zand, M. Azadi, H. Jafari, M. R. K. Mofrad, et al., Quantification of human sperm concentration using machine learning-based spectrophotometry, Comput. Biol. Med., 127 (2020), 104061. https://doi.org/10.1016/j.compbiomed.2020.104061 doi: 10.1016/j.compbiomed.2020.104061
    [59] I. Iqbal, G. Mustafa, J. Ma, Deep learning-based morphological classification of human sperm heads, Diagnostics (Basel), 10 (2020). https://doi.org/10.3390/diagnostics10050325 doi: 10.3390/diagnostics10050325
    [60] D. Somasundaram, M. Nirmala, Faster region convolutional neural network and semen tracking algorithm for sperm analysis, Comput. Meth. Prog. Bio., 200 (2021), 105918. https://doi.org/10.1016/J.CMPB.2020.105918 doi: 10.1016/J.CMPB.2020.105918
    [61] R. Marín, V. Chang, Impact of transfer learning for human sperm segmentation using deep learning, Comput. Biol. Med., 136 (2021), 104687. https://doi.org/10.1016/J.COMPBIOMED.2021.104687 doi: 10.1016/J.COMPBIOMED.2021.104687
    [62] S. Ottl, S. Amiriparian, M. Gerczuk, B. Schuller, A machine learning framework for automatic prediction of human semen motility, (2021). https://doi.org/10.48550/arXiv.2109.08049
    [63] D. Wu, O. Badamjav, V. Reddy, M. Eisenberg, B. Behr, A preliminary study of sperm identification in microdissection testicular sperm extraction samples with deep convolutional neural networks, Asian J. Androl., 23 (2021), 135–139. https://doi.org/10.4103/AJA.AJA_66_20 doi: 10.4103/AJA.AJA_66_20
    [64] L. Prabaharan, A. Raghunathan, An improved convolutional neural network for abnormality detection and segmentation from human sperm images, J. Amb. Intell. Hum. Comp., 12 (2021), 3341–3352. https://doi.org/10.1007/S12652-020-02773-7 doi: 10.1007/S12652-020-02773-7
    [65] A. Chen, C. Li, S. Zou, M. M. Rahaman, Y. Yao, H. Chen, et al., SVIA dataset: A new dataset of microscopic videos and images for computer-aided sperm analysis, Biocybern. Biomed. Eng., 42 (2022), 204–214. https://doi.org/10.1016/J.BBE.2021.12.010 doi: 10.1016/J.BBE.2021.12.010
    [66] Y. A. Hu, J. C. Lu, Y. Shao, Y. F. Huang, N. Q. Lü, Comparison of the semen analysis results obtained from two branded computer-aided sperm analysis systems, Andrologia, 45 (2013), 315–318. https://doi.org/10.1111/and.12010 doi: 10.1111/and.12010
    [67] V. Chang, L. Heutte, C. Petitjean, S. Härtel, N. Hitschfeld, Automatic classification of human sperm head morphology, Comput. Biol. Med., 84 (2017), 205–216. https://doi.org/10.1016/j.compbiomed.2017.03.029 doi: 10.1016/j.compbiomed.2017.03.029
    [68] H. O. Ilhan, I. O. Sigirci, G. Serbes, N. Aydin, A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods, Med. Biol. Eng. Comput., 58 (2020), 1047–1068. https://doi.org/10.1007/s11517-019-02101-y doi: 10.1007/s11517-019-02101-y
    [69] V. Valiuškaitė, V. Raudonis, R. Maskeliūnas, R. Damaševičius, T. Krilavičius, Deep learning based evaluation of spermatozoid motility for artificial insemination, Sensors, 21 (2020), 72. https://doi.org/10.3390/s21010072 doi: 10.3390/s21010072
    [70] A. Abbasi, E. Miahi, S. A. Mirroshandel, Effect of deep transfer and multi-task learning on sperm abnormality detection, Comput. Biol. Med., 128 (2021). https://doi.org/10.1016/j.compbiomed.2020.104121 doi: 10.1016/j.compbiomed.2020.104121
    [71] S. Ottl, S. Amiriparian, M. Gerczuk, B. W. Schuller, motilitAI: A machine learning framework for automatic prediction of human sperm motility, iScience, 25 (2022), 104644. https://doi.org/10.1016/j.isci.2022.104644 doi: 10.1016/j.isci.2022.104644
    [72] A. Aristoteles, A. Syarif, S. F. R. Lumbanraja, A. Hidayatullah, Identification of human sperm based on morphology using the you only look once version 4 algorithm, Int. J. Adv. Comput. Sci. Appl., 13 (2022). https://doi.org/10.14569/IJACSA.2022.0130752 doi: 10.14569/IJACSA.2022.0130752
    [73] V. Thambawita, S. A. Hicks, A. M. Storås, T. Nguyen, J. M. Andersen, O. Witczak, et al., VISEM-Tracking: Human Spermatozoa Tracking Dataset. (2022).
    [74] V. Thambawita, S. A. Hicks, A. M. Storås, T. Nguyen, J. M. Andersen, et al., VISEM-Tracking: Human Spermatozoa Tracking Dataset. (2022).
    [75] M. Dobrovolny, J. Benes, J. Langer, O. Krejcar, A. Selamat, Study on Sperm-Cell detection using YOLOv5 architecture with labaled dataset, Genes (Basel), 14 (2023). https://doi.org/10.3390/genes14020451 doi: 10.3390/genes14020451
    [76] S. Chandra, M. K. Gourisaria, H. Gm, D. Konar, X. Gao, T. Wang, et al., Prolificacy assessment of spermatozoan via State-of-the-Art deep learning frameworks, IEEE Access, 10 (2022), 13715–13727. https://doi.org/10.1109/ACCESS.2022.3146334 doi: 10.1109/ACCESS.2022.3146334
    [77] E. Miahi, S. A. Mirroshandel, A. Nasr, Genetic neural architecture search for automatic assessment of human sperm images, Expert Syst. Appl., 188 (2022). https://doi.org/10.1016/J.ESWA.2021.115937 doi: 10.1016/J.ESWA.2021.115937
    [78] S. Shahzad, M. Ilyas, M. I. U. Lali, H. T. Rauf, S. Kadry, E. A. Nasr, Sperm abnormality detection using sequential deep neural network, Mathematics, 11 (2023). https://doi.org/10.3390/math11030515 doi: 10.3390/math11030515
    [79] A. Abdelaziz Mashaal, M. A. A Eldosoky, L. Nabil Mahdy, K. Ali Ezzat, Automatic Healthy Sperm Head Detection using Deep Learning.
    [80] H. O. Ilhan, I. O. Sigirci, G. Serbes, N. Aydin, A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods, Med. Biol. Eng. Comput., 58 (2020), 1047–1068. https://doi.org/10.1007/s11517-019-02101-y doi: 10.1007/s11517-019-02101-y
    [81] F. Shaker, S. A. Monadjemi, J. Alirezaie, Classification of human sperm heads using elliptic features and LDA, 2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA) (IEEE, 2017), 151–155. https://doi.org/10.1109/PRIA.2017.7983036
    [82] W. C. Tan, N. A. M. Isa, Segmentation and detection of human spermatozoa using modified Pulse Coupled Neural Network optimized by Particle Swarm Optimization with Mutual Information, 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA) (2015), 192–197. https://doi.org/10.1109/ICIEA.2015.7334109 doi: 10.1109/ICIEA.2015.7334109
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3164) PDF downloads(373) Cited by(5)

Article outline

Figures and Tables

Figures(15)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog