This article examines the oscillatory behaviour of solutions to a particular class of conformable elliptic partial differential equations of the Emden-Fowler type. Using the Riccati method, we create some new necessary conditions for the oscillation of all solutions. The previously discovered conclusions for the integer order equations are expanded upon by these additional findings. We provide an example to demonstrate the usefulness of our new finding.
Citation: S. S. Santra, S. Priyadharshini, V. Sadhasivam, J. Kavitha, U. Fernandez-Gamiz, S. Noeiaghdam, K. M. Khedher. On the oscillation of certain class of conformable Emden-Fowler type elliptic partial differential equations[J]. AIMS Mathematics, 2023, 8(6): 12622-12636. doi: 10.3934/math.2023634
This article examines the oscillatory behaviour of solutions to a particular class of conformable elliptic partial differential equations of the Emden-Fowler type. Using the Riccati method, we create some new necessary conditions for the oscillation of all solutions. The previously discovered conclusions for the integer order equations are expanded upon by these additional findings. We provide an example to demonstrate the usefulness of our new finding.
[1] | T. Abdelijawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016 |
[2] | W. Allegretto, On the equivalence of two type of oscillation for elliptic operators, Pac. J. Math., 55 (1974), 319–328. https://doi.org/10.2140/pjm.1974.55.319 doi: 10.2140/pjm.1974.55.319 |
[3] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivatives, Open Math., 7 (2015), 889–898. |
[4] | L. Baldelli, R. Filippucci, Existace results for elliptic problems with gradient terms via a priori estimates, Nonlinear Anal., 198 (2020), 111–894. https://doi.org/10.1016/j.na.2020.111894 doi: 10.1016/j.na.2020.111894 |
[5] | L. M. Berkovich, The generalized Emden-Fowler equation, Sym. Nonlinear Math. Phys., 1 (1997), 155–163. |
[6] | M. Bhakta, P. Nguyen, On the existenceand multiplicity of solutions to fractional Lane-Emden elliptic systems involoving measures, Adv. Nonlinear Anal., 9 (2020), 1480–1503. https://doi.org/10.1515/anona-2020-0060 doi: 10.1515/anona-2020-0060 |
[7] | T. Chantladze, N. Kandelaki, A. Lomtatide, Oscillation and nonoscillation criteria of a second order linear equation, Georgian Math., 6 (1999), 401–414. https://doi.org/10.1515/GMJ.1999.401 doi: 10.1515/GMJ.1999.401 |
[8] | G. E. Chatzarakis, K. Logaarasi, T. Raja, V. Sadhasivam, On the oscillation of conformable impulsive vector partial diferential equations, Tatra Mt. Math. Publ., 76 (2020), 95–11. https://doi.org/10.2478/tmmp-2020-0021 doi: 10.2478/tmmp-2020-0021 |
[9] | Z. Dosla, M. Marini, On super-linear Emden-Fowler type differential equations, J. Math. Anal. Appl., 416 (2014), 497–510. https://doi.org/10.1016/j.jmaa.2014.02.052 doi: 10.1016/j.jmaa.2014.02.052 |
[10] | S. G. Deo, V. Lakshmikantham, V. Raghavendra, Ordinary differential equation, MGH Education, India. |
[11] | L. C. Evans, Partial differential equations, American Mathematical Society, USA, 2022. |
[12] | F. Fiedler, Oscillation criteria of Nehari-type for Sturm-Liouville operators and elliptic operators of second order and lower spectrum, P. Roy. Soc. Edinb. A, 10 (1988), 127–144. https://doi.org/10.1017/S030821050002672X doi: 10.1017/S030821050002672X |
[13] | R. Filippucci, Nonexistence of positive weak solutions of elliptic in-equalities, Nonlinear Anal., 70 (2009), 2903–2916. https://doi.org/10.1016/j.na.2008.12.018 doi: 10.1016/j.na.2008.12.018 |
[14] | R. Filippucci, R. G. Ricci, P. Pucci, Non-existence of nodal and one-signed solutions for nonlinear veriational equations, Arch. Ration. Mech. Anal., 127 (1994), 255–280. https://doi.org/10.1007/BF00381161 doi: 10.1007/BF00381161 |
[15] | R. H. Fowler, Further studies of Emden's and similar differential equations, Q. J. Math., 2 (1931), 259–288. https://doi.org/10.1093/qmath/os-2.1.259 doi: 10.1093/qmath/os-2.1.259 |
[16] | T. Gayathi, M. Deepa, M. S. Kumar, V. Sadhasivam, Hille and Nehari type oscillation crteria for conformable fractional differential equation, Iraqi J. Sci., 62 (2021), 578–587. https://doi.org/10.24996/ijs.2021.62.2.23 doi: 10.24996/ijs.2021.62.2.23 |
[17] | S. R. Grace, R. P. Agarwal, P. J. Y. Wong, A. Zafer, On the oscillation of fractional differential equations, Fract. Calc. Appl. Anal., 15 (2012), 222–231. https://doi.org/10.2478/s13540-012-0016-1 doi: 10.2478/s13540-012-0016-1 |
[18] | P. Hartman, Ordinary differential equations, J. Wiley and Sons, New York, 1964. |
[19] | P. Hartman, On non-oscillatory linear differential equations of second order, Am. J. Math., 74 (1952), 389–400. https://doi.org/10.2307/2372004 doi: 10.2307/2372004 |
[20] | C. Jayakumar, S. S. Santra, D. Baleanu, R. Edwan, V. Govindan, A. Murugesan, et al., Oscillation result for half-linear delay difference equations of second-order, MBE, 19 (2022), 3879–3891. https://doi.org/10.3934/mbe.2022178 doi: 10.3934/mbe.2022178 |
[21] | S. S. Santra, A. Scapellato, Necessary and sufficient conditions for the oscillation of second-order differential equations with mixed several delays, J. Fix. Point Theory A., 24 (2022), 18. https://doi.org/10.1007/s11784-021-00925-6 doi: 10.1007/s11784-021-00925-6 |
[22] | O. Moaaz, A. Muhib, T. Abdeljawad, S. S. Santra, M. Anis, Asymptotic behavior of even-order noncanonical neutral differential equations, Demonstr. Math., 55 (2022), 28–39. https://doi.org/10.1515/dema-2022-0001 doi: 10.1515/dema-2022-0001 |
[23] | O. Bazighifan, S. S. Santra, Second-order differential equations: Asymptotic behavior of the solutions, Miskolc Mathematical Notes, 23 (2022), 105–115. https://doi.org/10.18514/MMN.2022.3369 |
[24] | H. Hilfer, Applications of fractional calculus in physics, World Scientific Publicing Company, Singapore, 2000. |
[25] | E. Hille, Nonoscillation theorems, T. Am. Math. Soc., 64 (1948), 234–252. https://doi.org/10.1090/S0002-9947-1948-0027925-7 |
[26] | U. N. Katugampola, A new fractional derivative with classical properties, arXiv: 14140.6535, 2014. |
[27] | R. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of Fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[28] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, The Netherlands, 204 (2006). |
[29] | A. Kilicman, V. Sadhasivam, M. Deepa, N. Nagajothi, Oscillatory behavior of three dimensional $\alpha$-fractional delay differential systems, Symmetry, 10 (2018), 769. https://doi.org/10.3390/sym10120769 doi: 10.3390/sym10120769 |
[30] | W. Lian, V. Radulescu, R. Xu, Y. Yang, N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 14 (2021), 589–611. https://doi.org/10.1515/acv-2019-0039 doi: 10.1515/acv-2019-0039 |
[31] | A. Lomtatidze, Oscillation and nonoscillation of Emden-Fowler type equation of second order, Arch. Math., 32 (1996), 181–193. |
[32] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, New York, 1993. |
[33] | E. Muller-Pfeiffer, Oscillation criteria of Nehari-type for the Schrödinger equation, Math. Nachr., 96 (1980), 185–194. https://doi.org/10.1002/mana.19800960116 doi: 10.1002/mana.19800960116 |
[34] | Z. Nehari, Oscillation criteria for second-order linear differential equations, T. Am. Math. Soc., 85 (1957), 428–445. https://doi.org/10.1090/S0002-9947-1957-0087816-8 doi: 10.1090/S0002-9947-1957-0087816-8 |
[35] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[36] | D. Qin, V. Radulescu, X. Tang, Ground states and geomentrically distinct solutions for peridic systems Choquard-Pekar equations, J. Differ. Equations, 275 (2021), 652–683. https://doi.org/10.1016/j.jde.2020.11.021 doi: 10.1016/j.jde.2020.11.021 |
[37] | R. Marik, Oscillation criteria for the Schrodinger PDE, Adv. Math. Sci. Appl., 10 (2000), 495–511. |
[38] | V. Sadhasivam, M. Deepa, K. Saherabanu, On the oscillation of conformable fractional differential non-linear differential equations, Int. J. Math. Arch., 9 (2018), 189–193. |
[39] | C. Swanson, Comparsion and oscillation theory of linear differential equations, Academic Press, New York, 1968. |
[40] | Y. Wang, Y. Wei, Liouville property of fractional Lane-Emden equation in general unbounded domain, Adv. Nonlinear Anal., 10 (2021), 494–500. https://doi.org/10.1515/anona-2020-0147 doi: 10.1515/anona-2020-0147 |
[41] | A. Winter, A criterion of oscillatory stability, Q. Appl. Math., 7 (1949), 115–117. https://doi.org/10.1090/qam/28499 doi: 10.1090/qam/28499 |
[42] | J. S. Wong, On the generalized Emden-Fowler equation, SIAM Rev., 17 (1975), 339–360. https://doi.org/10.1137/1017036 doi: 10.1137/1017036 |
[43] | J. Wu, Theory and applications of partial functional differential equations, Springer, New York, 1996. |
[44] | N. Yoshida, Oscillation theory of partial differential equations, World Scientific, Singapore, 2008. https://doi.org/10.1142/7046 |